Skip to main content

Stimuli-Sensitive Polymeric Micelles for Biomedical Applications

  • Chapter
  • First Online:
Polymeric Micelles: Principles, Perspectives and Practices

Abstract

Stimuli-responsive polymeric micelles (PMs) have emerged not only as a promising technology to achieve on-demand, targeted, and regulated drug release for therapeutic applications but also for diagnostic purposes, emerging collectively as a theranostic toolkit. The stimuli can be exogenous (extrinsic) such as light, temperature, ultrasound, electric and magnetic field, or endogenous (intrinsic) such as pH, glucose, reactive oxygen species, redox, hypoxia, and enzymes. Stimuli-responsive PMs find extensive application in the field of cancer research. Tumor cells as well as tumor sites undergo extensive changes during their development and progression including the accumulation of acidic metabolites which reduces their pH in comparison to normal tissues, the elevation of several enzymes as well as proteins, increased reactive oxygen species, reduced oxygen levels, altered redox potential in certain tumor tissues, and increased temperature around certain tumor sites. These unique features encourage the development and fabrication of stimuli-responsive systems. In addition, these systems can also be engineered to encapsulate a wide variety of bioactive molecules and tuned in a way to overcome biological barriers by external stimuli to improve the efficiency of accumulation at the target site or within the tumor cells. In recent years stimuli-responsive systems are capturing the attention in research on the controlled delivery of drugs. In this review, an emphasis on the recent developments of the external, internal, dual and multi-stimuli-responsive polymeric micelles is made along with its future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bae J, Maurya A, Shariat-Madar Z, Murthy SN, Jo S (2015) Novel redox-responsive amphiphilic copolymer micelles for drug delivery: synthesis and characterization. AAPS J 17(6):1357–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barve A, Jain A, Liu H, Zhao Z, Cheng K (2020) Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater 113:501–511. https://doi.org/10.1016/j.actbio.2020.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazban-Shotorbani S, Hasani-Sadrabadi MM, Karkhaneh A, Serpooshan V, Jacob KI, Moshaverinia A et al (2017) Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications. J Control Release 253:46–63

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Gu Y, Meineck M, Li T, Xu H (2014) Tellurium-containing polymer micelles: competitive-ligand-regulated coordination responsive systems. J Am Chem Soc 136(13):5132–5137

    Article  CAS  PubMed  Google Scholar 

  • Chang D, Ma Y, Xu X, Xie J, Ju S (2021) Stimuli-responsive polymeric nanoplatforms for cancer therapy. Front Bioeng Biotechnol 9:1–26

    Article  CAS  Google Scholar 

  • Chen S, Liu J, Li Y, Wu X, Yuan Q, Yang R et al (2020) Hypoxia-responsive fluorescent nanoprobe for imaging and cancer therapy. Trends Anal Chem 131:116010

    Article  CAS  Google Scholar 

  • Cheng R, Meng F, Deng C, Klok HA, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34(14):3647–3657. https://doi.org/10.1016/j.biomaterials.2013.01.084

    Article  CAS  PubMed  Google Scholar 

  • Cheng CC, Huang JJ, Lee AW, Huang SY, Huang CY, Lai JY (2019) Highly effective photocontrollable drug delivery systems based on ultrasensitive light-responsive self-assembled polymeric micelles: an in vitro therapeutic evaluation. ACS Appl Bio Mater 2(5):2162–2170

    Article  CAS  PubMed  Google Scholar 

  • Convertine AJ, Diab C, Prieve M, Paschal A, Hoffman AS, Johnson PH et al (2010) pH-responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules 11(11):2904–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Y, Chen X, Zhang X (2019) Recent advances in stimuli-responsive polymeric micelles: via click chemistry. Polym Chem 10(1):34–44

    Article  CAS  Google Scholar 

  • Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P et al (2020) Stimuli-responsive polymeric nanocarriers for drug. Polymers (Basel) 12:1–45

    Article  Google Scholar 

  • Deepagan VG, Kwon S, You DG, Nguyen VQ, Um W, Ko H et al (2016) In situ diselenide-crosslinked polymeric micelles for ROS-mediated anticancer drug delivery. Biomaterials 103:56–66

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Yuan H, Yuan W (2019) Hypoxia-responsive micelles self-assembled from amphiphilic block copolymers for the controlled release of anticancer drugs. J Mater Chem B 7(2):286–295

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Wang Y, Zhang J, Zhan X, Zhu S, Yang H et al (2013) Multiple stimuli-responsive polymeric micelles for controlled release. Soft Matter 9(2):370–373

    Article  CAS  Google Scholar 

  • Dong Y, Ma X, Huo H, Zhang Q, Qu F, Chen F (2018) Preparation of quadruple responsive polymeric micelles combining temperature-, pH-, redox-, and UV-responsive behaviors and its application in controlled release system. J Appl Polym Sci 135(35):1–11

    Article  CAS  Google Scholar 

  • Fabbrizzi L (2020) The ferrocenium/ferrocene couple: a versatile redox switch. ChemTexts 6(4):1–20

    Article  Google Scholar 

  • Feng A, Yan Q, Zhang H, Peng L, Yuan J (2014) Electrochemical redox responsive polymeric micelles formed from amphiphilic supramolecular brushes. Chem Commun 50(36):4740–4742

    Article  CAS  Google Scholar 

  • Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64(9):866–884. https://doi.org/10.1016/j.addr.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  • Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 30(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Xiong Z (2021) Reactive oxygen species responsive polymers for drug delivery systems. Front Chem 9:1–17

    Article  CAS  Google Scholar 

  • Gao GH, Im GH, Kim MS, Lee JW, Yang J, Jeon H et al (2010) Magnetite-nanoparticle-encapsulated pH-responsive polymeric micelle as an MRI probe for detecting acidic pathologic areas. Small 6(11):1201–1204

    Article  CAS  PubMed  Google Scholar 

  • Gardey E, Sobotta FH, Quickert S, Bruns T, Brendel JC, Stallmach A (2022) ROS-sensitive polymer micelles for selective degradation in primary human monocytes from patients with active IBD. Macromol Biosci 2100482:1–6

    Google Scholar 

  • Gupta MK, Meyer TA, Nelson CE, Duvall CL (2012) Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. J Control Release 162(3):591–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guragain S, Bastakoti BP, Ito M, Yusa SI, Nakashima K (2012) Aqueous polymeric micelles of poly[N-isopropylacrylamide-b-sodium 2-(acrylamido)-2-methylpropanesulfonate] with a spiropyran dimer pendant: quadruple stimuli-responsiveness. Soft Matter 8(37):9628–9634

    Article  CAS  Google Scholar 

  • Hassanzadeh F, Farzan M, Varshosaz J, Khodarahmi GA, Maaleki S, Rostami M (2017) Poly (ethylene-co-vinyl alcohol)-based polymeric thermo-responsive nanocarriers for controlled delivery of epirubicin to hepatocellular carcinoma. Res Pharm Sci 12(2):107–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Hejmady S, Pradhan R, Alexander A, Agrawal M, Singhvi G, Gorain B et al (2020) Recent advances in targeted nanomedicine as promising antitumor therapeutics. Drug Discov Today 25(12):2227–2244. https://doi.org/10.1016/j.drudis.2020.09.031

    Article  CAS  PubMed  Google Scholar 

  • Hu YC, Pan CY (2005) Bioaffinitive and nanosized polymeric micelles based on a reactive block copolymer. Macromol Rapid Commun 26(12):968–972

    Article  CAS  Google Scholar 

  • Hu P, Tirelli N (2012) Scavenging ROS: superoxide dismutase/catalase mimetics by the use of an oxidation-sensitive nanocarrier/enzyme conjugate. Bioconjug Chem 23(3):438–449

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Zhuang W, Ma B, Su X, Yu T, Li G et al (2018) Redox-responsive biomimetic polymeric micelle for simultaneous anticancer drug delivery and aggregation-induced emission active imaging. Bioconjug Chem 29:1897–1910

    Article  CAS  PubMed  Google Scholar 

  • Huo H, Ma X, Dong Y, Qu F (2017) Light/temperature dual-responsive ABC miktoarm star terpolymer micelles for controlled release. Eur Polym J 87:331–343. https://doi.org/10.1016/j.eurpolymj.2016.12.038

    Article  CAS  Google Scholar 

  • Jain S, Cherukupalli SK, Mahmood A, Gorantla S, Rapalli VK, Dubey SK et al (2019) Emerging nanoparticulate systems: preparation techniques and stimuli responsive release characteristics. J Appl Pharm Sci 9(8):130–143

    Article  CAS  Google Scholar 

  • Kalhapure RS, Renukuntla J (2018) Thermo- and pH dual responsive polymeric micelles and nanoparticles. Chem Biol Interact 295:20–37. https://doi.org/10.1016/j.cbi.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Mishra V, Kumar S, Gulati M, Kapoor B (2021) Harnessing amphiphilic polymeric micelles for diagnostic and therapeutic applications: breakthroughs and bottlenecks. J Control Release 334:64–95. https://doi.org/10.1016/j.jconrel.2021.04.014

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Gulati M, Kapoor B, Kumar N, Prasher P, Ansari S et al (2022) Advances in designing of polymeric micelles for biomedical application in brain related diseases. Chem Biol Interact 361:109960. https://doi.org/10.1016/j.cbi.2022.109960

    Article  CAS  PubMed  Google Scholar 

  • Kim HC, Kim E, Jeong SW, Ha TL, Park SI, Lee SG et al (2015) Magnetic nanoparticle-conjugated polymeric micelles for combined hyperthermia and chemotherapy. Nanoscale 7(39):16470–16480

    Article  CAS  PubMed  Google Scholar 

  • Kim KN, Oh KS, Shim J, Schlaepfer IR, Karam SD, Lee J (2021) Light-responsive polymeric micellar nanoparticles with enhanced formulation stability. Polymers 13:1–11

    Google Scholar 

  • Kumar H, Navya D, Shivendu PN, Nandita R, Eric D (2020) Nanoscience in medicine. Vol. 1. Anticancer Res 40:51–88

    Google Scholar 

  • Lee D, Erigala VR, Dasari M, Yu J, Dickson RM, Murthy N (2008) Detection of hydrogen peroxide with chemiluminescent micelles. Int J Nanomedicine 3(4):471–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Gupta MK, Bang JB, Bae H, Sung HJ (2013) Current progress in reactive oxygen species (ROS)-responsive materials for biomedical applications. Adv Healthc Mater 2(6):908–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Yu A, Li L, Zhai G (2018) The development of stimuli-responsive polymeric micelles for effective delivery of chemotherapeutic agents. J Drug Target 26(9):753–765. https://doi.org/10.1080/1061186X.2017.1419477

    Article  CAS  PubMed  Google Scholar 

  • Li R, Xie H, Zhang C, Sun Y, Yin H (2020) ROS-responsive polymeric micelle for improving pesticides efficiency and intelligent release. J Agric Food Chem 68(34):9052–9060

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang B, Zhang Q, Song P, Jiang T, Zhao X (2022a) Hypoxia responsive fucoidan-based micelles for oxidative stress-augmented chemotherapy. Eur Polym J 174:111340

    Article  CAS  Google Scholar 

  • Li J, Meng X, Men Z, Chen X, Shen T (2022b) Electric and reactive oxygen species dual-responsive polymeric micelles improve the therapeutic efficacy of lamotrigine in pentylenetetrazole kindling rats. Colloids Surf A Physicochem Eng Asp 642:128628. https://doi.org/10.1016/j.colsurfa.2022.128628

    Article  CAS  Google Scholar 

  • Liu L, Ma G, Zhang C, Wang H, Sun H, Wang C et al (2016) An activatable theranostic nanomedicine platform based on self-quenchable indocyanine green-encapsulated polymeric micelles. J Biomed Nanotechnol 12(6):1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Li C, Lv J, Huang F, An Y, Shi L et al (2020) Glucose and H2 O2 dual-responsive polymeric micelles for the self- regulated release of insulin. ACS Appl Bio Mater 3:1598

    Article  CAS  PubMed  Google Scholar 

  • Long M, Liu X, Huang X, Lu M, Wu X, Weng L et al (2021) Alendronate-functionalized hypoxia-responsive polymeric micelles for targeted therapy of bone metastatic prostate cancer. J Control Release 334:303–317

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Li Y, Ren H, Xu H, Li Z, Zhang X (2010) Selenium-containing block copolymers and their oxidation-responsive aggregates. Polym Chem 1(10):1609–1614

    Article  CAS  Google Scholar 

  • Majumder N, Das NG, Das SK (2020) Polymeric micelles for anticancer drug delivery. Ther Deliv 11(10):613–635

    Article  CAS  PubMed  Google Scholar 

  • Makhlouf ASH, Abu-Thabit NY (2018) Stimuli responsive polymeric nanocarriers for drug delivery applications, volume 1: types and triggers, vol 59. Woodhead Publishing, Sawston, pp 1–971

    Google Scholar 

  • Matsumura S, Hlil AR, Lepiller C, Gaudet J, Guay D, Shi Z et al (2008) Stability and utility of Pyridyl disulfide functionality in RAFT and conventional radical polymerizations. J Polym Sci Part A Polym Chem 46:7207–7224

    Article  Google Scholar 

  • Min KH, Kim JH, Bae SM, Shin H, Kim MS, Park S et al (2010) Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. J Control Release 144(2):259–266

    Article  CAS  PubMed  Google Scholar 

  • Nakayama M, Akimoto J, Okano T (2014) Polymeric micelles with stimuli-triggering systems for advanced cancer drug targeting. J Drug Target 22(7):584–599

    Article  CAS  PubMed  Google Scholar 

  • Nitheesh Y, Pradhan R, Hejmady S, Taliyan R, Singhvi G, Alexander A et al (2021) Surface engineered nanocarriers for the management of breast cancer. Mater Sci Eng C 130:112441. https://doi.org/10.1016/j.msec.2021.112441

    Article  CAS  Google Scholar 

  • Park J, Jo S, Lee YM, Saravanakumar G, Lee J, Park D et al (2021) Enzyme-triggered disassembly of polymeric micelles by controlled depolymerization via cascade cyclization for anticancer drug delivery. ACS Appl Mater Interfaces 13(7):8060–8070

    Article  CAS  PubMed  Google Scholar 

  • Perche F, Biswas S, Wang T, Zhu L, Torchilin VP (2014) Hypoxia-targeted siRNA delivery. Angew Chem Int Ed Engl 126(13):3430–3434

    Article  Google Scholar 

  • Qiu L, Li Z, Qiao M, Long M, Wang M, Zhang X et al (2014) Self-assembled pH-responsive hyaluronic acid-g-poly(l-histidine) copolymer micelles for targeted intracellular delivery of doxorubicin. Acta Biomater 10(5):2024–2035

    Article  CAS  PubMed  Google Scholar 

  • Qiu N, Du X, Ji J, Zhai G (2021) A review of stimuli-responsive polymeric micelles for tumor-targeted delivery of curcumin. Drug Dev Ind Pharm 0(0):1–18. https://doi.org/10.1080/03639045.2021.1934869

    Article  CAS  Google Scholar 

  • Rapoport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32(8–9):962–990

    Article  CAS  Google Scholar 

  • Roy D, Sumerlin BS (2012) Glucose-sensitivity of boronic acid block copolymers at physiological pH. ACS Macro Lett 1(5):529–532

    Article  CAS  PubMed  Google Scholar 

  • Ruiz AL, Ramirez A, McEnnis K (2022) Single and multiple stimuli-responsive polymer particles for controlled drug delivery. Pharmaceutics 14(2):421

    Article  Google Scholar 

  • Sana B, Finne-wistrand A, Pappalardo D (2022) Recent development in near infrared light-responsive polymeric materials for smart drug-delivery systems. Mater Today Chem 25:100963. https://doi.org/10.1016/j.mtchem.2022.100963

    Article  CAS  Google Scholar 

  • Sant VP, Smith D, Leroux JC (2005) Enhancement of oral bioavailability of poorly water-soluble drugs by poly(ethylene glycol)-block-poly(alkyl acrylate-co-methacrylic acid) self-assemblies. J Control Release 104(2):289–300

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Jin Y, Du W, Lai S, Shen Y, Zhou R (2020) Diselenide-containing nonionic gemini polymeric micelles as a smart redox-responsive carrier for potential programmable drug release. Polymer 198:122551

    Article  CAS  Google Scholar 

  • Shirani S, Varshosaz J, Rostami M, Mirian M (2022) Redox responsive polymeric micelles of gellan gum/abietic acid for targeted delivery of ribociclib. Int J Biol Macromol 215(June):334–345

    Article  CAS  PubMed  Google Scholar 

  • Song CC, Du FS, Li ZC (2014) Oxidation-responsive polymers for biomedical applications. J Mater Chem B 2(22):3413–3426

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Guo B, Cheng R, Meng F, Liu H, Zhong Z (2009) Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials 30(31):6358–6366

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Liang Y, Hao N, Xu L, Cheng F, Su T et al (2017) A ROS-responsive polymeric micelle with a π-conjugated thioketal moiety for enhanced drug loading and efficient drug delivery. Org Biomol Chem 15(43):9176–9185

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Wang K, Oupický D (2018) Advances in stimulus-responsive polymeric materials for systemic delivery of nucleic acids. Adv Healthc Mater 7(4):1–17

    Google Scholar 

  • Sun XS, Jang MS, Fu Y, Lee JH, Lee DS, Li Y et al (2020) Intracellular delivery of cytochrome C using hypoxia-responsive polypeptide micelles for efficient cancer therapy. Mater Sci Eng C 114:114

    Article  Google Scholar 

  • Sun XY, Liang YX, Wu CY, Tang Q, Liu R, Lu ZL et al (2021) Nitroreductase-responsive polymeric micelles based on 4-nitrobenzyl and AIE moieties for intracellular doxorubicin release. Polym Chem 12(17):2618–2626

    Article  CAS  Google Scholar 

  • Tang R, Ji W, Panus D, Palumbo RN, Wang C (2011) Block copolymer micelles with acid-labile ortho ester side-chains: synthesis, characterization, and enhanced drug delivery to human glioma cells. J Control Release 151(1):18–27

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Chen XC, Ding RL, Yang XL, Li J, Yu XQ et al (2019) Synthesis of high drug loading, reactive oxygen species and esterase dual-responsive polymeric micelles for drug delivery. RSC Adv 9(5):2371–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang Z, Yu J, Kahkoska AR, Buse JB, Gu Z (2020) Glucose-responsive insulin and delivery systems: innovation and translation. Adv Mater 32(13):1–19

    Google Scholar 

  • Wei J, Lin F, You D, Qian Y, Wang Y, Bi Y (2019) Self-assembly and enzyme responsiveness of amphiphilic linear-dendritic block copolymers based on poly(N-vinylpyrrolidone) and dendritic phenylalanyl-lysine dipeptides. Polymers (Basel) 11(10):1625

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Li H, Luo YL, Tang W (2017) Redox-responsive self-assembly micelles from poly(N-acryloylmorpholine-block-2-acryloyloxyethyl ferrocenecarboxylate) amphiphilic block copolymers as drug release carriers. ACS Appl Mater Interfaces 9:5181–5192

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Cao J, Li Q, Li J, He K, Shen T et al (2018) Novel azobenzene-based amphiphilic copolymers: synthesis, self-assembly behavior and multiple-stimuli-responsive properties. RSC Adv 8(29):16103–16113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan K, Zhang S, Zhang K, Miao Y, Qiu Y, Zhang P et al (2020) Enzyme-responsive polymeric micelles with fluorescence fabricated through aggregation-induced copolymer self-assembly for anticancer drug delivery. Polym Chem 11(48):7704–7713

    Article  CAS  Google Scholar 

  • Yang H, Sun X, Liu G, Ma R, Li Z, An Y et al (2013) Glucose-responsive complex micelles for self-regulated release of insulin under physiological conditions. Soft Matter 9(35):8589–8599

    Article  CAS  Google Scholar 

  • Yang H, Khan AR, Liu M, Fu M, Ji J, Chi L et al (2020) Stimuli-responsive polymeric micelles for the delivery of paclitaxel. J Drug Deliv Sci Technol 56:101523. https://doi.org/10.1016/j.jddst.2020.101523

    Article  CAS  Google Scholar 

  • Yuan Y, Zhao L, Shen C, He Y, Yang F, Zhang G et al (2020) Reactive oxygen species-responsive amino acid-based polymeric nanovehicles for tumor-selective anticancer drug delivery. Mater Sci Eng C 106:1101159

    Article  Google Scholar 

  • Zhang X, Han L, Liu M, Wang K, Tao L, Wan Q et al (2017) Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Mater Chem Front 1(5):807–822

    Article  CAS  Google Scholar 

  • Zhang K, Liu J, Ma X, Lei L, Li Y, Yang H et al (2018) Temperature, pH, and reduction triple-stimuli-responsive inner-layer crosslinked micelles as nanocarriers for controlled release. J Appl Polym Sci 135(40):1–10

    Article  Google Scholar 

  • Zhang P, Li M, Xiao C, Chen X (2021) Stimuli-responsive polypeptides for controlled drug delivery. Chem Commun 57(75):9489–9503

    Article  CAS  Google Scholar 

  • Zhao X, Bai J, Yang W (2021) Stimuli-responsive nanocarriers for therapeutic applications in cancer. Cancer Biol Med 18:319

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Zhang L, Yang TH, Wu H (2018) Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 13:2921–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Qin F, Chen C (2021) Designing hypoxia-responsive nanotheranostic agents for tumor imaging and therapy. Adv Healthc Mater 10(5):2001277

    Article  CAS  Google Scholar 

  • Zhuang W, Xu Y, Li G, Hu J, Ma B, Yu T et al (2018) Biological and medical applications of materials and interfaces redox and pH dual-responsive polymeric micelle with aggregation- induced emission feature for cellular imaging and chemotherapy redox and pH dual-responsive polymeric micelle with aggregation. ACS Appl Mater Interfaces 10(22):18489–18498

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Singhvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, K.K., Kadam, A.Y., Tomar, Y., Singhvi, G. (2023). Stimuli-Sensitive Polymeric Micelles for Biomedical Applications. In: Singh, S.K., Gulati, M., Mutalik, S., Dhanasekaran, M., Dua, K. (eds) Polymeric Micelles: Principles, Perspectives and Practices. Springer, Singapore. https://doi.org/10.1007/978-981-99-0361-0_7

Download citation

Publish with us

Policies and ethics