Skip to main content

Bamboo Construction: Main Building Techniques and Their Resources, Sustainability, History, Uses, and Classification

  • Chapter
  • First Online:
Bamboo and Sustainable Construction

Abstract

Like wood, bamboo is utilized in different products for civil construction, either in natural or in engineered form. The easy proliferation in small-sized planted forests, rapid harvest cycles, and low environmental impacts in the planting and processing stages gave significant credentials to this renewable bio-based resource in the last years. In addition, different bamboo species are likely to be applied to structural applications. These facts value this biomaterial as a convenient input to supply the civil construction sector, above all, in more sustainable housing and infrastructure. Formerly, bamboo culms and esterillas were used in popular buildings using rudimentary solutions based on vernacular techniques. From the advancement of bioresource technology and industrialization, structural bamboo products and bamboo-based composites are being developed for modern buildings manufactured from prefabrication techniques. As a structural material in its multiple forms, bamboo can be used alone or together with other materials, which contributes to the diffusion of this commodity worldwide. Thereat, bamboo buildings may overcome their usual applications in Asia, Africa, and part of Latin America to be valued as a sustainable alternative for construction by engineering and architecture professionals from Europe, Oceania, and South and North Americas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hidalgo-López O (2003) Bamboo: the gift of the Gods. Oscar Hidalgo-Lopez, Colombia

    Google Scholar 

  2. Clark LG, Lodoño X, Ruiz-Sanchez E (2015) Bamboo taxonomy and habitat. In: Liese W, Köhl M (eds) Bamboo: the plant and its uses. Tropical Forestry 10. Springer International, Switzerland, pp1–30

    Google Scholar 

  3. Greco TM, Cromberg M (2011). Bambu: cultivo e manejo. Insular, Florianópolis, Brazil

    Google Scholar 

  4. Silva RMC (2005) O bambu no Brasil e no Mundo. IEU, Rio de Janeiro, Brazil

    Google Scholar 

  5. Araujo CLP (2017) Caracterização e germinação de Dendrocalamus asper (Schultes f.) Backer ex Heyne (Poaceae: Bambusoideae). Dissertation, Federal University of Goias

    Google Scholar 

  6. Beraldo AL, Azzini A, Ghavami K, Pereira MAR (2003) Bambu: características e aplicações. In: Freire WJ, Beraldo AL (eds) Tecnologias e materiais alternativos de construção. UNICAMP, Campinas, Brazil, pp 253–299

    Google Scholar 

  7. Ahmad Z, Upadhyay A, Ding Y, Emamverdian A, Shahzad A (2021) Bamboo: origin, habitat, distributions and global prospective. In: Ahmad Z, Ding Y, Shahzad A (eds) Biotechnological advances in bamboo. Springer Nature Singapore, Singapore

    Google Scholar 

  8. Hidalgo-López O (1974) Bambu—su cultivo e aplicaciones en: fabricacion de papel, construcion, arquitectura, ingeniería y artesania. Estudios Tecnicos, Cali, Colombia

    Google Scholar 

  9. Pereira MAR (2012) Projeto Bambu: introdução de espécies, manejo, caracterização e aplicações. Teaching Dissertation, São Paulo State University

    Google Scholar 

  10. Cedeño Valdiviezo A, Irigoyen Castillo J (2011) El bambú en México. Arq.urb 6:223–243

    Google Scholar 

  11. Teixeira AA (2006) Painéis de bamboo para habitações econômicas: avaliação do desempenho de painéis revestidos com argamassa. Dissertation, University of Brasilia

    Google Scholar 

  12. Hidalgo-López O (1978) Nuevas técnicas de construcción con bambú. Estudios Técnicos, Bogotá, Colombia

    Google Scholar 

  13. Rusch F, De Araujo V, Morales EAM, Gava M, Domene SMA, Cortez-Barbosa J (2022) Potential of young bamboos for food industry: production of ingredients from the use of their culms and shoots. Res Soc Dev 11:1–8

    Google Scholar 

  14. Berndsen RS, Klitzke RJ, Batista DC, Nascimento EM, Ostapiv F (2010) Propriedades físicas do bambu-mossô (Phyllostachys pubescens Mazel ex H. de Lehaie) em diferentes idades e posições do colmo. Floresta 40:183–192

    Article  Google Scholar 

  15. Beraldo AL, Aleixo LRP (2019) Bambu: características e aplicações na construção civil e em arquitetura, 1st edn. Canal6, Bauru, Brazil

    Google Scholar 

  16. Ueda K (1987) Culture of bamboo as raw material. AOTS, Kyoto, Japan

    Google Scholar 

  17. Kigomo B (2007) Guidelines for growing bamboo. Guideline, Series: n.4. KEFRI, Nairobi, Kenya

    Google Scholar 

  18. Liese W (1985) Anatomy and properties of bamboo. Recent research on bamboos. In: Rao AN, Dhanarajan G, Sastry CB (eds), Proceedings of the international bamboo workshop, Hangzhou, China

    Google Scholar 

  19. Jaramillo Benavides AS, Ilha Librelotto L, Larco Benítez M (2015) Inventario del ciclo de vida del proceso de producción de bambú rollizo tratado de la especie Dendrocalamus asper en el noroccidente de Pichincha. Revista Eidos 8:17–24

    Google Scholar 

  20. Boissière M, Atmadja S, Benmakhlouf S, Beyessa M, Kassa H, Hunde T, Assefa F (2020) Developing small-scale bamboo enterprises for livelihoods and environmental restoration in Benishangul-Gumuz Regional State, Ethiopia. Int For Rev 22:306–322

    Google Scholar 

  21. Janssen JJ (2000) Designing and building with bamboo. INBAR, Beijing, China

    Google Scholar 

  22. Salzer C, Wallbaum H, Lopez LF, Kouyoumji JL (2016) Sustainability of social housing in Asia: a holistic multi-perspective development process for bamboo-based construction in the Philippines. Sustainability 8:1–26

    Article  Google Scholar 

  23. Zhao H, Zhao S, INBAR, Fei B, Liu H, Yang H, Dai H, Wang D, Jin W, Tang F, Gao Q, Xun H, Wang Y, Qi L, Yue X, Lin S, Gu L, Li L, Zhu T, Wei Q, Su Z, Wan TBWA, Ofori DA, Muthike GM, Mengesha YM, Castro e Silva RM, Beraldo AL, Gao Z, Liu X, Jiang Z (2017) Announcing the genome atlas of bamboo and rattan (GABR) project: promoting research in evolution and in economically and ecologically beneficial plants. GigaScience 6:1–7

    Google Scholar 

  24. Kewei L, Jayaraman D, Estrella PJ, Yongjiu S, Jun Y, Junqi W, Lopez LF, Escardó BDLP, Moreno F (2022) Create an enabling environment for bamboo construction sector in Africa, Asia and Latin America. In: International conference on non-conventional materials and technologies, virtual conference

    Google Scholar 

  25. Pathak PK, Kumar H, Kumari G, Bilyaminu H (2016) Biomass production potential in different species of hemicelluloses from bamboo in central Utter Pradesh. The Ecoscan 10:41–43

    Google Scholar 

  26. Devi AS, Singh KS (2021) Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India. Sci Rep 11:837–845

    Article  CAS  Google Scholar 

  27. Quiroga RAR, Li T, Lora G, Anderson LE (2013) A measurement of the carbon sequestration potential of Guadua angustifolia in the Carrasco National Park Bolivia. In: Development research working paper series 04/2013. Institute for Advanced Development Studies, Bolivia

    Google Scholar 

  28. Singnar P, Das MC, Sileshi GW, Brahma B, Nath AJ (2017) Allometric scalling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboos Schiostachyum dullooa, Pseudostachyum polymorphum and Melocanna baccifera. For Ecol Manage 395:81–91

    Article  Google Scholar 

  29. van der Lugt P, Vogtländer J, van der Vegte JH, Brezet H (2015) Environmental assessment of industrial bamboo products: life cycle assessment and carbon sequestration. In: Proceedings of the 10th world bamboo congress. World Bamboo Organization, Korea, pp 1–16

    Google Scholar 

  30. Mimendi L, Lorenzo R, Li H (2022) An innovative digital workflow to design, build and manage bamboo structures. Sustain Struct 2:1–17

    Article  Google Scholar 

  31. Carcassi OB, Habert G, Malighetti L, Pittau F (2022) Material diets for climate-neutral construction. Environ Sci Technol 56:5213–5223

    Article  CAS  Google Scholar 

  32. Meyer HF, Ekelund B (1923) Tests on the mechanical properties of bamboo. Proc Eng Soc China 22:141–169

    Google Scholar 

  33. Raj AD, Agarwal AB (2014) Bamboo as a building material. J Civil Eng Environ Technol 1:56–61

    Google Scholar 

  34. Huang Y, Ji Y, Yu W (2019) Development of bamboo scrimber: a literature review. J Wood Sci 65:1–10

    Article  Google Scholar 

  35. Liese W, Welling J, Tang TKH (2015) Utilization of bamboo. In: Liese W, Köhl M (eds) Bamboo: the plant and its uses. Tropical Forestry 10. Springer International, Switzerland, pp 299–346

    Google Scholar 

  36. Palombini FL, Kindlein W, de Oliveira BF, de Araujo Mariath JE (2016) Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography. Mater Charact 120:357–368

    Article  CAS  Google Scholar 

  37. Sharma P, Dhanwantri K, Mehta S (2014) Bamboo as a building material. Int J Civil Eng Res 5:249–254

    Google Scholar 

  38. Nkeuwa WN, Zhang J, Semple KE, Chen M, Xia Y, Dai C (2022) Bamboo-based composites: a review on fundamentals and processes of bamboo bonding. Compos B 235:1–20

    Article  Google Scholar 

  39. De Almeida A, De Araujo VA, Morales EAM, Gava M, Munis RA, Garcia JN, Cortez-Barbosa J (2017) Wood-bamboo particleboard: mechanical properties. BioResources 12:7784–7792

    Article  Google Scholar 

  40. Barreto MIM, De Araujo V, Cortez-Barbosa J, Christoforo AL, Moura JDM (2019) Structural performance analysis of cross-laminated timber-bamboo (CLTB). BioResources 14:5045–5058

    Article  CAS  Google Scholar 

  41. Chen G, Yin M, Wu X, Wang Z, Jiang H (2021) Structural performance of laminated-bamboo lumber nailed connection. Wood Mater Sci Eng 1–13

    Google Scholar 

  42. UN-Habitat (2012) Going green: a handbook of sustainable housing practices. UN-Habitat, Nairobi, Kenya. Retrieved from https://unhabitat.org/sites/default/files/download-manager-files/Going%20Green.pdf

  43. Malanit P, Barbu MC, Frühwald A (2011) Physical and mechanical properties of oriented strand lumber made from an Asian bamboo (Dendrocalamus asper Backer). Eur J Wood Wood Prod 69:27–36

    Article  CAS  Google Scholar 

  44. Nugroho N, Ando N (2000) Development of structural composite products made from bamboo I: fundamental properties of bamboo zephyr board. J Wood Sci 46:68–74

    Article  Google Scholar 

  45. Morán-Ubídia J (2001) Usos tradicionales y actuales del bambú en América Latina con énfasis en Colombia y Ecuador. Escuela Politécnica Nacional, Quito, Ecuador

    Google Scholar 

  46. Stothert KE (1988) La prehistoria temprana de la península de Santa Elena. Cultura Las Vegas—Museo Banco Central del Ecuador, Guayaquil, Ecuador

    Google Scholar 

  47. Carmiol Umaña V (2010) Bambú guadua, en puentes peatonales. Tecnología en Marcha 23:29–38

    Google Scholar 

  48. Viollet-Le-Duc E (1876) The habitations of man in all ages. Sampson Low, Marston, Searle, & Rivington, London, United Kindgom

    Google Scholar 

  49. Hidalgo-López O (1981) Manual de construcción con bambú. Estudios Técnicos, Bogotá, Colombia.

    Google Scholar 

  50. Gatóo A, Sharma B, Bock M, Mulligan H, Ramage M (2014) Sustainable structures: bamboo standards and building codes. Proc Inst Civil Eng Eng Sustain 167:189–196

    Google Scholar 

  51. Brazilian Association of Technical Standards (2020) Bamboo structures. Part 1: project (ABNT/NBR-16828-1). ABNT, Rio de Janeiro, Brazil

    Google Scholar 

  52. Brazilian Association of Technical Standards (2020) Bamboo structures. Part 2: determination of physical and mechanical properties of bamboo (ABNT/NBR-16828-2). ABNT, Rio de Janeiro, Brazil

    Google Scholar 

  53. Lapina AP, Zakieva NI (2021) Bamboo in modern construction and architecture. IOP Conf Ser: Mater Sci Eng 1083:1–6

    Article  Google Scholar 

  54. Minke G (2016) Building with bamboo: design and technology of a sustainable architecture, 2nd edn. Birkhäuser, Berlin, pp 27–28

    Book  Google Scholar 

  55. Schmidt G (2020) Industrialized bamboo in East Africa: resource, production process and market entrance of a novel scrimber composite. Dissertation, University of Hamburg

    Google Scholar 

  56. Auwalu FK, Dickson PD (2019) Bamboo as a sustainable material for building construction in Nigeria. Civil Environ Res 11:30–36

    Google Scholar 

  57. Pope G (1988) Recent advances in far eastern paleoanthropology. Annu Rev Anthropol 17:43–77

    Article  Google Scholar 

  58. Bredenoord J (2017) Sustainable building materials for low-cost housing and the challenges facing their technological developments: examples and lessons regarding bamboo, earth-block technologies, building blocks of recycled materials, and improved concrete panels. J Architectural Eng Technol 6:1–11

    Article  Google Scholar 

  59. De Araujo VA, Cortez-Barbosa J, Gava M, Garcia JN, Souza AJ, Savi AF, Morales EAM, Molina JC, Vasconcelos JS, Christoforo AL, Lahr FA (2016a) Classification of wooden housing building systems. BioResources 11:7889–7901

    Article  Google Scholar 

  60. De Araujo V (2021) Timber construction as a multiple valuable sustainable alternative: main characteristics, challenge remarks and affirmative actions. Int J Constr Manag 2021:1–10

    Google Scholar 

  61. Platt SL (2018) Bamboo as a resource for modern vernacular architecture. In: 9th international conference on sustainable built environment, Kandy, Sri Lanka

    Google Scholar 

  62. Kahn L (1973) Shelter. Shelter Publications, Bolinas, USA

    Google Scholar 

  63. UNESCO (2019) Prehistoric pile dwellings around the Alps. UNESCO, Paris, France. Retrieved from https://whc.unesco.org/document/192715

  64. Bush DM, Neal WJ, Longo NJ, Lindeman KC, Pilkey DF, Esteves L, Congleton JD, Pilkey OH (2004) Living with Florida’s Atlantic beaches: coastal hazards from Amelia Island to Key West. Duke University Press, London, UK

    Google Scholar 

  65. Cabalfin EG (2020) Bahay Kubo as iconography: representing the vernacular and the nation in Philippine post-war architectures. Fabrications 30:44–67

    Article  Google Scholar 

  66. Lopes WGR (1998) Taipa de mão no Brasil: levantamento e análise de construções. Dissertation, University of São Paulo

    Google Scholar 

  67. Fleisher J, LaViolette A (1999) Elusive wattle-and-daub: finding the hidden majority in the archaeology of the Swahili. Azania Archaeol Res Africa 34:87–108

    Google Scholar 

  68. Carazas Aedo W, Rivero Olmos A (2003) Wattle and daub: anti-seismic construction handbook. Editions CRATerre, Villefontaine, France

    Google Scholar 

  69. Moore JD (2021) Bahareque. In: Moore JD. Ancient Andean houses: making, inhabiting, studying. University Press of Florida, Gainesville, US, pp 19–36

    Google Scholar 

  70. Muñoz Robledo JF (2010) Tipificación de los sistemas constructivos patrimoniales de “bahareque” en el paisaje cultural cafetero de Colombia. Blanecolor, Manizales, Colombia

    Google Scholar 

  71. Robledo Castillo JE (1993) Un siglo de bahareque en el antiguo Caldas. Ancora editores. Bogotá, Colombia

    Google Scholar 

  72. Gutierrez JA (2000) Structural adequacy of traditional bamboo housing in Latin America. INBAR, Beijing, China

    Google Scholar 

  73. Kaminski S, Lawrence A, Trujillo DJA (2016) Design guide for engineered bahareque housing. INBAR, Beijing, China

    Google Scholar 

  74. Vengala J, Rao RS (2020) Sustainable bamboo housing for the earthquake prone areas. IOP Conf Ser: Mater Sci Eng 955:1–6

    Article  Google Scholar 

  75. Ordónez Candelaria VR, Mejía Saulés MT, Bárcenas Pazos GM (2002) Manual para la construcción sustentable con bambú. Conafor, Jalisco, Mexico

    Google Scholar 

  76. Rael R (2009) Earth architecture. Princeton Architectural Press, New York, US

    Google Scholar 

  77. Vatan M (2017) Evolution of construction systems: cultural effects on traditional structures and their reflection on modern building construction. In: Koç G, Claes MT, Christiansen B. Cultural influences on architecture. IGI Global, Hershey, US

    Google Scholar 

  78. Viñuales GM (2007) Tecnología y construcción con tierra. Apuntes 20:220–231

    Google Scholar 

  79. Minke G (1984) Earthquake-resistant low-cost houses utilizing indigenous building materials and intermediate technology. In: Proceedings of the International Symposium on Earthquake Relief in Less Industrialized Areas. Zurich, Switzerland

    Google Scholar 

  80. De Vries SK (2002) Bamboo construction technology for housing in Bangladesh opportunities and constraints of applying Latin American bamboo construction technologies for housing in selected rural villages of the Chittagong hill tracts, Bangladesh. Dissertation, Eindhoven University of Technology

    Google Scholar 

  81. Geymayer HG, Cox FB (1970) Bamboo reinforced concrete. Corps of Engineers, Vicksburg, US

    Google Scholar 

  82. Ghavami K (2005) Bamboo as reinforcement in structural concrete elements. Cement Concr Compos 27:637–649

    Article  CAS  Google Scholar 

  83. Ghavami K (2003) Eco-construction and infrastructure. RIO 3—World Climate & Energy Event, Rio de Janeiro, Brazil

    Google Scholar 

  84. Rahim NL, Ibrahim NM, Salehuddin S, Mohammed SA, Othman MZ (2020) Investigation of bamboo as concrete reinforcement in the construction for low-cost housing industry. IOP Conf Ser: Earth Environ Sci 476:1–11

    Google Scholar 

  85. Agarwal A, Nanda B, Maity D (2014) Experimental investigation on chemically treated bamboo reinforced concrete beams and columns. Constr Build Mater 71:610–617

    Article  Google Scholar 

  86. Korde C, West R (2018) Analysis of an innovative multi-level bamboo structure. In: Singh SB, Bhunia D, Muthukumar G (eds) 2nd International conference on advances in concrete, structural & geotechnical engineering. Bloomsbury Publishing, Rajasthan, India, pp 618–622

    Google Scholar 

  87. Izumida H (2003) Japanese clay-walled house; materials, artisans and techniques. In: 9th International conference on study and conservation of earthen architecture, Yazd, Iran

    Google Scholar 

  88. Hanazato T, Minowa C, Niitsu Y, Nitto K, Kawai N, Maekawa H, Morii M (2010) Seismic and wind performance of five-storied pagoda of timber heritage structure. Adv Mater Res 133–134:79–95

    Article  Google Scholar 

  89. Kaunang IRB (2020) City in Dragon Circle: study of the history of pagoda and its deployment in Manado, 1819–2018. Jurnal Sejarah Citra Lekha 5:3–13

    Article  Google Scholar 

  90. Britannica (2022) Pagoda. Retrieved from https://www.britannica.com/technology/pagoda

  91. Tang Z, Zhang Y (2002) The generate method of multi-storey Chinese pagodas. In: 2002 generative art international conference, Italy

    Google Scholar 

  92. Weslager CA (1969) The log cabin in America: from pioneer days to the present. Rutgers University Press, New Brunswick, US

    Google Scholar 

  93. Pollio V (1914) The ten books on architecture. Oxford University Press, London, UK

    Google Scholar 

  94. Hong C, Li H, Xiong Z, Lorenzo R, Corbi I, Corbi O, Wei D, Yuan C, Yang D, Zhang H (2020) Review of connections for engineered bamboo structures. J Build Eng 30:101324

    Article  Google Scholar 

  95. Farrelly D (1984) The book of bamboo. Sierra Club Books, San Francisco, US

    Google Scholar 

  96. Ugarte J, Habusta M (2011) Bamboo the vegetal miracle/Bambú el milagro vegetal. Germany/Costa Rica, Instituto de Arquitectura Tropical

    Google Scholar 

  97. Seixas MA, Ripper JLM, Ghavami K (2015) Construction of mobile bamboo dome covered with textile canvas. In: 16th international conference on non-conventional materials and technologies, Winnipeg, Canada

    Google Scholar 

  98. Salcido JC, Raheen AA, Ravi S (2016) Comparison of embodied energy and environmental impact of alternative materials used in reticulated dome construction. Build Environ 96:22–34

    Article  Google Scholar 

  99. Pereira MA, Beraldo AL (2007) Bambu de corpo e alma. Canal6, Bauru, Brazil

    Google Scholar 

  100. Vaghela K, Acharya M, Jethwa P, Kakadiya H, Tanna D, Charan D, Shah Z (2013) Bamboo construction source book. Hunnarshala Foundation, Gujarat, India

    Google Scholar 

  101. Mogollón Seba J (1993) Vivienda: soporte modular y participación. Inf Constr 44:62–89

    Article  Google Scholar 

  102. Azambuja MA, Kawakami CAF (2015) Painéis em bambu para habitação social. Revista Nacional de Gerenciamento de Cidades 3:153–168

    Article  Google Scholar 

  103. Jaramillo Benavides AS (2012) Proposta de sistema construtivo para habitação de interesse social com bambu guadua: um estudo de caso no Equador. Dissertation, Federal University of Santa Catarina

    Google Scholar 

  104. Sharma B, Gatoo A, Bock M, Mulligan H, Ramage M (2015) Engineered bamboo: state of the art. Proc Inst Civ Eng Constr Mater 168:57–67

    Article  Google Scholar 

  105. Habibi S (2019) Design concepts for the integration of bamboo in contemporary vernacular architecture. Architectural Eng Design Manage 15:475–489

    Article  Google Scholar 

  106. DA (2014) Bamboo: green construction material. Retrieved from https://www.devalt.org/images/L2_ProjectPdfs/Resource_Efficiency_Publications_Catalogue_DA.pdf

  107. Lopes WGR, Carvalho TMP, Matos KC, De Alexandria SSS (2013) A taipa de mão em Teresina, Piauí, Brasil: a improvisação e o uso de procedimentos construtivos. Digitar 1:70–78

    Google Scholar 

  108. De Araujo VA, Vasconcelos JS, Cortez-Barbosa J, Morales EAM, Gava M, Savi AF, Garcia JN (2016b) Wooden residential buildings—a sustainable approach. Bull Transilvania University of Braşov—Series II: Forestry Wood Ind Agri Food Eng 9, 53–62

    Google Scholar 

  109. Vogtländer J, van der Lugt P, Brezet H (2010) The sustainability of bamboo products for local and Western European applications. LCAs and land-use. J Clean Prod 18:1260–1269

    Article  Google Scholar 

  110. Trujillo DJA, Ramage M, Change W (2013) Lightly modified bamboo for structural applications. Proc Inst Civil Eng Constr Materials 166:238–247

    Google Scholar 

  111. Ding D, Xu Q, Liu C, and Zhang D (2020) Activation of traditional construction techniques used in Linpan based on the concept of sustainability: case study of bamboo materials. In: Chan FKS, Chan HK, Zhang T, Xu M (eds) Proceedings of the 2020 international conference on resource sustainability: sustainable urbanisation in the BRI Era (icRS Urbanisation 2020). Springer Nature, Singapore, pp 169–180

    Google Scholar 

  112. Palacios A, Angumba P (2021) Bahareque as a sustainable construction system: analysis of unit prices. IOP Conf Ser Mater Sci Eng 1203:1–7

    Article  Google Scholar 

  113. Dewi SM, Nuralinah D (2017) The recent research on bamboo reinforced concrete. MATEC Web Conf 103:1–6

    Article  Google Scholar 

  114. Borowski PF, Patuk I, Bandala ER (2022) Innovative industrial use of bamboo as key “green” material. Sustainability 14:1955–1968

    Article  CAS  Google Scholar 

  115. Gan J, Chen M, Semple K, Liu X, Dai C, Tu Q (2022) Life cycle assessment of bamboo products: review and harmonization. Sci Total Environ 849:1–11

    Article  Google Scholar 

  116. Escamilla EZ, Habert G, Correal Daza J, Archilla H, Echeverry Fernández J, Trujillo D (2018) Industrial or traditional bamboo construction? Comparative life cycle assessment (LCA) of bamboo-based buildings. Sustainability 10:3096–3110

    Article  CAS  Google Scholar 

  117. Salzer C, Wallbaum H, Ostermeyer Y, Kono J (2017) Environmental performance of social housing in emerging economies: life cycle assessment of conventional and alternative construction methods in the Philippines. Int J Life Cycle Assess 22:1785–1801

    Article  CAS  Google Scholar 

  118. Eleftheriou E, Lopez Muñoz LF, Habert G, Zea Escamilla E (2022) Parametric approach to simplified life cycle assessment of social housing projects. Sustainability 14(12):7409–7414

    Article  CAS  Google Scholar 

  119. Acevedo Pardo C (2014) A comparative life cycle assessment of a social interest housing building: bamboo vs. concrete. Dissertation, Cornell University

    Google Scholar 

  120. Crolla K (2017) Building indeterminacy modelling—the ‘ZCB Bamboo Pavilion’ as a case study on nonstandard construction from natural materials. Visual Eng 5:1–12

    Article  Google Scholar 

  121. Churkina G, Organschi A, Reyer CPO, Ruff A, Vinke K, Liu Z, Reck BK, Graedel TE, Schellnhuber HJ (2020) Buildings as a global carbon sink. Nat Sustain 3:269–276

    Article  Google Scholar 

  122. De Araujo V, Vasconcelos J, Lahr F, Christoforo A (2022) Timber forest products: a way to intensify global bioeconomy from bio-materials. Acta Facultatis Xylologiae Zvolen 64:99–111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Victor Almeida De Araujo , Maristela Gava or André Luis Christoforo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Araujo, V.A. et al. (2023). Bamboo Construction: Main Building Techniques and Their Resources, Sustainability, History, Uses, and Classification. In: Palombini, F.L., Nogueira, F.M. (eds) Bamboo and Sustainable Construction. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-99-0232-3_2

Download citation

Publish with us

Policies and ethics