Skip to main content

Part of the book series: Optical Wireless Communication Theory and Technology ((OWCTAT))

  • 286 Accesses

Abstract

Vortex beams have infinite dimensions, in theory. The topological charge can be taken from negative infinity to positive infinity, and as an integer or fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen ZT (2013) Study on the characteristics of vortex beam. Master's thesis of Yan shan University

    Google Scholar 

  2. Heckenberg NR, Mcduff R, Smith CP et al (1992) Generation of optical phase singularities by computer-generated holograms. Opt Lett 17(3):221–223

    Google Scholar 

  3. Chen MJ, Xing GL, Zhang YX (2016) Variation of orbital angular momentum transmission characteristics of Laguerre Gaussian beam in weakly turbulent ocean. J Radio Wave Sci 31(4):737–742

    Google Scholar 

  4. Marco B, Les A, Veen VD et al (1993) Astigmatic laser mode converters and transfer of orbital angular momentum. Opt Commun 96(1):123–132

    Google Scholar 

  5. Guy I, Korwan D (1994) Model of vortices nucleation in a photo refractive phase-conjugate resonator. Opt Lett 41(5):941–950

    Google Scholar 

  6. Barry L, Rebecca P, Vladimir T et al (1994) Nonlinear rotation of three dimensional dark spatial solitons in a Gaussian laser beam. Opt Lett 19(22):1816–1818

    Article  Google Scholar 

  7. He D, Yan HW, Lv BD et al (2009) Synthetic optical vortices formed by Hermite Gaussian vortex beams and their evolution. China Laser 36(8):2023–2029

    Article  Google Scholar 

  8. Li YT (2012) Theoretical and experimental study on vortex beam generation by computer-generated holography. Master's thesis of Yan Shan University

    Google Scholar 

  9. Zhang M, Xu JB, Li J et al (2009) Transverse force of Rayleigh particle in Bessel beam. Intense Laser Part Beam 21(1):135–138

    Google Scholar 

  10. Franco G, Giorgior G, Cesare P (1987) Bessel-Gauass beams. Opt Commun 64(6):491–495

    Article  Google Scholar 

  11. Xu C (2015) Research on transmission performance of free space optical communication system based on vortex beam. Beijing University of Posts and Telecommunications

    Google Scholar 

  12. Lu XX, Huang HQ, Zhao CL et al (2008) Vortex beam and optical vortex. Prog Laser Optoelectron 45(1):50–56

    Google Scholar 

  13. Eugeny A, Volostnikov V (1991) Beam transformations and non-transformed beams. Opt Commun 83(1):123–135

    Google Scholar 

  14. Hua NM, Chen ZY, Pu JP (2011) Experimental study on partially coherent vortex beams. J Opt 31(11):103–106

    Google Scholar 

  15. Cai XL, Wuang JW, Michael S et al (2012) Integrated compact optical vortex beam emitters. Science 338(6105):363–366

    Google Scholar 

  16. Zhang DK, Feng X, Cui KY et al (2013) Generating in-plane optical orbital angular momentum beams with silicon waveguides. IEEE Photonics J 5(2):12–17

    Google Scholar 

  17. Jochen A, Kishan D, Les A et al (1998) The production of multiringed Laguerrea Gaussian modes by computer-generated holograms. Opt Acta Int J Opt 45(6):1231–1237

    Google Scholar 

  18. Naoya M, Taro A, Takashi I et al (2008) Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. J Opt Soc Am A 25(7):1642–1651

    Article  Google Scholar 

  19. Kishan AJD, Les A et al (1998) The production of multiringed Laguerreâ Gaussian modes by computer-generated holograms. Opt Acta Int J Opt 45(6);1231–1237

    Google Scholar 

  20. Li YT, Zhu YY, Feng JS et al (2012) Experimental study on vortex beam generated by computer generated holography. National Symposium on optoelectronic technology Beijing. In: Proceedings of the 10th National optoelectronic technology academic exchange, vol 50(15), pp 3907–3911

    Google Scholar 

  21. Li F, Gao CQ, Liu YD et al (2012) Experimental study on Laguerre Gaussian beam generated by amplitude grating. J Phys 57(2):860–866

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xizheng Ke .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ke, X. (2023). Vortex-Beam Spatial-Generation Method. In: Generation, Transmission, Detection, and Application of Vortex Beams. Optical Wireless Communication Theory and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-0074-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0074-9_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0073-2

  • Online ISBN: 978-981-99-0074-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics