Skip to main content

Review of the State of the Art Using µCT to Elucidate Complex Vascular Systems of Plants

  • Chapter
  • First Online:
Bamboo Science and Technology

Abstract

Computer tomography was introduced for medical imaging in the early 1970s but, soon after, was also applied in both the natural sciences and the materials sciences. Since then, as a non-destructive diagnostic tool, it has also provided impressive insights into the morphology and anatomy of plants and animals. A particular advantage is the examination of tissues in their natural spatial arrangement. The position and distribution of the various tissues provide information on possible biomechanical properties in addition to purely morphological insights. Biomechanical information is important for a comprehension of the structure–function relationship and the subsequent transfer to innovative biomimetic applications in technology. This chapter presents previous work on the analysis of three-dimensional structures of complex vascular systems in several plant species by means of µCT, up to the state of the art. This includes technical conditions of the CT scans and methods for the segmentation of ROIs. Special attention will be paid to the possibilities that arise from the knowledge about structure–function relationships in plant materials. Potential innovative biomimetic developments and sustainable technical developments are considered. In doing so, the possibilities of µCT analyses and the evaluation options are discussed in general and, in addition, the possibilities that arise when µCT analyses are combined with other methods like finite element analyses or three-dimensional deformation analyses (digital image correlation) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this text, biomimetics is used according to ISO 18458 [36], to describe all products and processes that use nature as a source for new inventions by abstracting the principles and applying them to innovative products. To avoid misunderstandings only this term is used, although the term bionics is sometimes used in literature as a synonym.

  2. 2.

    Search phrase for “advanced search”: (((ALL = “µCT” OR ALL = “µ-CT” OR ALL = “micro-CT” OR ALL = “mu-CT” OR ALL = “mu CT” OR ALL = “HRCT” OR ALL = “HR-CT” OR ALL = “HRXCT” OR ALL = “microtomography” OR ALL = “micro-tomography” OR ALL = “micro tomography” OR ALL = “µ-tomography” OR ALL = “µ tomography” OR (ALL = “holography” AND ALL = “micro”) OR ALL = “nanoCT” OR ALL = “nano CT” OR ALL = “nano-CT” OR ALL = “nanotomography” OR ALL = “nano tomography” OR ALL = “nano-tomography”) AND (ALL = “X-ray” OR ALL = “Xray” OR ALL = “X ray”)) OR (ALL = “XTM” AND (ALL = “microtomography” OR ALL = “micro-tomography” OR ALL = “micro tomography” OR ALL = “µ-tomography” OR ALL = “µ tomography”) AND (ALL = “X-ray” OR ALL = “Xray” OR ALL = “X ray”)) OR ((ALL = “high resolution” OR ALL = “high-resolution”) AND ALL = tomog* AND (ALL = “X-ray” OR ALL = “Xray” OR ALL = “X ray”)) OR ((ALL = microcomp* OR ALL = micro-comp* OR ALL = “micro computed”) AND ALL = tomog* AND (ALL = “X-ray” OR ALL = “Xray” OR ALL = “X ray”)) OR ALL = “XµCT”).

References

  1. Aljdaimi A, Devlin H, Dickinson M, Burnett T, Slater TJA (2019) Micron-scale crack propagation in laser-irradiated enamel and dentine studied with nano-CT. Clin Oral Investig 23(5):2279–2285. https://doi.org/10.1007/s00784-018-2654-0

    Article  Google Scholar 

  2. Allen R, Wardrop AB (1964) The opening and shedding mechanism of the female cones of Pinus radiata. Aust J Bot 12(2):125–134. https://doi.org/10.1071/BT9640125

    Article  Google Scholar 

  3. Amjad K, Christian W, Dvurecenska K, Chapman MG, Uchic MD, Przybyla CP, Patterson EA (2020) Computationally efficient method of tracking fibres in composite materials using digital image correlation. Compos Part A Appl Sci Manuf 129:105683. https://doi.org/10.1016/j.compositesa.2019.105683

    Article  CAS  Google Scholar 

  4. Bernasconi A, Carboni M, Ribani R (2020) On the combined use of Digital Image Correlation and Micro Computed Tomography to measure fibre orientation in short fibre reinforced polymers. Compos Sci Technol 195:108182. https://doi.org/10.1016/j.compscitech.2020.108182

    Article  CAS  Google Scholar 

  5. Bonse U, Johnson Q, Nichols M, Nusshardt R, Krasnicki S, Kinney J (1986) High resolution tomography with chemical specificity. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 246(1–3):644–648. https://doi.org/10.1016/0168-9002(86)90167-1

    Article  Google Scholar 

  6. Bourmaud A, Malvestio J, Lenoir N, Siniscalco D, Habrant A, King A, Legland D, Baley C, Beaugrand J (2017) Exploring the mechanical performance and in-planta architecture of secondary hemp fibres. Ind Crops Prod 108:1–5. https://doi.org/10.1016/j.indcrop.2017.06.010

    Article  Google Scholar 

  7. Bouxsein ML, Seeman E (2009) Quantifying the material and structural determinants of bone strength. Best Pract Res Clin Rheumatol 23(6):741–753. https://doi.org/10.1016/j.berh.2009.09.008

    Article  Google Scholar 

  8. Brodersen CR (2013) Visualizing wood anatomy in three dimensions with high-resolution X-ray micro-tomography (μCT)–a review–. IAWA J 34(4):408–424. https://doi.org/10.1163/22941932-00000033

    Article  Google Scholar 

  9. Brodersen CR, Roddy AB (2016) New frontiers in the three-dimensional visualization of plant structure and function. Am J Bot 103(2):184–188. https://doi.org/10.3732/ajb.1500532

  10. Brodersen CR, Choat B, Chatelet DS, Shackel KA, Matthews MA, McElrone AJ (2013) Xylem vessel relays contribute to radial connectivity in grapevine stems (Vitis vinifera and V. arizonica; Vitaceae). Am J Bot 100(2):314–321. https://doi.org/10.3732/ajb.1100606

  11. Brodersen CR, Roddy AB, Wason JW, McElrone AJ (2019) Functional status of xylem through time. Annu Rev Plant Biol 70:407–433. https://doi.org/10.1146/annurev-arplant-050718-100455

    Article  CAS  Google Scholar 

  12. Cnudde V, Boone MN (2013) High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Rev 123:1–17. https://doi.org/10.1016/j.earscirev.2013.04.003

    Article  Google Scholar 

  13. Correa D, Poppinga S, Mylo MD, Westermeier AS, Bruchmann B, Menges A, Speck T (2020) 4D pine scale: biomimetic 4D printed autonomous scale and flap structures capable of multi-phase movement. Philos Trans A Math Phys Eng Sci 378(2167):20190445. https://doi.org/10.1098/rsta.2019.0445

    Article  CAS  Google Scholar 

  14. Czabaj MW, Riccio ML, Whitacre WW (2014) Numerical reconstruction of graphite/epoxy composite microstructure based on sub-micron resolution X-ray computed tomography. Compos Sci Technol 105:174–182. https://doi.org/10.1016/j.compscitech.2014.10.017

    Article  CAS  Google Scholar 

  15. da Cunha Neto IL, Pace MR, Douglas NA, Nee MH, de Sá CFC, Moore MJ, Angyalossy V (2020) Diversity, distribution, development, and evolution of medullary bundles in Nyctaginaceae. Am J Bot 107(5):707–725. https://doi.org/10.1002/ajb2.1471

    Article  Google Scholar 

  16. Dawson C, Vincent JFV, Rocca A-M (1997) How pine cones open. Nature 390(6661):668. https://doi.org/10.1038/37745

    Article  CAS  Google Scholar 

  17. Dewanckele J, Boone MA, Coppens F, van Loo D, Merkle AP (2020) Innovations in laboratory-based dynamic micro-CT to accelerate in situ research. J Microsc 277(3):197–209. https://doi.org/10.1111/jmi.12879

    Article  CAS  Google Scholar 

  18. Diemoz PC, Hagen CK, Endrizzi M, Minuti M, Bellazzini R, Urbani L, Coppi P de, Olivo A (2017) Single-shot X-ray phase-contrast computed tomography with nonmicrofocal laboratory sources. Phys Rev Appl 7(4). https://doi.org/10.1103/PhysRevApplied.7.044029

  19. Drost H-G, Janitza P, Grosse I, Quint M (2017) Cross-kingdom comparison of the developmental hourglass. Curr Opin Genet Dev 45:69–75. https://doi.org/10.1016/j.gde.2017.03.003

    Article  CAS  Google Scholar 

  20. Eger CJ, Horstmann M, Poppinga S, Sachse R, Thierer R, Nestle N, Bruchmann B, Speck T, Bischoff M, Rühe J (2022) The structural and mechanical basis for passive-hydraulic pine cone actuation. Adv Sci (Weinh) 9(20):e2200458. https://doi.org/10.1002/advs.202200458

    Article  Google Scholar 

  21. Elbaum R, Abraham Y (2014) Insights into the microstructures of hygroscopic movement in plant seed dispersal. Plant Sci 223:124–133. https://doi.org/10.1016/j.plantsci.2014.03.014

    Article  CAS  Google Scholar 

  22. Elliott JC, Dover SD (1982) X-ray microtomography. J Microsc 126(Pt 2):211–213. https://doi.org/10.1111/j.1365-2818.1982.tb00376.x

    Article  CAS  Google Scholar 

  23. Fajardo JI, Costa J, Cruz LJ, Paltán CA, Santos JD (2022) Micromechanical model for predicting the tensile properties of Guadua angustifolia fibers polypropylene-based composites. Polymers 14(13):2627. https://doi.org/10.3390/polym14132627

    Article  CAS  Google Scholar 

  24. Feldkamp LA, Jesion G (1986) 3-D X-ray computed tomography. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation, vol 5A. Springer US, Boston, MA, s.l., pp 555–566

    Google Scholar 

  25. Feldkamp LA, Davis LC, Kress JW (1984) Practical cone-beam algorithm. J Opt Soc Am A 1(6):612. https://doi.org/10.1364/JOSAA.1.000612

    Article  Google Scholar 

  26. Fischer M, Beismann H (2022) 3D characterization of the complex vascular bundle system of Hakea fruits based on X-ray microtomography (µCT) for a better understanding of the opening mechanism. Flora 289:152035. https://doi.org/10.1016/j.flora.2022.152035

    Article  Google Scholar 

  27. Food and Agriculture Organization of the United Nations Cereals Data 2020, World. Food and agriculture organization of the united nations. https://www.fao.org/faostat/en/#data/QCL. Accessed 21 Oct 2022

  28. Garriga D, Chichón FJ, Calisto BM, Ferrero DS, Gastaminza P, Pereiro E, Pérez-Berna AJ (2021) Imaging of virus-infected cells with Soft X-ray Tomography. Viruses 13(11):2109. https://doi.org/10.3390/v13112109

    Article  CAS  Google Scholar 

  29. Geitmann A, Niklas K, Speck T (2019) Plant biomechanics in the 21st century. Special issue editorial. J Exp Bot 70(14):3435–3438. https://doi.org/10.1093/jxb/erz280

    Article  CAS  Google Scholar 

  30. Hesse L, Bunk K, Leupold J, Speck T, Masselter T (2019) Structural and functional imaging of large and opaque plant specimens. J Exp Bot 70(14):3659–3678. https://doi.org/10.1093/jxb/erz186

    Article  CAS  Google Scholar 

  31. Horbens M, Gao J, Neinhuis C (2014) Cell differentiation and tissue formation in the unique fruits of devil’s claws (Martyniaceae). Am J Bot 101(6):914–924. https://doi.org/10.3732/ajb.1400006

    Article  Google Scholar 

  32. Hounsfield GN (1973) Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 46(552):1016–1022. https://doi.org/10.1259/0007-1285-46-552-1016

  33. Huang P, Chang W-S, Ansell M, Chew J, Shea A (2015) Density distribution profile for internodes and nodes of Phyllostachys edulis (Moso bamboo) by computer tomography scanning. Constr Build Mater 93:197–204. https://doi.org/10.1016/j.conbuildmat.2015.05.120

    Article  Google Scholar 

  34. Huss JC, Gierlinger N (2021) Functional packaging of seeds. New Phytol 230(6):2154–2163. https://doi.org/10.1111/nph.17299

    Article  Google Scholar 

  35. Huss JC, Schoeppler V, Merritt DJ, Best C, Maire E, Adrien J, Spaeker O, Janssen N, Gladisch J, Gierlinger N, Miller BP, Fratzl P, Eder M (2018) Climate-dependent heat-triggered opening mechanism of Banksia seed pods. Adv Sci 5(1):1700572. https://doi.org/10.1002/advs.201700572

    Article  Google Scholar 

  36. ISO 18458-International Standardization Organization (2015) Biomimetics—terminology, concepts and methodology (ISO 18458)

    Google Scholar 

  37. Kinney JH, Nichols MC (1992) X-ray tomographic microscopy (XTM) using synchrotron radiation. Annu Rev Mater Sci 22(1):121–152. https://doi.org/10.1146/annurev.ms.22.080192.001005

    Article  CAS  Google Scholar 

  38. Krähmer H, Hesse L, Krüger F, Speck T, Claßen-Bockhoff R (2021) Vascular bundle modifications in nodes and internodes of climbing Marantaceae. Bot J Linn Soc 195(3):308–326. https://doi.org/10.1093/botlinnean/boaa086

    Article  Google Scholar 

  39. Langer M, Speck T, Speck O (2021) Petiole-lamina transition zone: a functionally crucial but often overlooked leaf trait. Plants 10(4):774. https://doi.org/10.3390/plants10040774

    Article  Google Scholar 

  40. Lee EF, Matthews MA, McElrone AJ, Phillips RJ, Shackel KA, Brodersen CR (2013) Analysis of HRCT-derived xylem network reveals reverse flow in some vessels. J Theor Biol 333:146–155. https://doi.org/10.1016/j.jtbi.2013.05.021

    Article  Google Scholar 

  41. Li S, Yang S, Shang L, Liu X, Ma J, Ma Q, Tian G (2021) 3D visualization of bamboo node’s vascular bundle. Forests 12(12):1799. https://doi.org/10.3390/f12121799

    Article  Google Scholar 

  42. Lider VV, Kovalchuk MV (2013) X-ray phase-contrast methods. Crystallogr Rep 58(6):769–787. https://doi.org/10.1134/S1063774513050064

    Article  CAS  Google Scholar 

  43. Longo BL, Brüchert F, Becker G, Sauter UH (2022) From inside to outside: CT scanning as a tool to link internal knot structure and external branch diameter as a prerequisite for quality assessment. Wood Sci Technol 56(2):509–529. https://doi.org/10.1007/s00226-021-01352-z

    Article  CAS  Google Scholar 

  44. Lopez-Portillo J (2004) The cohesion-tension theory. New Phytol 163(3):451–452. https://doi.org/10.1111/j.1469-8137.2004.01142.x

    Article  Google Scholar 

  45. Lösel PD, van de Kamp T, Jayme A, Ershov A, Faragó T, Pichler O, Tan Jerome N, Aadepu N, Bremer S, Chilingaryan SA, Heethoff M, Kopmann A, Odar J, Schmelzle S, Zuber M, Wittbrodt J, Baumbach T, Heuveline V (2020) Introducing biomedisa as an open-source online platform for biomedical image segmentation. Nat Commun 11(1):5577. https://doi.org/10.1038/s41467-020-19303-w

    Article  CAS  Google Scholar 

  46. Losso A, Bär A, Dämon B, Dullin C, Ganthaler A, Petruzzellis F, Savi T, Tromba G, Nardini A, Mayr S, Beikircher B (2019) Insights from in vivo micro-CT analysis: testing the hydraulic vulnerability segmentation in Acer pseudoplatanus and Fagus sylvatica seedlings. New Phytol 221(4):1831–1842. https://doi.org/10.1111/nph.15549

    Article  Google Scholar 

  47. Mehdikhani M, Breite C, Swolfs Y, Wevers M, Lomov SV, Gorbatikh L (2021) Combining digital image correlation with X-ray computed tomography for characterization of fiber orientation in unidirectional composites. Compos Part A Appl Sci Manuf 142:106234. https://doi.org/10.1016/j.compositesa.2020.106234

    Article  Google Scholar 

  48. Mokso R, Marone F, Haberthür D, Schittny JC, Mikuljan G, Isenegger A, Stampanoni M, McNulty I, Eyberger C, Lai B (2011) Following dynamic processes by X-ray tomographic microscopy with sub-second temporal resolution. AIP, pp 38–41. https://doi.org/10.1063/1.3625299

  49. Moreau J-D, Néraudeau D, Perrichot V, Tafforeau P (2017) 100-million-year-old conifer tissues from the mid-Cretaceous amber of Charente (western France) revealed by synchrotron microtomography. Ann Bot 119(1):117–128. https://doi.org/10.1093/aob/mcw225

    Article  CAS  Google Scholar 

  50. Nardini A, Savi T, Losso A, Petit G, Pacilè S, Tromba G, Mayr S, Trifilò P, Lo Gullo MA, Salleo S (2017) X-ray microtomography observations of xylem embolism in stems of Laurus nobilis are consistent with hydraulic measurements of percentage loss of conductance. New Phytol 213(3):1068–1075.https://doi.org/10.1111/nph.14245

  51. Niklas KJ (1992) Plant biomechanics. An engineering approach to plant form and function. University of Chicago Press, Chicago

    Google Scholar 

  52. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

  53. Palombini FL, Kindlein W, Oliveira BF de, Araujo Mariath JE de (2016) Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography. Mater Charact 120:357–368https://doi.org/10.1016/j.matchar.2016.09.022

  54. Palombini FL, Nogueira FM, Kindlein W, Paciornik S, Mariath JEdA, de Oliveira BF (2020) Biomimetic systems and design in the 3D characterization of the complex vascular system of bamboo node based on X-ray microtomography and finite element analysis. J Mater Res 35(8):842–854. https://doi.org/10.1557/jmr.2019.117

    Article  CAS  Google Scholar 

  55. Palombini FL, Mariath JEdA, de Oliveira BF (2020) Bionic design of thin-walled structure based on the geometry of the vascular bundles of bamboo. Thin-Walled Struct 155:106936. https://doi.org/10.1016/j.tws.2020.106936

    Article  Google Scholar 

  56. Palombini FL, Lautert EL, Mariath JEdA, de Oliveira BF (2020) Combining numerical models and discretizing methods in the analysis of bamboo parenchyma using finite element analysis based on X-ray microtomography. Wood Sci Technol 54(1):161–186. https://doi.org/10.1007/s00226-019-01146-4

    Article  CAS  Google Scholar 

  57. Palombini FL, Kuhl Cidade M, de Oliveira BF, Araujo Mariath JE de (2021) From light microscopy to X-ray microtomography: observation and analysis technologies in transdisciplinary approaches for bionic design and botany. Cuadernos 149:61–74. https://doi.org/10.18682/cdc.vi149.5516

  58. Palombini FL, Nogueira FM, de Oliveira BF, Araujo Mariath JE de (2022) Two-way bionics: how technological advances for bioinspired designs contribute to the study of plant anatomy and morphology. In: Palombini FL, Muthu SS (eds) Bionics and sustainable design. Springer Nature Singapore, Singapore, pp 17–44. https://doi.org/10.1007/978-981-19-1812-4

  59. Paltán C, Costa J, Fajardo J (2019) Computed tomography of polymer composites reinforced with natural short fiber. In: Misra S, Gervasi O, Murgante B, Stankova E, Korkhov V, Torre C, Rocha AMA, Taniar D, Apduhan BO, Tarantino E (eds) Computational science and its applications–ICCSA 2019. 19th international conference, saint petersburg, Russia, July 1–4, 2019, proceedings, part V, 1. Aufl, Bd 11623. Springer, Cham, S 452–467. https://doi.org/10.1007/978-3-030-24308-1_37

  60. Pandoli OG, Martins RDS, Romani EC, Paciornik S, Maurício MHDP, Alves HDL, Pereira-Meirelles FV, Luz EL, Koller SML, Valiente H, Ghavami K (2016) Colloidal silver nanoparticles: an effective nano-filler material to prevent fungal proliferation in bamboo. RSC Adv 6(100):98325–98336. https://doi.org/10.1039/C6RA12516F

  61. Pandoli OG, Martins RS, de Toni KLG, Paciornik S, Maurício MHP, Lima RMC, Padilha NB, Letichevsky S, Avillez RR, Rodrigues EJR, Ghavami K (2019) A regioselective coating onto microarray channels of bamboo with chitosan-based silver nanoparticles. J Coat Technol Res 16(4):999–1011. https://doi.org/10.1007/s11998-018-00175-1

    Article  CAS  Google Scholar 

  62. Peng G, Jiang Z, Liu X, Fei B, Yang S, Qin D, Ren H, Yu Y, Xie H (2014) Detection of complex vascular system in bamboo node by X-ray μCT imaging technique. Holzforschung 68(2):223–227. https://doi.org/10.1515/hf-2013-0080

    Article  CAS  Google Scholar 

  63. Petit C, Meille S, Maire E (2013) Cellular solids studied by x-ray tomography and finite element modeling–a review. J Mater Res 28(17):2191–2201. https://doi.org/10.1557/jmr.2013.97

    Article  CAS  Google Scholar 

  64. Poppinga S, Nestle N, Šandor A, Reible B, Masselter T, Bruchmann B, Speck T (2017) Hygroscopic motions of fossil conifer cones. Sci Rep 7:40302. https://doi.org/10.1038/srep40302

    Article  CAS  Google Scholar 

  65. Sasov, Dyck V (1998) Desktop X‐ray microscopy and microtomography. J Microsc 191(2):151–158https://doi.org/10.1046/j.1365-2818.1998.00367.x

  66. Schmier S, Hosoda N, Speck T (2020) Hierarchical structure of the Cocos nucifera (Coconut) endocarp: functional morphology and its influence on fracture toughness. Molecules 25(1). https://doi.org/10.3390/molecules25010223

  67. Schüler P, Speck T, Bührig-Polaczek A, Fleck C (2014) Structure-function relationships in Macadamia integrifolia seed coats—fundamentals of the hierarchical microstructure. PLoS One 9(8):e102913. https://doi.org/10.1371/journal.pone.0102913

    Article  CAS  Google Scholar 

  68. Seguin FH, Burstein P, Bjorkholm PJ, Homburger F, Adams RA (1985) X-ray computed tomography with 50-Mum resolution. Appl Opt 24(23):4117. https://doi.org/10.1364/ao.24.004117

    Article  CAS  Google Scholar 

  69. Sencu RM, Yang Z, Wang YC, Withers PJ, Rau C, Parson A, Soutis C (2016) Generation of micro-scale finite element models from synchrotron X-ray CT images for multidirectional carbon fibre reinforced composites. Compos Part A Appl Sci Manuf 91:85–95. https://doi.org/10.1016/j.compositesa.2016.09.010

    Article  CAS  Google Scholar 

  70. Speck O, Speck T (2021) Functional morphology of plants - a key to biomimetic applications. New Phytol 231(3):950–956. https://doi.org/10.1111/nph.17396

    Article  Google Scholar 

  71. Steppe K, Cnudde V, Girard C, Lemeur R, Cnudde J-P, Jacobs P (2004) Use of X-ray computed microtomography for non-invasive determination of wood anatomical characteristics. J Struct Biol 148(1):11–21. https://doi.org/10.1016/j.jsb.2004.05.001

    Article  Google Scholar 

  72. Stock SR (1999) Stock_1999_X-ray microtomography of materials. Int Mater Rev 44(4):141–164. https://doi.org/10.1179/095066099101528261

    Article  CAS  Google Scholar 

  73. Stock SR (2008) Recent advances in X-ray microtomography applied to materials. Int Mater Rev 53(3):129–181. https://doi.org/10.1179/174328008X277803

    Article  CAS  Google Scholar 

  74. Strullu-Derrien C, Kenrick P, Tafforeau P, Cochard H, Bonnemain J-L, Le Hérissé A, Lardeux H, Badel E (2014) The earliest wood and its hydraulic properties documented in c. 407-million-year-old fossils using synchrotron microtomography. Bot J Linn Soc 175(3):423–437. https://doi.org/10.1111/boj.12175

  75. Stuppy WH, Maisano JA, Colbert MW, Rudall PJ, Rowe TB (2003) Three-dimensional analysis of plant structure using high-resolution X-ray computed tomography. Trends Plant Sci 8(1):2–6. https://doi.org/10.1016/S1360-1385(02)00004-3

    Article  CAS  Google Scholar 

  76. Szabó BA, Babuška I (2021) Finite element analysis. Method, verification and validation. Wiley series in computational mechanics. Wiley, Hoboken, NJ

    Google Scholar 

  77. Toda H (2021) X-Ray CT. Hardware and software techniques, 1. Aufl. Springer eBook Collection. Springer Singapore; Imprint Springer, Singapore

    Google Scholar 

  78. Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap, 2. Aufl. Springer series in wood science. Springer, Berlin, Heidelberg

    Google Scholar 

  79. Vásárhelyi L, Kónya Z, Kukovecz Á, Vajtai R (2020) Microcomputed tomography–based characterization of advanced materials: a review. Mater Today Adv 8:1–13. https://doi.org/10.1016/j.mtadv.2020.100084

    Article  Google Scholar 

  80. VDI 6220 Part 2 (Entwurf/Draft)-The Association of German Engineers e.V. (2022) Bionik-Bionische Entwicklungsmethodik-Produkte und Verfahren (VDI 6220 Part 2/Entwurf). Beuth Verlag, Berlin

    Google Scholar 

  81. Wang X, Chen L, Huang B, Yuan J, Shang L, Zhang S, Chen M, Fang C, Fei B (2022) Quantitative characterization of bamboo cortex structure based on X-ray microtomography. Cellulose 29(8):4335–4346. https://doi.org/10.1007/s10570-022-04534-5

    Article  CAS  Google Scholar 

  82. Wason J, Bouda M, Lee EF, McElrone AJ, Phillips RJ, Shackel KA, Matthews MA, Brodersen C (2021) Xylem network connectivity and embolism spread in grapevine (Vitis vinifera L.). Plant Physiol 186(1):373–387. https://doi.org/10.1093/plphys/kiab045

  83. Wason JW, Huggett BA, Brodersen CR (2017) MicroCT imaging as a tool to study vessel endings in situ. Am J Bot 104(9):1424–1430. https://doi.org/10.3732/ajb.1700199

    Article  Google Scholar 

  84. Wei X, Wang G, Smith LM, Chen X, Jiang H (2022) Effects of gradient distribution and aggregate structure of fibers on the flexibility and flexural toughness of natural moso bamboo (Phyllostachys edulis). J Mater Res Technol 16:853–863. https://doi.org/10.1016/j.jmrt.2021.12.071

    Article  Google Scholar 

  85. Withers PJ (2007) X-ray nanotomography. Mater Today 10(12):26–34. https://doi.org/10.1016/S1369-7021(07)70305-X

    Article  CAS  Google Scholar 

  86. Wunnenberg J, Rjosk A, Neinhuis C, Lautenschläger T (2021) Strengthening structures in the petiole-lamina junction of peltate leaves. Biomimetics 6(2). https://doi.org/10.3390/biomimetics6020025

  87. Xiang E, Yang S, Cao C, Liu X, Peng G, Shang L, Tian G, Ma Q, Ma J (2021) Visualizing complex anatomical structure in bamboo nodes based on X-ray microtomography. J Renew Mater 9(9):1531–1540. https://doi.org/10.32604/jrm.2021.015346

  88. Yin K, Mylo MD, Speck T, Wegst UGK (2020) Bamboo-inspired tubular scaffolds with functional gradients. J Mech Behav Biomed Mater 110:103826. https://doi.org/10.1016/j.jmbbm.2020.103826

    Article  CAS  Google Scholar 

  89. Zhang Y, Ma L, Wang J, Wang X, Guo X, Du J (2020) Phenotyping analysis of maize stem using micro-computed tomography at the elongation and tasseling stages. Plant Methods 16:2. https://doi.org/10.1186/s13007-019-0549-y

    Article  Google Scholar 

  90. Zhang Y, Wang J, Du J, Zhao Y, Lu X, Wen W, Gu S, Fan J, Wang C, Wu S, Wang Y, Liao S, Zhao C, Guo X (2021) Dissecting the phenotypic components and genetic architecture of maize stem vascular bundles using high-throughput phenotypic analysis. Plant Biotechnol J 19(1):35–50. https://doi.org/10.1111/pbi.13437

    Article  CAS  Google Scholar 

  91. Zhang W, Xu J, Yu TX (2022) Dynamic behaviors of bio-inspired structures: design, mechanisms, and models. Eng Struct 265:114490. https://doi.org/10.1016/j.engstruct.2022.114490

    Article  Google Scholar 

  92. Zimmermann MH, Tomlinson PB (1966) Analysis of complex vascular systems in plants: optical shuttle method. Science 152(3718):72–73. https://doi.org/10.1126/science.152.3718.72

    Article  CAS  Google Scholar 

  93. Zwanenburg EA, Williams MA, Warnett JM (2022) Review of high-speed imaging with lab-based x-ray computed tomography. Meas Sci Technol 33(1):12003. https://doi.org/10.1088/1361-6501/ac354a

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Beismann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beismann, H., Fischer, M. (2023). Review of the State of the Art Using µCT to Elucidate Complex Vascular Systems of Plants. In: Palombini, F.L., Nogueira, F.M. (eds) Bamboo Science and Technology. Environmental Footprints and Eco-design of Products and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-99-0015-2_2

Download citation

Publish with us

Policies and ethics