Skip to main content

OCGATL: One-Class Graph Attention Networks with Transformation Learning for Anomaly Detection for Argo Data

  • Conference paper
  • First Online:
Spatial Data and Intelligence (SpatialDI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14619))

Included in the following conference series:

  • 67 Accesses

Abstract

As the typical representative of marine big data, the Argo plan conducts high-quality and scientific anomaly detection on Argo data, which is an important step in ocean science big data. However, in classical anomaly algorithms, Argo anomaly detection mostly has low accuracy, poor efficiency, and neglects the spatial continuity of Argo data. In the research on anomaly detection of spatial and regional data, graph anomaly detection has achieved excellent results. In the research of graph anomaly detection, depth based classification as a downstream anomaly detection method performs well, but at the same time, there are also problems of hyper sphere collapse and performance flipping. This article focuses on the research work related to the above issues: (1) Based on the study of Argo data and graph data, combined with the three-dimensional spatial characteristics of Argo buoy data, a novel graph data construction method is proposed. (2) Propose to incorporate neural transformation learning into the architecture, improve data learning expression ability, and further improve the shortcomings of graph neural classification, enabling it to adapt to the spatiotemporal and multi-dimensional characteristics of Argo buoy data for outlier detection. This article conducts experiments on five simulation datasets to demonstrate that the improved idea outperforms five state-of-the-art graph anomaly detection algorithms in various indicators, successfully improving the problems of hyper sphere collapse and performance flipping, and enhancing the accuracy and robustness of graph anomaly detection; The effectiveness of graph construction was demonstrated by comparing it with classical anomaly algorithms on real Argo sample data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yidi, Y., Hua, J., Huijiao, W., Xin, W.: Anomaly detection algorithm of argo profile based on sliding window and arma. Comput. Eng. Appl. 54(19), 254 (2018)

    Google Scholar 

  2. Hua, J., Yao, W., Xin, W., Huijiao, W.: Study on ocean data anomaly detection algorithm based on improved k-means clustering. Comput. Sci. 46(7), 6 (2019)

    Google Scholar 

  3. Qi, Z., Chenyan, Q., Changming, D.: A machine learning approach to quality-control argo temperature data. Atmos. Oceanic Sci. Lett. 16(4), 100292 (2023)

    Article  Google Scholar 

  4. Ma, X., et al.: A comprehensive survey on graph anomaly detection with deep learning. IEEE Trans. Knowl. Data Eng. 35, 12012–12038 (2021)

    Article  Google Scholar 

  5. Ye, J., Akoglu, L.: Discovering opinion spammer groups by network footprints. In: Appice, A., Rodrigues, P., Santos Costa, V., Soares, C., Gama, J., Jorge, A. (eds.) ECML PKDD 2015 Part I. LNCS, vol. 9284, pp. 267–282. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23528-8_17

    Chapter  Google Scholar 

  6. Gaddam, A., Wilkin, T., Angelova, M., Gaddam, J.: Detecting sensor faults, anomalies and outliers in the internet of things: a survey on the challenges and solutions. Electronics 9(3), 511 (2020)

    Article  Google Scholar 

  7. Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., Yu, P.S.: Enhancing graph neural network-based fraud detectors against camouflaged fraudsters. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 315–324 (2020)

    Google Scholar 

  8. Ioannidis, V.N., Berberidis, D., Giannakis, G.B.: Unveiling anomalous nodes via random sampling and consensus on graphs. In: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5499–5503. IEEE (2021)

    Google Scholar 

  9. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryGs6iA5Km

  10. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pp. 3634–3640 (2018)

    Google Scholar 

  11. Peng, H., et al.: Fine-grained event categorization with heterogeneous graph convolutional networks. CoRR abs/1906.04580 (2019)

    Google Scholar 

  12. Wang, D., et al.: A semi-supervised graph attentive network for financial fraud detection. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 598–607. IEEE (2019)

    Google Scholar 

  13. Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph neural networks for anomaly detection in attributed networks. Neural Comput. Appl. 33, 12073–12085 (2021)

    Article  Google Scholar 

  14. Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402. PMLR (2018)

    Google Scholar 

  15. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  16. Zhao, L., Akoglu, L.: On using classification datasets to evaluate graph outlier detection: p[eculiar observations and new insights. Big Data 11, 151–180 (2021)

    Article  Google Scholar 

  17. Golan, I., El-Yaniv, R.: Deep anomaly detection using geometric transformations. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  18. Qiu, C., Pfrommer, T., Kloft, M., Mandt, S., Rudolph, M.: Neural transformation learning for deep anomaly detection beyond images. In: International Conference on Machine Learning, pp. 8703–8714. PMLR (2021)

    Google Scholar 

  19. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Disc. 29, 626–688 (2015)

    Article  MathSciNet  Google Scholar 

  20. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)

    Google Scholar 

  21. Neumann, M., Garnett, R., Bauckhage, C., Kersting, K.: Propagation kernels: efficient graph kernels from propagated information. Mach. Learn. 102, 209–245 (2016)

    Article  MathSciNet  Google Scholar 

  22. Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)

    Google Scholar 

  23. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)

    Google Scholar 

  24. Schölkopf, B., Williamson, R.C., Smola, A., Shawe-Taylor, J., Platt, J.: Support vector method for novelty detection. In: Advances in Neural Information Processing Systems, vol. 12 (1999)

    Google Scholar 

  25. Tax, D.M., Duin, R.P.: Support vector data description. Mach. Learn. 54, 45–66 (2004)

    Article  Google Scholar 

  26. Zhang, F., Fan, H., Wang, R., Li, Z., Liang, T.: Deep dual support vector data description for anomaly detection on attributed networks. Int. J. Intell. Syst. 37(2), 1509–1528 (2022)

    Article  Google Scholar 

  27. Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. Proc. IEEE 109(5), 756–795 (2021)

    Article  Google Scholar 

  28. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  29. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  30. Wang, Y., Wang, J., Cao, Z., Barati Farimani, A.: Molecular contrastive learning of representations via graph neural networks. Nat. Mach. Intell. 4(3), 279–287 (2022)

    Article  Google Scholar 

  31. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. ICLR (Poster) 2(3), 4 (2019)

    Google Scholar 

  32. Peng, Z., et al.: Graph representation learning via graphical mutual information maximization. In: Proceedings of The Web Conference 2020, pp. 259–270 (2020)

    Google Scholar 

  33. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. Adv. Neural. Inf. Process. Syst. 33, 5812–5823 (2020)

    Google Scholar 

  34. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)

    Google Scholar 

  35. Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly detection on attributed networks via contrastive self-supervised learning. IEEE Trans. Neural Netw. Learn. Syst. 33(6), 2378–2392 (2021)

    Article  MathSciNet  Google Scholar 

  36. Zheng, Y., Jin, M., Liu, Y., Chi, L., Phan, K.T., Chen, Y.P.P.: Generative and contrastive self-supervised learning for graph anomaly detection. IEEE Trans. Knowl. Data Eng. (2021)

    Google Scholar 

  37. Zheng, Y., et al.: From unsupervised to few-shot graph anomaly detection: a multi-scale contrastive learning approach. arXiv preprint arXiv:2202.05525 (2022)

  38. Ying, C., Hui, Z.: Spatio-temporal distribution of chlorophyll in the mid-western south china sea. J. Mar. Sci. 39, 84–94 (2021)

    Google Scholar 

  39. Peng, H., Qing, Y., Zefan, Y., Kun, H., Jiangguang, P.: Experimental study on dissolved oxygen content in water and its physical influence factors. J. Hydraul. Eng. 50(6), 8 (2019)

    Google Scholar 

  40. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  41. Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? In: International Conference on Learning Representations (2022)

    Google Scholar 

  42. Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning, pp. 5453–5462. PMLR (2018)

    Google Scholar 

  43. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural network evaluation. CoRR abs/1811.05868 (2018)

    Google Scholar 

  44. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collective classification in network data. AI Mag. 29(3), 93–93 (2008)

    Google Scholar 

  45. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations, ICLR 2017 (2017)

    Google Scholar 

  46. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  47. Bandyopadhyay, S., Vivek, S.V., Murty, M.: Outlier resistant unsupervised deep architectures for attributed network embedding. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 25–33 (2020)

    Google Scholar 

  48. Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed networks. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 594–602. SIAM (2019)

    Google Scholar 

  49. Fan, H., Zhang, F., Li, Z.: Anomalydae: dual autoencoder for anomaly detection on attributed networks. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5685–5689. IEEE (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Y., Liu, H., Wang, J., Zhai, G. (2024). OCGATL: One-Class Graph Attention Networks with Transformation Learning for Anomaly Detection for Argo Data. In: Meng, X., Zhang, X., Guo, D., Hu, D., Zheng, B., Zhang, C. (eds) Spatial Data and Intelligence. SpatialDI 2024. Lecture Notes in Computer Science, vol 14619. Springer, Singapore. https://doi.org/10.1007/978-981-97-2966-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2966-1_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2965-4

  • Online ISBN: 978-981-97-2966-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics