Skip to main content

Heterogeneous Graph Contrastive Learning with Dual Aggregation Scheme and Adaptive Augmentation

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Abstract

Heterogeneous graphs are ubiquitous in the real world, such as online shopping networks, academic citation networks, etc. Heterogeneous Graph Neural Networks (HGNNs) have been widely used to capture rich semantic information on graph data, showing strong potential for application in real-world scenarios. However, the semantic information is not fully exploited by existing heterogeneous graph models in the following two aspects: (1) Most HGNNs use only meta-path scheme to model semantic information, which ignores local structure information. (2) The influence of cross-scheme contrast on the model performance is not taken into account. To fill above gaps, we propose a novel Contrastive Learning model on Heterogeneous Graphs (CLHG). Firstly, CLHG encodes local structure and semantic information by a dual aggregation scheme (i.e. network schema and meta-path). Secondly, we perform contrast between views within the same scheme and then comprehensively utilize dual aggregation scheme to collaboratively optimize CLHG. Furthermore, we extend adaptive augmentation to heterogeneous graphs to generate high-quality positive and negative samples, which greatly improves the performance of CLHG. Extensive experiments on three real-world datasets demonstrate that our proposed model achieves competitive results with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://dblp.org/.

  2. 2.

    https://dl.acm.org/.

  3. 3.

    https://www.freebase.com/.

References

  1. Ding, K., Xu, Z., Tong, H., Liu, H.: Data augmentation for deep graph learning: a survey. ACM SIGKDD Explor. Newsl 24(2), 61–77 (2022)

    Article  Google Scholar 

  2. Dong, Y., Chawla, N.V., Swami, A.: Metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144. ACM (2017)

    Google Scholar 

  3. Fang, Y., et al.: Metagraph-based learning on heterogeneous graphs. IEEE Trans. Knowl. Data Eng. 33(1), 154–168 (2021)

    Article  Google Scholar 

  4. Fu, X., Zhang, J., Meng, Z., King, I.: MAGNN: metapath aggregated graph neural network for heterogeneous graph embedding. In: Proceedings of The Web Conference 2020, pp. 2331–2341 (2020)

    Google Scholar 

  5. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  6. Hu, Z., Dong, Y., Wang, K., Sun, Y.: Heterogeneous graph transformer. In: Proceedings of The Web Conference 2020, pp. 2704–2710. ACM (2020)

    Google Scholar 

  7. Huang, Z., Zheng, Y., Cheng, R., Sun, Y., Mamoulis, N., Li, X.: Meta structure: computing relevance in large heterogeneous information networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1595–1604. ACM (2016)

    Google Scholar 

  8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks (2016). arXiv preprint arXiv:1609.02907

  9. Kipf, T.N., Welling, M.: Variational graph auto-encoders (2016). arXiv preprint arXiv:1611.07308

  10. Li, X., Ding, D., Kao, B., Sun, Y., Mamoulis, N.: Leveraging Meta-path Contexts for Classification in Heterogeneous Information Networks (2021)

    Google Scholar 

  11. Linsker, R.: Self-organization in a perceptual network. Computer 21(3), 105–117 (1988)

    Article  Google Scholar 

  12. Park, C., Kim, D., Han, J., Yu, H.: Unsupervised attributed multiplex network embedding. AAAI 34(04), 5371–5378 (2020)

    Article  Google Scholar 

  13. Qiu, J., et al.: GCC: graph contrastive coding for graph neural network pre-training. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1150–1160 (2020)

    Google Scholar 

  14. Shi, C., Hu, B., Zhao, W.X., Yu, P.S.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370 (2019)

    Article  Google Scholar 

  15. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k similarity search in heterogeneous information networks. Proc. VLDB Endow. 4(11), 992–1003 (2011)

    Article  Google Scholar 

  16. Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous information networks with star network schema. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge Discovery and Data Mining, pp. 797–806 (2009)

    Google Scholar 

  17. Tong, Z., Chen, X., He, Z., Tong, K., Fang, Z., Wang, X.: Emotion recognition based on photoplethysmogram and electroencephalogram. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 402–407. IEEE (2018)

    Google Scholar 

  18. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks (2017). arXiv preprint arXiv:1710.10903

  19. Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep Graph Infomax p. 46

    Google Scholar 

  20. Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., Yu, P.S.: Heterogeneous graph attention network. In: The World Wide Web Conference, pp. 2022–2032 (2019)

    Google Scholar 

  21. Wang, X., Liu, N., Han, H., Shi, C.: Self-supervised Heterogeneous Graph Neural Network with Co-contrastive Learning (2021)

    Google Scholar 

  22. Yang, C., Zhang, J., Han, J.: Neural embedding propagation on heterogeneous networks. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 698–707. IEEE (2019)

    Google Scholar 

  23. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. Adv. Neural. Inf. Process. Syst. 33, 5812–5823 (2020)

    Google Scholar 

  24. Yun, S., Jeong, M., Kim, R., Kang, J., Kim, H.J.: Graph transformer networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  25. Zhang, C., Song, D., Huang, C., Swami, A., Chawla, N.V.: Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 793–803. ACM (2019)

    Google Scholar 

  26. Zhang, M., Hu, H., He, Z., Wang, W.: Top-k similarity search in heterogeneous information networks with x-star network schema. Expert Syst. Appl. 42(2), 699–712 (2015)

    Article  Google Scholar 

  27. Zhang, W., Fang, Y., Liu, Z., Wu, M., Zhang, X.: Mg2vec: learning relationship-preserving heterogeneous graph representations via Metagraph embedding. IEEE Trans. Knowl. Data Eng. 34(3), 1317–1329 (2022)

    Article  Google Scholar 

  28. Zhang, Y., Meng, Y., Huang, J., Xu, F.F., Wang, X., Han, J.: Minimally supervised categorization of text with metadata. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1231–1240 (2020)

    Google Scholar 

  29. Zhao, H., Yao, Q., Li, J., Song, Y., Lee, D.L.: Meta-graph based recommendation fusion over heterogeneous information networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 635–644 (2017)

    Google Scholar 

  30. Zhao, J., Wang, X., Shi, C., Liu, Z., Ye, Y.: Network schema preserving heterogeneous information network embedding. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pp. 1366–1372. International Joint Conferences on Artificial Intelligence Organization (2020)

    Google Scholar 

  31. Zhao, T., Liu, Y., Neves, L., Woodford, O., Jiang, M., Shah, N.: Data augmentation for graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 11015–11023 (2021)

    Google Scholar 

  32. Zhu, Y., Xu, Y., Cui, H., Yang, C., Liu, Q., Wu, S.: Structure-enhanced heterogeneous graph contrastive learning. In: Proceedings of the 2022 SIAM International Conference on Data Mining (SDM), pp. 82–90. SIAM (2022)

    Google Scholar 

  33. Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., Wang, L.: Graph contrastive learning with adaptive augmentation. In: Proceedings of the Web Conference 2021, pp. 2069–2080 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was sponsored the National Natural Science Foundation of China under grants 62076130, 61902186, and 91846104.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cangqi Zhou or Jing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, Y., Yan, Q., Zhou, C., Zhang, J., Hu, D. (2024). Heterogeneous Graph Contrastive Learning with Dual Aggregation Scheme and Adaptive Augmentation. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14334. Springer, Singapore. https://doi.org/10.1007/978-981-97-2421-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2421-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2420-8

  • Online ISBN: 978-981-97-2421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics