Skip to main content

DCNS: A Double-Cache Negative Sampling Method for Improving Knowledge Graph Embedding

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14334))

  • 48 Accesses

Abstract

Negative sampling plays an important role in knowledge graph embedding. A high-quality negative sample can push the model training to the limit. Most negative triples generated by simple uniform sampling are low-quality negative samples, which will lead to the problem of vanishing gradients in the training process. Generative Adversarial Network (GAN) has been used in the study of negative sampling methods. However, the training for the GAN-based negative sampling method is more complicated. To solve these issues, we propose DCNS. DCNS designs two caches containing high-quality negative triples, samples from the cache and updates the cache. In addition, in order to generate harder negative samples that have a greater impact on training, DCNS adopts a mixing operation. Finally, we evaluated the results of the link prediction model using DCNS on four standard datasets. The extensive experiments show that our method can gain significant improvement on various KG embedding models, and outperform the state-of-the-art negative sampling methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahrabian, K., Feizi, A., Salehi, Y., Hamilton, W.L., Bose, A.J.: Structure aware negative sampling in knowledge graphs. arXiv preprint arXiv:2009.11355 (2020)

  2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250 (2008)

    Google Scholar 

  3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  4. Cai, L., Wang, W.Y.: KBGAN: adversarial learning for knowledge graph embeddings. In: Proceedings of NAACL (2018)

    Google Scholar 

  5. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  6. Huang, T., et al.: MixGCF: an improved training method for graph neural network-based recommender systems. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 665–674 (2021)

    Google Scholar 

  7. Isinkaye, F.O., Folajimi, Y.O., Ojokoh, B.A.: Recommendation systems: principles, methods and evaluation. Egyptian Inf. J. 16(3), 261–273 (2015)

    Article  Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (2014)

    Google Scholar 

  9. Koller, D., et al.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)

    Google Scholar 

  10. Lee, K., Zhu, Y., Sohn, K., Li, C.L., Shin, J., Lee, H.: i-mix: a domain-agnostic strategy for contrastive representation learning. In: International Conference on Learning Representations (2021)

    Google Scholar 

  11. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  12. Mitchell, T., et al.: Never-ending learning. Commun. ACM 61(5), 103–115 (2018)

    Article  Google Scholar 

  13. Song, X., Li, J., Cai, T., Yang, S., Yang, T., Liu, C.: A survey on deep learning based knowledge tracing. Knowl.-Based Syst. 258, 110036 (2022)

    Article  Google Scholar 

  14. Song, X., Li, J., Lei, Q., Zhao, W., Chen, Y., Mian, A.: Bi-clkt: Bi-graph contrastive learning based knowledge tracing. Knowl.-Based Syst. 241, 108274 (2022)

    Article  Google Scholar 

  15. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of WWW, pp. 697–706 (2007)

    Google Scholar 

  16. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. In: ICLR (2019)

    Google Scholar 

  17. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd workshop on Continuous Vector Space Models and Their Compositionality, pp. 57–66 (2015)

    Google Scholar 

  18. Wang, C., Wang, X., Li, Z., Chen, Z., Li, J.: Hyconve: a novel embedding model for knowledge hypergraph link prediction with convolutional neural networks. In: Proceedings of the ACM Web Conference 2023, pp. 188–198 (2023)

    Google Scholar 

  19. Wang, P., Li, S., Pan, R.: Incorporating GAN for negative sampling in knowledge representation learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  20. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  21. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  22. Xiao, H., Huang, M., Hao, Y., Zhu, X.: TransG: a generative mixture model for knowledge graph embedding. arXiv preprint arXiv:1509.05488 (2015)

  23. Xiong, C., Power, R., Callan, J.: Explicit semantic ranking for academic search via knowledge graph embedding. In: Proceedings of the 26th International Conference on World Wide Web, pp. 1271–1279 (2017)

    Google Scholar 

  24. Yao, X., Van Durme, B.: Information extraction over structured data: Question answering with freebase. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 956–966 (2014)

    Google Scholar 

  25. Zhang, Y., Yao, Q., Shao, Y., Chen, L.: NSCaching: simple and efficient negative sampling for knowledge graph embedding. In: 2019 IEEE 35th International Conference on Data Engineering, pp. 614–625. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, H., Guan, D., Xu, S., Yuan, W. (2024). DCNS: A Double-Cache Negative Sampling Method for Improving Knowledge Graph Embedding. In: Song, X., Feng, R., Chen, Y., Li, J., Min, G. (eds) Web and Big Data. APWeb-WAIM 2023. Lecture Notes in Computer Science, vol 14334. Springer, Singapore. https://doi.org/10.1007/978-981-97-2421-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2421-5_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2420-8

  • Online ISBN: 978-981-97-2421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics