Skip to main content

Towards Nonparametric Topological Layers in Neural Networks

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14647))

Included in the following conference series:

  • 157 Accesses

Abstract

Various topological techniques and tools have been applied to neural networks in terms of network complexity, explainability, and performance. One fundamental assumption of this line of research is the existence of a global (Euclidean) coordinate system upon which the topological layer is constructed. Despite promising results, such a topologization method has yet to be widely adopted because the parametrization of a topologization layer takes a considerable amount of time and lacks a theoretical foundation, leading to suboptimal performance and lack of explainability. This paper proposes a learnable topological layer for neural networks without requiring an Euclidean space. Instead, the proposed construction relies on a general metric space, specifically a Hilbert space that defines an inner product. As a result, the parametrization for the proposed topological layer is free of user-specified hyperparameters, eliminating the costly parametrization stage and the corresponding possibility of suboptimal networks. Experimental results on three popular data sets demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Technically, \(\lambda \) could be an element in any other field \(\mathbb {F}\). We restrict our discussion to the real numbers \(\mathbb {R}\) (which is also a field) in the context of neural network applications.

  2. 2.

    Mathematically speaking, it would be the external derivative of a vector field \(\mathcal {H}_{(L_0, M_0)}[\mathcal {F}]\). We do not use such terms to avoid unnecessary confusions.

  3. 3.

    Parallel computing of this preprocessing stage is possible but we do not discuss it in this paper.

References

  1. Adams, H., et al.: Persistence images: a stable vector representation of persistent homology. J. Mach. Learn. Res. 18(1), 218–252 (2017)

    MathSciNet  Google Scholar 

  2. Bubenik, P.: Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res. 16(1), 77–102 (2015)

    MathSciNet  Google Scholar 

  3. Carrière, M., Chazal, F., Glisse, M., Ike, Y., Kannan, H., Umeda, Y.: Optimizing persistent homology based functions. In: Proceedings of the 38th International Conference on Machine Learning, vol. 139, pp. 1294–1303 (2021)

    Google Scholar 

  4. Chen, C., Ni, X., Bai, Q., Wang, Y.: A topological regularizer for classifiers via persistent homology. In: Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (16–18 Apr 2019), vol. 89, pp. 2573–2582 (2019)

    Google Scholar 

  5. Edelsbrunner, H., Harer, J.: Computational Topology - an Introduction. American Mathematical Society (2010)

    Google Scholar 

  6. FashionMNIST Dataset. https://github.com/zalandoresearch/fashion-mnist. Accessed 2020

  7. Gabrielsson, R.B., Nelson, B.J., Dwaraknath, A., Skraba, P.: A topology layer for machine learning. In: The 23rd International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 108, PMLR, pp. 1553–1563 (2020)

    Google Scholar 

  8. Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological signatures. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, Curran Associates, Inc. (2017)

    Google Scholar 

  9. Kim, K., Kim, J., Zaheer, M., Kim, J., Chazal, F., Wasserman, L.: Pllay: efficient topological layer based on persistent landscapes. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems (2020), vol. 33, Curran Associates, Inc., pp. 15965–15977

    Google Scholar 

  10. KMNIST Dataset. https://github.com/rois-codh/kmnist. Accessed 2020

  11. Kusano, G., Fukumizu, K., Hiraoka, Y.: Persistence weighted gaussian kernel for topological data analysis. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48 (2016), ICML 2016, JMLR.org, p. 2004-2013

    Google Scholar 

  12. Kwitt, R., Huber, S., Niethammer, M., Lin, W., Bauer, U.: Statistical topological data analysis - a kernel perspective. In: Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2, NIPS 2015, pp. 3070–3078. MIT Press, Cambridge (2015)

    Google Scholar 

  13. Lacombe, T., Ike, Y., Carrière, M., Chazal, F., Glisse, M., Umeda, Y.: Topological uncertainty: monitoring trained neural networks through persistence of activation graphs. In: Zhou, Z. (ed.) Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event/Montreal, Canada, 19-27 August 2021 (2021), pp. 2666–2672. ijcai.org (2021)

    Google Scholar 

  14. MNIST Dataset. http://yann.lecun.com/exdb/mnist/. Accessed 2020

  15. Mobahi, H., Farajtabar, M., Bartlett, P.: Self-distillation amplifies regularization in hilbert space. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 3351–3361. Curran Associates, Inc. (2020)

    Google Scholar 

  16. Moor, M., Horn, M., Rieck, B., Borgwardt, K.: Topological autoencoders. In: Proceedings of the 37th International Conference on Machine Learning (ICML) (13–18 Jul 2020), vol. 119, PMLR, pp. 7045–7054 (2020)

    Google Scholar 

  17. Muandet, K., Fukumizu, K., Dinuzzo, F., Schölkopf, B.: Learning from distributions via support measure machines. In: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1 (Red Hook, NY, USA, 2012), NIPS 2012, pp. 10–18. Curran Associates Inc. (2012)

    Google Scholar 

  18. Munkres, J.: Topology. Pearson Education, Limited (2003)

    Google Scholar 

  19. Naitzat, G., Zhitnikov, A., and Lim, L. Topology of deep neural networks. J. Mach. Learn. Res. 21 (2020), 184:1–184:40

    Google Scholar 

  20. Ohnishi, M., Yukawa, M., Johansson, M., Sugiyama, M.: Continuous-time value function approximation in reproducing kernel hilbert spaces. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems (2018), vol. 31. Curran Associates, Inc

    Google Scholar 

  21. Pagliana, N., Rosasco, L.: Implicit regularization of accelerated methods in hilbert spaces. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, Curran Associates, Inc. (2019)

    Google Scholar 

  22. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for topological machine learning. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015), pp. 4741–4748 (2015)

    Google Scholar 

  23. Rieck, B., Bock, C., Borgwardt, K.M.: A persistent weisfeiler-lehman procedure for graph classification. In: Proceedings of the 36th International Conference on Machine Learning (ICML), vol. 97, PMLR, pp. 5448–5458 (2019)

    Google Scholar 

  24. Srinivasan, S., Downey, C., Boots, B.: Learning and inference in hilbert space with quantum graphical models. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems (2018), vol. 31, Curran Associates, Inc. (2018)

    Google Scholar 

  25. Sriperumbudur, B.K., Fukumizu, K., Lanckriet, G.R.G.: Universality, characteristic kernels and rkhs embedding of measures. J. Mach. Learn. Res. 12, null (2011), 2389–2410

    Google Scholar 

  26. Sriperumbudur, B.K., Gretton, A., Fukumizu, K., Schölkopf, B., Lanckriet, G.R.: Hilbert space embeddings and metrics on probability measures. J. Mach. Learn. Res. 11, 1517–1561 (2010)

    MathSciNet  Google Scholar 

Download references

Acknowledgement

Results presented in this paper were partly obtained using the Chameleon testbed supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfang Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, G., Zhao, D. (2024). Towards Nonparametric Topological Layers in Neural Networks. In: Yang, DN., Xie, X., Tseng, V.S., Pei, J., Huang, JW., Lin, J.CW. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2024. Lecture Notes in Computer Science(), vol 14647. Springer, Singapore. https://doi.org/10.1007/978-981-97-2259-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-2259-4_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-2261-7

  • Online ISBN: 978-981-97-2259-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics