Skip to main content

3D Printing of Polymer and Polymer Matrix Composites

  • Chapter
  • First Online:
Polymer Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 77 Accesses

Abstract

This chapter provides information on the efficient utilization of polymer and polymeric composites with the aid of 3D printing. Polymer materials encompass a broad range of materials, including thermoplastics, photopolymers, and composites. This diversity offers a versatile palette for creating complex structures with specific mechanical, thermal, and chemical characteristics. It is easier to produce prototypes, specialized parts, and end-use components for industries with rapid design evolution and on-demand production capabilities, which meets the changing demands of the market and encourages the shift towards more environmentally friendly and productive manufacturing techniques. Furthermore, it explored the significant influence of polymers in the field of additive manufacturing, emphasizing their distinct characteristics and the diverse range of uses they provide. Polymer integration in 3D printing technologies has transformed production in a numerous sector and allowed for many novel applications and uses. The overview of polymer-based 3D printing procedures emphasizes the importance of material choice, processing settings, and design details for achieving the functional requirements. Thus, the incorporation of polymers into 3D printing has completely changed the standards of production and has an extensive number of uses in a wide range of sectors. The flexibility, adaptability, and material variety of polymers in additive manufacturing highlight their critical role in influencing the direction of production and providing opportunities for innovative ideas and continual advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park, S., Shou, W., Makatura, L., Matusik, W., Fu, K.K.: 3D printing of polymer composites: Materials, processes, and applications. Matter 5(1), 43–76 (2022)

    Article  Google Scholar 

  2. Feldman, D.: Polymer history. Des. Monomers Polym., 11(1), 1–15 (2008)

    Google Scholar 

  3. Dizon, J.R.C., Espera, A.H., Jr., Chen, Q., Advincula, R.C.: Mechanical characterization of 3D-printed polymers. Addit. Manuf. 20, 44–67 (2018)

    Google Scholar 

  4. Wohlers, T., Gornet, T., Mostow, N., Campbell, I., Diegel, O., Kowen, J., Huff, R., Stucker, B., Fidan, I., Doukas, A., Drab, B.: History of additive manufacturing. (2016)

    Google Scholar 

  5. Zhang, X.: 3D printing of bio-inspired, multi-material structures to enhance stiffness and toughness. Doctoral dissertation, The University of Waikato (2021)

    Google Scholar 

  6. Paritala, S., Singaram, K.K., Bathina, I., Khan, M.A., Jyosyula, S.K.R.: Rheology and pumpability of mix suitable for extrusion-based concrete 3D printing–A review. Constr. Build. Mater. 402, 132962 (2023)

    Article  Google Scholar 

  7. Sydney Gladman, A., Matsumoto, E.A., Nuzzo, R.G., Mahadevan, L., Lewis, J.A.: Biomimetic 4D printing. Nat. Mater. 15(4), 413–418 (2016)

    Article  Google Scholar 

  8. Schwartz, J.J., Boydston, A.J.: Multimaterial actinic spatial control 3D and 4D printing. Nat. Commun. 10(1), 791 (2019)

    Article  Google Scholar 

  9. Raviv, D., Zhao, W., McKnelly, C., Papadopoulou, A., Kadambi, A., Shi, B., Tibbits, S.: Active printed materials for complex self-evolving deformations. Sci. Rep. 4(1), 7422 (2014)

    Article  Google Scholar 

  10. Zhang, Q., Zhang, K., Hu, G.: Smart three-dimensional lightweight structure triggered from a thin composite sheet via 3D printing technique. Sci. Rep. 6(1), 22431 (2016)

    Article  Google Scholar 

  11. Van Manen, T., Janbaz, S., Zadpoor, A.A.: Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater. Horiz. 4(6), 1064–1069 (2017)

    Article  Google Scholar 

  12. Long, K.N., Scott, T.F., Qi, H.J., Bowman, C.N., Dunn, M.L.: Photomechanics of light-activated polymers. J. Mech. Phys. Solids 57(7), 1103–1121 (2009)

    Article  Google Scholar 

  13. Wei, H., Zhang, Q., Yao, Y., Liu, L., Liu, Y., Leng, J.: Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl. Mater. Interfaces 9(1), 876–883 (2017)

    Article  Google Scholar 

  14. Van Oosten, C.L., Bastiaansen, C.W., Broer, D.J.: Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 8(8), 677–682 (2009)

    Article  Google Scholar 

  15. Yuan, C., Roach, D.J., Dunn, C.K., Mu, Q., Kuang, X., Yakacki, C.M., Qi, H.J.: 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter 13(33), 5558–5568 (2017)

    Article  Google Scholar 

  16. Kotikian, A., Truby, R.L., Boley, J.W., White, T.J., Lewis, J.A.: 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30(10), 1706164 (2018)

    Article  Google Scholar 

  17. Gantenbein, S., Masania, K., Woigk, W., Sesseg, J.P., Tervoort, T.A., Studart, A.R.: Three-dimensional printing of hierarchical liquid-crystal-polymer structures. Nature 561(7722), 226–230 (2018)

    Article  Google Scholar 

  18. Rim, Y.S., Bae, S.H., Chen, H., De Marco, N., Yang, Y.: Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28(22), 4415–4440 (2016)

    Article  Google Scholar 

  19. Mao, S., Dong, E., Jin, H., Xu, M., Low, K.H.: Locomotion and gait analysis of multi-limb soft robots driven by smart actuators. In: 2016 IEEE/RSJ International conference on intelligent robots and systems (IROS), pp 2438–2443. IEEE, (2016)

    Google Scholar 

  20. Gao, B., Yang, Q., Zhao, X., Jin, G., Ma, Y., Xu, F.: 4D bioprinting for biomedical applications. Trends Biotechnol. 34(9), 746–756 (2016)

    Article  Google Scholar 

  21. Khan, M.A., Kumar, S., Cantwell, W.J.: Additively manufactured cylindrical systems with stiffness-tailored interface: Modeling and experiments. Int. J. Solids Struct. 152, 71–84 (2018)

    Article  Google Scholar 

  22. Wang, X., Jiang, M., Zhou, Z., Gou, J., Hui, D.: 3D printing of polymer matrix composites: A review and prospective. Compos. B Eng. 110, 442–458 (2017)

    Article  Google Scholar 

  23. Singh, M., Haverinen, H.M., Dhagat, P., Jabbour, G.E.: Inkjet printing—process and its applications. Adv. Mater. 22(6), 673–685 (2010)

    Article  Google Scholar 

  24. Sola, A., Bellucci, D., Cannillo, V.: Functionally graded materials for orthopedic applications–an update on design and manufacturing. Biotechnol. Adv. 34(5), 504–531 (2016)

    Article  Google Scholar 

  25. Schmid, M., Amado, A., Wegener, K.: Polymer powders for selective laser sintering (SLS). In: AIP Conference proceedings, vol. 1664, no. 1. AIP Publishing, (2015)

    Google Scholar 

  26. Xia, Y., Zhou, P., Cheng, X., Xie, Y., Liang, C., Li, C., Xu, S.: Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications. Int. J. Nanomedicine, 4197–4213 (2013)

    Google Scholar 

  27. Akhoundi, B., Behravesh, A.H., Bagheri Saed, A.: An innovative design approach in three-dimensional printing of continuous fiber–reinforced thermoplastic composites via fused deposition modeling process: in-melt simultaneous impregnation. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 234(1–2), 243–259 (2020)

    Article  Google Scholar 

  28. Lescot, T., Lebel-Cormier, M.A., Seniwal, B., Gros-Louis, P., Bellerive, C., Landreville, S., Fortin, M.A.: Tumor shape-specific brachytherapy implants by 3D-printing, precision radioactivity painting, and biomedical imaging. Adv. Healthcare Mater. 12(25), 2300528 (2023)

    Article  Google Scholar 

  29. Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.K., Asahara, H., Horiguchi, K., Hirano, Y.: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 6(1), 23058 (2016)

    Article  Google Scholar 

  30. Utela, B., Storti, D., Anderson, R., Ganter, M.: A review of process development steps for new material systems in three-dimensional printing (3DP). J. Manuf. Process. 10(2), 96–104 (2008)

    Article  Google Scholar 

  31. Somireddy, M., Singh, C.V., Czekanski, A.: Mechanical behaviour of 3D printed composite parts with short carbon fiber reinforcements. Eng. Fail. Anal. 107, 104232 (2020)

    Article  Google Scholar 

  32. Hong, S.Y., Kim, Y.C., Wang, M., Kim, H.I., Byun, D.Y., Nam, J.D., Suhr, J.: Experimental investigation of mechanical properties of UV-Curable 3D printing materials. Polymer 145, 88–94 (2018)

    Article  Google Scholar 

  33. Chen, J., Liu, X., Tian, Y., Zhu, W., Yan, C., Shi, Y., Zhou, K.: 3D-Printed anisotropic polymer materials for functional applications. Adv. Mater. 34(5), 2102877 (2022)

    Article  Google Scholar 

  34. Gadelmoula, A., Aldahash, S.A.: Tribological properties of glass bead-filled polyamide 12 composite manufactured by selective laser sintering. Polymers 15(5), 1268 (2023)

    Article  Google Scholar 

  35. Karkun, M.S., Dharmalingam, S.: 3D printing technology in aerospace industry–a review. Int. J. Aviat., Aeronaut., Aerosp. 9(2), 4 (2022)

    Google Scholar 

  36. Alhaddad, A.Y., AlKhatib, S.E., Khan, R.A., Ismail, S.M., Shehadeh, A.S.S., Sadeq, A.M., Cabibihan, J.J.: Toward 3D printed prosthetic hands that can satisfy psychosocial needs: grasping force comparisons between a prosthetic hand and human hands. In: Social Robotics: 9th international conference, ICSR 2017, Tsukuba, Japan, November 22–24, 2017, Proceedings, vol. 9, pp. 304–313. Springer International Publishing

    Google Scholar 

  37. Honigmann, P., Sharma, N., Okolo, B., Popp, U., Msallem, B., Thieringer, F.M.: Patient-specific surgical implants made of 3D printed PEEK: material, technology, and scope of surgical application. BioMed Res. Int., (2018)

    Google Scholar 

  38. Mirdamadi, E., Tashman, J.W., Shiwarski, D.J., Palchesko, R.N., Feinberg, A.W.: FRESH 3D bioprinting a full-size model of the human heart. ACS Biomater. Sci. Eng. 6(11), 6453–6459 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Ataullah Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdul, W., Durgaiahsangam, H., Jyosyula, S., Khan, M.A. (2024). 3D Printing of Polymer and Polymer Matrix Composites. In: Moharana, S., Sahu, B.B., Nayak, A.K., Tiwari, S.K. (eds) Polymer Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-2075-0_9

Download citation

Publish with us

Policies and ethics