Skip to main content

Hemp Fibre-Reinforced Polylactic Acid Composites: A Sustainable Materials for Engineering and Industry

  • Chapter
  • First Online:
Polymer Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 63 Accesses

Abstract

In recent years, composites made from hemp fibre (HF) reinforced polylactic acid (PLA) have seen rapid growth between the Natural Fibre Reinforced Composites (NFRCs). The engineering and industrial sectors have taken a keen interest in HF-PLA composites as a sustainable alternative material. The outstanding qualities of HF-PLA composites, such as their low specific weight, better mechanical capabilities, and biodegradability are increasing their popularity. Creep behaviour, thermal, and mechanical properties of HF-PLA composites are briefly examined. The biodegradability and recycle-ability of HF-PLA composites made using various manufacturing techniques have also been investigated. Potential usage in additive manufacturing and sustainable packaging is also mentioned, along with structural, dielectric, and automotive applications for HF-PLA composites in the future. Mechanical and physical characteristics of HF-PLA-produced components have also been summarized, along with the impacts of 3D printing sceneries. This work sheds information on the potential and constraints of HF-PLA composites, which is an important contribution. Reinforcing natural fibres in a polymer matrix enhanced mechanical, thermal, and tribological behaviour by increasing interfacial adhesion between the fibre and the matrix. The composites' fibre-matrix interface stress transmission performance was improved by chemical treatment of the natural fibres. To expand their usefulness to high-end sectors like the aerospace and marine industries, improvements must be made to the thermal characteristics and moisture response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarikaya, E., Çallioğlu, H., Demirel, H.: Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Compos. Part B Eng. 167, 461–466 (2019)

    Article  Google Scholar 

  2. Neoh, K.W., Tshai, K.Y., Khiew, P.S., Chia, C.H.: Micro palm and kenaf fibers reinforced PLA composite: effect of volume fraction on tensile strength. Appl. Mech. Mater. 145, 1–5 (2012)

    Article  Google Scholar 

  3. Siva, R., Nemali, S.S., Gokul, K.: Comparison of mechanical properties and water absorption test on injection molding and extrusion-injection molding thermoplastic hemp fiber composite. Mater. Today Proc. 47, 4382–4286 (2021)

    Article  Google Scholar 

  4. Bendourou, F.E., Suresh, G., Laadila, M.A., Kumar, P., Rouissi, T., Dhillon, G.S., Zied, K., Brar, S.K., Galvez, R.: Feasibility of the use of different types of enzymatically treated cellulosic fibres for polylactic acid (PLA) recycling. Waste Manage. 121, 237–247 (2021)

    Article  Google Scholar 

  5. Yang, Y., Murakami, M., Hamada, H.: Molding method, thermal and mechanical properties of jute/PLA injection molding. J. Polym. Environ. 20, 1124–1133 (2012)

    Article  Google Scholar 

  6. Smoca, A.: FTIR spectroscopy analysis of PLA biocomposites reinforced with hemp fibers. Key Eng. Mater. 850, 112–117 (2020)

    Article  Google Scholar 

  7. Yang, X., Fan, W., Ge, S., Gao, X., Wang, S., Zhang, Y., Foong, S.Y., Liew, R.K., Lam, S.S., Xia, C.: Advanced textile technology for fabrication of ramie fiber PLA composites with enhanced mechanical properties. Ind. Crops Prod. 162, 113312 (2021)

    Article  Google Scholar 

  8. Murakami, M., Yang, Y., Hamada, H.: Mechanical properties of jute/PLA injection molded products-all natural composites. ASME Int. Mech. Eng. Congr. Expos. 54891, 761–766 (2011)

    Google Scholar 

  9. Akhil, U.V., Radhika, N., Saleh, B., Aravind Krishna, S., Noble, N., Rajeshkumar, L.: A comprehensive review on plant-based natural fiber reinforced polymer composites: fabrication, properties, and applications. Polym. Compos. 44, 2598–2633 (2023)

    Article  Google Scholar 

  10. Girimurugan, R., Senniangiri, N., Krishnan, B.P., Kavitha, S., Vairavel, M.: Tensile behaviour of hybrid polymer composites–an experimental study. IOP Conf. Ser. Mater. Sci. 1059, 012033 (2021)

    Google Scholar 

  11. Murugan, G., Loganathan, G.B., Sivaraman, G., Shilaja, C., Mayakannan, S.: Compressive behavior of tamarind shell powder and fine granite particles reinforced epoxy matrix based hybrid bio-composites. ECS Trans. 107, 7111 (2022)

    Article  Google Scholar 

  12. Dinesh Kumar, D., Balamurugan, A., Suresh, K.C., Suresh Kumar, R., Jayanthi, N., Ramakrishnan, T., Hasane Ahammad, S.K., Mayakannan, S., Venkatesa Prabhu, S.: Study of Microstructure and wear resistance of AA5052/B4C nanocomposites as a function of volume fraction reinforcement to particle size ratio by ANN. J Chem. (2023)

    Google Scholar 

  13. Girimurugan, R., Maheskumar, P., Sahoo, G., Sivalingam, A., Mayakannan, S.: Effect of nano alumina powder and water hyacinth stem powder addition on tensile properties of polypropylene matrix hybrid composites–An experimental study. Mater. Today Proc. 60, 2099–2104 (2022)

    Article  Google Scholar 

  14. Seile, A., Spurina, E., Sinka, M.: Reducing global warming potential impact of bio-based composites based of LCA. Fibers. 10, 79 (2022)

    Article  Google Scholar 

  15. Zawawi, N.A., Ismail, A., Khalina, A., Mahdi, M.A.: Investigation on the microwave properties of kenaf and rice-husk fiber reinforced PLA composite utilizing one-port coaxial transmission line reflection method. Key Eng. Mater. 471, 868–873 (2011)

    Article  Google Scholar 

  16. Hanson, M., Yang, C.H.: Characterization of polylactic acid filament with biodegradable hemp fiber infused during additive manufacturing process. Int. Manuf. Sci. Eng. Conf. 85802, V001T01A009 (2022)

    Google Scholar 

  17. Debeli, D.K., Qin, Z., Guo, J.: Study on the pre-treatment, physical and chemical properties of ramie fibers reinforced poly (lactic acid) (PLA) biocomposite. J. Nat. Fibers. 15, 596–610 (2018)

    Article  Google Scholar 

  18. Zhang, J., Khatibi, A.A., Castanet, E., Baum, T., Komeily-Nia, Z., Vroman, P., Wang, X.: Effect of natural fibre reinforcement on the sound and vibration damping properties of bio-composites compression moulded by nonwoven mats. Compos. Commun. 13, 12–17 (2019)

    Article  Google Scholar 

  19. Motaung, T.E., Linganiso, L.Z., Mohomane, S.M.: Agricultural waste fibers and biopolymer matrices used in biocomposites. Biocompos. Prop. Perform. Appl. 11–26 (2017)

    Google Scholar 

  20. Yaguchi, Y., Takeuchi, K., Waragai, T., Tateno, T.: Durability evaluation of an additive manufactured biodegradable composite with continuous natural fiber in various conditions reproducing usage environment. Int. J. Autom. Technol. 14, 959–965 (2020)

    Article  Google Scholar 

  21. Seile, A., Beļakova, D.: Nonwoven development by the multilayer structure. ide. Tehnologija Resursi - Environment, Technology, Resources 3, 292–297 (2017)

    Google Scholar 

  22. Bogard, F., Bach, T., Abbes, B., Bliard, C., Maalouf, C., Bogard, V., Beaumont, F., Polidori, G.: A comparative review of Nettle and Ramie fiber and their use in biocomposites, particularly with a PLA matrix. J. Nat. Fibers. 19, 8205–8229 (2022)

    Article  Google Scholar 

  23. Smoca, A.: Water absorption properties of hemp fibres reinforced PLA bio-composites. Eng. Rural Develop. 18, 1079–1083 (2019)

    Google Scholar 

  24. Jamadi, A.H., Razali, N., Petrů, M., Taha, M.M., Muhammad, N., Ilyas, R.A.: Effect of chemically treated kenaf fibre on mechanical and thermal properties of PLA composites prepared through fused deposition modeling (FDM). Polymers 13, 3299 (2021)

    Article  Google Scholar 

  25. López-Alba, E., Schmeer, S., Díaz, F.: Energy absorption capacity in natural fiber reinforcement composites structures. Materials 11, 418 (2018)

    Article  Google Scholar 

  26. Girimurugan, R., Pugazhenthi, R., Maheskumar, P., Suresh, T., Vairavel, M.: Impact and hardness behaviour of epoxy resin matrix composites reinforced with banana fiber/camellia sinensis particles. Mater. Today Proc. 39, 373–377 (2021)

    Article  Google Scholar 

  27. Girimurugan, R., Senniangiri, N., Adithya, K., Velliyangiri, B.: Mechanical behaviour of coconut shell powder granule reinforced epoxy resin matrix bio composites. J. Dyn. Control Syst. 10, 533–541 (2018)

    Google Scholar 

  28. Azlin, M.N., Sapuan, S.M., Zainudin, E.S., Zuhri, M.Y., Ilyas, R.A.: Natural polylactic acid-based fiber composites: a review. In: Advanced processing, properties, and applications of starch and other bio-based polymers, pp. 21–34 (2020)

    Google Scholar 

  29. Alias, N.F., Ismail, H., Ishak, K.M.: Poly (lactic acid)/natural rubber/kenaf biocomposites production using poly (methyl methacrylate) and epoxidized natural rubber as co-compatibilizers. Iran. Polym. J. 30, 737–749 (2021)

    Article  Google Scholar 

  30. Muhandes, H., Kalácska, Á., Székely, L., Keresztes, R., Kalácska, G.: Abrasive sensitivity of engineering polymers and a bio-composite under different abrasive conditions. Materials 13, 5239 (2020)

    Article  Google Scholar 

  31. Moorthy, A.A., Girimurugan, R., Prakash, E., Madheswaran, S., Sankar, A.N., Sriman, P.: Investigations on flexural performance of epoxy matrix composites strengthened with chemically modified and unmodified banana fiber/Used Camellia Sinensis (UCS) particles. Mater. Today Proc. 45, 8115–8119 (2021)

    Article  Google Scholar 

  32. Girimurugan, R., Saravanan, K.G., Manickavasagam, P., Gurunathan, G., Vairavel, M.: Experimental studies on water absorption behaviour of treated and untreated hybrid bio-composites. IOP Conf. Ser. Mater. Sci. Eng. 1059, 012017 (2021)

    Article  Google Scholar 

  33. Girimurugan, R., Vairavel, M., Shanjai, S.D., Manikandan, S., Manikkumar, R., Manojkumar, R.: Experimental impact on mechanical characteristics of banana fiber reinforced, groundnut shell powder filled epoxy resin matrix bio composites. Int. J. Eng. Innov. Technol. 9, 2279–2282 (2020)

    Google Scholar 

  34. Gurunathan, G., Paramadhayalan, P., Purushothaman, S., Girimurugan, R.: An experimental study on mechanical properties of jute fiber reinforced coconut shell particles filled epoxy resin matrix biocomposites. J. Xi’an Univ. Archit. Technol. 12, 2773–2783 (2020)

    Google Scholar 

  35. Thiruvasagam, R.G., Selvaraj, M., Saravanan, S., Vairavel, M., Girimurugan, R.: Art of review-fiber reinforced polymer composites. J. Inf. Comput. Sci. 9, 461–468 (2019)

    Google Scholar 

  36. Sahoo, G., Kamalakannan, R., Pradeep, G.M., Manivelmuralidaran, V., Girimurugan, R.: A process of analyzing the performance evaluation of sisal fiber in fiber reinforced composites. Mater. Today Proc. 56, 3201–3206 (2022)

    Article  Google Scholar 

  37. Girimurugan, R., Maheskumar, P., Adithya, K., Kamalakannan, K.: Water absorption behaviour of tamarind shell powder and marble dust particles reinforced hybrid bio-composites. Int. J. Mech. Eng. 6, 1073–1078 (2021)

    Google Scholar 

  38. Rahaman, G.A., Girimurugan, R., Vairavel, M., Karthi, S., Karthikeyan, K., Prakash, G.T.: Effect of eggshell particles addition on mechanical properties of jute fiber rein-forced epoxy resin matrix bio-composites–an experimental study. J. Crit. Rev. 7, 2726–2734 (2020)

    Google Scholar 

  39. Jaiganesh, V., Senthilnathan, K., Kumarasan, T., Saravanan, R., Nanthakumar, S., Girimurugan, R.: Influence of fibre on mechanical behavior of Ramie fibre/polystyrene hybrid composite. Mater. Proc, Today (2023)

    Google Scholar 

  40. Babu, B., Muruganandhan, P., Girimurugan, R., Sakthi, S., Nanthakumar, S., Vignesh, S.: Influence of powdered chick eggshell (PECS) on mechanical and wear properties of kenaf fiber (KF) reinforced composites. Mater. Today Proc. (2023)

    Google Scholar 

  41. Jayaraman, R., Viknesh, M., Girimurugan, R.: Experimental investigations on mechanical and water absorption properties of epoxy resin matrix treated sugarcane and tamarind shell powder reinforced bio-Composites. Mater. Today Proc. 74, 636–641 (2023)

    Article  Google Scholar 

  42. Bothiraj, T., Boopathi, K., Kalaiselvan, K., Benham, A., Mayakannan, S.: Experimental investigations on mechanical and wear behavior of waste marble dust and coconut fiber reinforced hybrid bio composites. Mater. Today Proc. 68, 2239–2242 (2022)

    Article  Google Scholar 

  43. Thangaraj, S., Pradeep, G.M., Dani, M.H., Mayakannan, S., Benham, A.: Experimental investigations on tensile and compressive properties of nano alumina and arecanut shell powder reinforced polypropylene hybrid composites 68, 2243–2248 (2022)

    Google Scholar 

  44. Wang, Y., Sultana, J., Rahman, M.M., Ahmed, A., Azam, A., Mushtaq, R.T., Rehman, M.: A sustainable and biodegradable building block: review on mechanical properties of bamboo fibre reinforced PLA polymer composites and their emerging applications. Fibers Polym. 12, 3317–3342 (2022)

    Article  Google Scholar 

  45. Vijayasekaran, G., Kamal, M., Gopi, M., Nanthakumar, S., Girimurugan, R.: Enhancement of natural fiber-reinforced plastics by polyester and seaweed waste fibers. Mater. Today Proc. (2023)

    Google Scholar 

  46. Muruganandhan, P., Jothilakshmi, S., Vivek, R., Nanthakumar, S., Sakthi, S., Mayakannan, S., Girimurugan, R.: Investigation on silane modification and interfacial UV aging of flax fibre reinforced with polystyrene composite. Mater. Today Proc. (2023)

    Google Scholar 

  47. Thangavel, P., Vignesh, S., Sureshkumar, R., Gowrishankar, A., Girimurugan, R.: Study on mechanical properties of polylactic acid matrix added with fly ash and tamarind kernel powder micro fillers. NanoWorld J. 9, S626-630 (2023)

    Google Scholar 

  48. Mayakannan, S., Raj, J.B., Raja, V.L., Nagaraj, M.: Effectiveness of silicon nanoparticles on the mechanical, wear, and physical characteristics of PALF/sisal fiber–based polymer hybrid nanocomposites. Biomass Convers. Biorefin. 14, 13291–13305 (2023)

    Article  Google Scholar 

  49. Smoca, A., Zelca, Z.: Optimal use of industrial hemp for PLA biocomposite and LLDPE composite reinforcement. Solid State Phenom. 320, 131–138 (2021)

    Article  Google Scholar 

  50. Nurhafizah, S.M., Anuar, H., Mel, M., Sapuan, S.M., Aimi, M.N.: Polylactic acid-based Kenaf biomass synthesized via ring opening polymerization. Biomass Bioenergy Appl. 211–231 (2014)

    Google Scholar 

  51. Jayaraman, R., Girimurugan, R., Suresh, V., Shilaja, C., Mayakannan, S.: Improvement on tensile properties of epoxy resin matrix sugarcane fiber and tamarind seed powder reinforced hybrid bio-composites. ECS Trans. 107, 7265 (2022)

    Article  Google Scholar 

  52. Girimurugan, R., Shilaja, C., Mayakannan, S., Rajesh, S., Aravinth, B.: Experimental investigations on flexural and compressive properties of epoxy resin matrix sugarcane fiber and tamarind seed powder reinforced bio-composites. Mater. Today Proc. 66, 822–828 (2022)

    Article  Google Scholar 

  53. Loganathan, G.B., Maheskumar, P., Jayanthi, N., Sureshkumar, R., Sakthi, S., Girimurugan, R.: Development of novel environmental proficient hybrid composites based on marble dust and poultry’s eggshell. Mater. Today Proc. (2023)

    Google Scholar 

  54. Thangaraj, S., Vigneshwaran, M., Muthuraj, M., Shenbagaraj, R., Girimurugan, R.: Distinctive study on banana/sisal fiber hybrid composites filled with nano marble dust particles. Mater. Today Proc. (2023)

    Google Scholar 

  55. Girimurugan, R., Muthuraj, M., Ahammad, S.H., Vijayakumar, N., Appadurai, M.: Experimental study of mechanical properties of sisal/jute fibers hybrid sandwich composite. Mater. Today Proc. 68, 1742–1749 (2022)

    Article  Google Scholar 

  56. Karthikeyan, R., Girimurugan, R., Sahoo, G., Maheskumar, P., Ramesh, A.: Experimental investigations on tensile and flexural properties of epoxy resin matrix waste marble dust and tamarind shell particles reinforced bio-composites. Mater. Today Proc. 68, 2215–2219 (2022)

    Article  Google Scholar 

  57. Jasti, A., Biswas, S.: Characterization of elementary industrial hemp (Cannabis Sativa L.) fiber and its fabric. J. Nat. Fibers. 20, 2158982 (2023)

    Google Scholar 

  58. Yang, T.C., Wu, T.L., Hung, K.C., Chen, Y.L., Wu, J.H.: Mechanical properties and extended creep behavior of bamboo fiber reinforced recycled poly (lactic acid) composites using the time–temperature superposition principle. Constr. Build. Mater. 93, 558–563 (2015)

    Article  Google Scholar 

  59. Cisse, O., Placet, V., Guicheret-Retel, V., Trivaudey, F., Boubakar, M.L.: Creep behaviour of single hemp fibres. Part I: viscoelastic properties and their scattering under constant climate. J. Mater. Sci. 50, 1996–2006 (2015)

    Article  Google Scholar 

  60. Durante, M., Formisano, A., Boccarusso, L., Langella, A., Carrino, L.: Creep behaviour of polylactic acid reinforced by woven hemp fabric. Compos. Part B Eng. 124, 16–22 (2017)

    Article  Google Scholar 

  61. Durante, M., Langella, A., Formisano, A., Boccarusso, L., Carrino, L.: Dynamic-mechanical behaviour of bio-composites. Proc. Eng. 167, 231–236 (2016)

    Article  Google Scholar 

  62. Guicheret-Retel, V., Cisse, O., Placet, V., Beaugrand, J., Pernes, M., Boubakar, M.L.: Creep behaviour of single hemp fibres. Part II: Influence of loading level, moisture content and moisture variation. J. Mater. Sci. 50, 2061–2072 (2015)

    Article  Google Scholar 

  63. Placet, V., Cisse, O., Guicheret, V., Trivaudey, F., Boubakar, L.: Viscoelastic behaviour of single hemp fibre under constant and cyclic humidigy environment-experiment and modelling. In: International Conference on Composite Materials (2015)

    Google Scholar 

  64. Franciszczak, P., Taraghi, I., Paszkiewicz, S., Burzyński, M., Meljon, A., Piesowicz, E.: Effect of halloysite nanotube on mechanical properties, thermal stability and morphology of polypropylene and polypropylene/short kenaf fibers hybrid biocomposites. Materials 13, 4459 (2020)

    Article  Google Scholar 

  65. Santulli, C.: Creep behaviour of plant fibre composites. In: Advanced High Strength Natural Fibre Composites in Construction, pp. 459–477 (2017)

    Google Scholar 

  66. Sala, B., Watjanatepin, P., Zarafshani, H., Guicheret-Retel, V., Trivaudey, F., Scarpa, F., Van Acker, K., Placet, V.: Creep behaviour of eco-friendly sandwich composite materials under hygrothermal conditions. Compos. Part B Eng. 247, 110291 (2022)

    Article  Google Scholar 

  67. Senthilkumar, K., Subramaniam, S., Ungtrakul, T., Kumar, T.S., Chandrasekar, M., Rajini, N., Siengchin, S., Parameswaranpillai, J.: Dual cantilever creep and recovery behavior of sisal/hemp fibre reinforced hybrid biocomposites: effects of layering sequence, accelerated weathering and temperature. J. Ind. Text. 51, 2372S-2390S (2022)

    Article  Google Scholar 

  68. Chiasson-Poirier, L., Lecompte, T., de Menibus, A.H.: Static and long term compression behavior of hemp shiv for floating floor application. Constr. Build. Mater. 268, 121220 (2021)

    Article  Google Scholar 

  69. Azadi, F., Jafari, S.H., Khonakdar, H.A., Arjmand, M., Wagenknecht, U., Altstädt, V.: Influence of graphene oxide on thermally induced shape memory behavior of PLA/TPU blends: correlation with morphology, creep behavior, crystallinity, and dynamic mechanical properties. Macromol. Mater. Eng. 306, 2000576 (2021)

    Article  Google Scholar 

  70. Waseem, M., Salah, B., Habib, T., Saleem, W., Abas, M., Khan, R., Ghani, U., Siddiqi, M.U.: Multi-response optimization of tensile creep behavior of PLA 3D printed parts using categorical response surface methodology. Polymers 12, 2962 (2020)

    Article  Google Scholar 

  71. Ji, X., Cai, Y., Xie, A., Liu, J., Zhu, P., Zhang, M.: Mechanical properties of hydroxyapatite/polylactic acid composites based on nanoindentation method. Acta Mater. Compos. Sin. 35, 553–563 (2018)

    Google Scholar 

  72. Fischbach, M., Weinberg, K.: Effect of physical aging on the flexural creep in 3D printed thermoplastic. Adv. Struct. Mater. 194, 115–130 (2023)

    Article  Google Scholar 

  73. Todkar, S.S., Patil, S.A.: Creep and heat deflection temperature (HDT) study of Pineapple leaf fibre (PALF) and Montmorillonite (MMT) nanoclay reinforced Poly-lactic acid (PLA) based laminated hybrid biocomposite. Mater. Today: Proc. 62, 7534–7539 (2022)

    Google Scholar 

  74. Jayswal, A., Liu, J., Harris, G., Mailen, R., Adanur, S.: Creep behavior of 3D printed polymer composites. Polym. Eng. Sci. 63, 3809–3818 (2023)

    Article  Google Scholar 

  75. Morreale, M., Mistretta, M.C., Fiore, V.: Creep behavior of poly (lactic acid) based biocomposites. Materials 10, 395 (2017)

    Article  Google Scholar 

  76. Amza, C.G., Zapciu, A., Baciu, F., Vasile, M.I., Nicoara, A.I.: Accelerated aging effect on mechanical properties of common 3D-printing polymers. Polymers (Basel) 13, 4132 (2021)

    Article  Google Scholar 

  77. Liang, D., Zhi, H., Sun, Z., Zhang, B., Hu, G., Liu, X., Wang, S.: Influence of titanate coupling agent on rheological properties of PLA/PHA/nanometer HA blends. Polym. Mater. Sci. Eng. 29, 86–93 (2013)

    Google Scholar 

  78. Dogan, O.: Short-term creep behaviour of different polymers used in additive manufacturing under different thermal and loading conditions. Stroj. Vestnik/J. Mech. Eng. 68, 451–460 (2022)

    Article  Google Scholar 

  79. Chen, X., Chen, F., Wang, G., Ma, X., Wang, J., Deng, J.: Eco-friendly, disposable bamboo fiber dishware: static and dynamic mechanical properties and creep behavior. Ind. Crops Prod. 187, 115305 (2022)

    Article  Google Scholar 

  80. Jhao, Y.S., Ouyang, H., Yang, F., Lee, S.: Thermo-mechanical and creep behaviour of polylactic acid/thermoplastic polyurethane blends. Polymers 14, 5276 (2022)

    Article  Google Scholar 

  81. Adibeig, M.R., Vakili-Tahami, F., Saeimi-Sadigh, M.A.: Numerical and experimental investigation on creep response of 3D printed Polylactic acid (PLA) samples. Part I: The effect of building direction and unidirectional raster orientation. J. Mech. Behav. Biomed. 145, 106025 (2023)

    Google Scholar 

  82. Cha, J.H., Ahn, S.J., Jeon, H.Y.: Analysis of dynamic and creep behaviors of FLA blends with blending ratio. Polym. 39, 566–571 (2015)

    Google Scholar 

  83. Antony, S., Cherouat, A., Montay, G.: Fabrication and characterization of hemp fibre based 3D printed honeycomb sandwich structure by FDM process. Appl. Compos. Mater. 27, 935–953 (2020)

    Article  Google Scholar 

  84. Antony, S., Cherouat, A., Montay, G.: Effect of fibre content on the mechanical properties of hemp fibre woven fabrics/polypropylene composite laminates. Polym. Polym. Compos. 29, S790-802 (2021)

    Google Scholar 

  85. Doğan, O., Kamer, M.S.: Experimental investigation of the creep behavior of test specimens manufactured with fused filament fabrication using different manufacturing parameters. J. Fac. Eng. Archit. Gazi Univ. 38, 1839–1848 (2023)

    Google Scholar 

  86. Kim, H.J., Miyamoto, S., Takada, Y., Takemura, K.: Effect of surface modification on flexural properties of jute fiber green composites. ICCM Int. Conf. Compos. Mater. 6300, 2–6 (2011)

    Google Scholar 

  87. Xia, S., Liu, X., Wang, J., Kan, Z., Chen, H., Fu, W., Li, Z.: Role of poly (ethylene glycol) grafted silica nanoparticle shape in toughened PLA-matrix nanocomposites. Compos. Part B Eng. 168, 398–405 (2019)

    Article  Google Scholar 

  88. Peixoto, T., Carneiro, S., Pereira, F., Santos, C., Fangueiro, R., Duarte, I., Paiva, M.C., Lopes, M.A., Guedes, R.M.: Hybrid structures for Achilles’ tendon repair. Polym. Adv. Technol. 33, 2362–2373 (2022)

    Article  Google Scholar 

  89. Molina, R., Pender, G., Moro, L., Piovan, M.T.: Creep behaviour of a polymer used for 3D printing. Rev. Mater. 23 (2018)

    Google Scholar 

  90. Wang, P., Xiong, Z., Fei, P., Cai, J., Walayat, N., Xiong, H.: An approach for compatibilization of the starch with poly (lactic acid) and ethylene-vinyl acetate-glycidyl-methacrylate. Int. J. Biol. Macromol. 161, 44–58 (2020)

    Article  Google Scholar 

  91. Novotna, K., Zajdlova, M., Suchy, T., Hadraba, D., Lopot, F., Zaloudkova, M., Douglas, T.E., Munzarova, M., Juklickova, M., Stranska, D., Kubies, D.: Polylactide nanofibers with hydroxyapatite as growth substrates for osteoblast-like cells. J. Biomed. Mater. Res. Part A. 102, 3918–3930 (2014)

    Article  Google Scholar 

  92. Tezel, T., Kovan, V., Topal, E.S.: Effects of the printing parameters on short-term creep behaviors of three-dimensional printed polymers. J. Appl. Polym. Sci. 136, 47564 (2019)

    Article  Google Scholar 

  93. Widiastuti, I., Sbarski, I., Masood, S.H.: Creep behavior of PLA-based biodegradable plastic exposed to a hydrocarbon liquid. J. Appl. Polym. Sci. 127, 2654–2660 (2013)

    Article  Google Scholar 

  94. Esmaeilzadeh, J., Hesaraki, S., Ebrahimzadeh, M.H., Asghari, G.H., Kachooei, A.R.: Creep behavior of biodegradable triple-component nanocomposites based on PLA/PCL/bioactive glass for ACL interference screws. Arch. Bone Jt. Surg. 7, 531 (2019)

    Google Scholar 

  95. Yang, T.C., Hung, K.C., Wu, T.L., Wu, T.M., Wu, J.H.: A comparison of annealing process and nucleating agent (zinc phenylphosphonate) on the crystallization, viscoelasticity, and creep behavior of compression-molded poly (lactic acid) blends. Polym. Degrad. Sta. 121, 230–237 (2015)

    Article  Google Scholar 

  96. Ye, J., Yao, T., Deng, Z., Zhang, K., Dai, S., Liu, X.: A modified creep model of polylactic acid (PLA-max) materials with different printing angles processed by fused filament fabrication. J. Appl. Polym. Sci. 138, 50270 (2021)

    Article  Google Scholar 

  97. Cláudio, R.A., Dupont, J., Baptista, R., Leite, M., Reis, L.: Behaviour evaluation of 3D printed polylactic acid under compression. J. Mater. Res. Technol. 21, 4052–4066 (2022)

    Article  Google Scholar 

  98. Georgiopoulos, P., Kontou, E., Christopoulos, A.: Short-term creep behavior of a biodegradable polymer reinforced with wood-fibers. Compos. Part B Eng. 80, 134–144 (2015)

    Article  Google Scholar 

  99. Farinon, B., Molinari, R., Costantini, L., Merendino, N.: The seed of industrial hemp (Cannabis sativa L.): nutritional quality and potential functionality for human health and nutrition. Nutrients 12, 1935 (2020)

    Google Scholar 

  100. Lamsaf, H., Singh, S., Pereira, J., Poças, F.: Multifunctional properties of PBAT with hemp (cannabis sativa) micronised fibres for food packaging: cast films and coated paper. Coatings 13, 1195 (2023)

    Article  Google Scholar 

  101. Gheribi, R., Taleb, Y., Perrin, L., Segovia, C., Brosse, N., Desobry, S.: Development of chitosan green composites reinforced with hemp fibers: study of mechanical and barrier properties for packaging application. Molecules 28, 4488 (2023)

    Article  Google Scholar 

  102. Köselerli, S.Ü., Gücüş, M.O., Uslu, M.K.: Production of biodegradable composite plates from cross-linked starch and cellulosic fibers. BioResources 18, 6772–6783 (2023)

    Article  Google Scholar 

  103. Teli, G., Mahakur, V.K., Paul, R., Bhowmik, S.: Investigation of dry sliding tribological behaviour of epoxy composites filled with hemp particulates using artificial neural networks. Arab. J. Sci. En. 48, 3989–4001 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Girimurugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Girisha, L. et al. (2024). Hemp Fibre-Reinforced Polylactic Acid Composites: A Sustainable Materials for Engineering and Industry. In: Moharana, S., Sahu, B.B., Nayak, A.K., Tiwari, S.K. (eds) Polymer Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-2075-0_7

Download citation

Publish with us

Policies and ethics