Skip to main content

State-Of-The-Art in Textile Polymer Composites and Applications

  • Chapter
  • First Online:
Polymer Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 79 Accesses

Abstract

Polymer textile composites represent a cutting-edge field in materials science and engineering, combining the exceptional properties of polymers and textiles to create versatile, high-performance materials. The material used for preparing polymer textile composites can vary depending on the desired application. Commonly used polymers include thermoplastics such as polyethylene and polypropylene, as well as thermosetting resins like epoxy and polyester. Several equipment are used in the fabrication process of polymer textile composites, including melt extruders, weaving machines, and knitting machines. These equipments allow for precise control over the composition and structure of the composites, resulting in materials with tailored properties for specific applications. The potential application of polymer textile composites is vast, ranging from aerospace and automotive industries to sports equipment and medical devices. These composites offer advantages such as high strength-to-weight ratio, corrosion resistance, and design flexibility. Additionally, their ability to be molded into complex shapes makes them suitable for various manufacturing processes. As research and development in the field of polymer textile composites continue to advance, we can expect to see even more innovative applications in the future. The current review aims to highlight the latest advancements in polymer textile composites and their potential impact on various industries. It will also explore the challenges and opportunities that lie ahead in terms of improving manufacturing processes, enhancing material properties, and exploring new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Radulescu, M., Ficai, D., Oprea, O., Ficai, A., Andronescu, E., Holban, M.A.: Antimicrobial chitosan based formulations with impact on different biomedical applications. Curr. Pharm. Biotechnology. 16(2), 128–36 (2015)

    Google Scholar 

  2. Cheung, T.C., Choi, S.Y.: Evaluation of the influence of three-dimensional printing conditions on peel resistance and surface roughness of flexible polymer-textile composites. Text. Res. J. 93(7–8), 1531–1550 (2023)

    Article  Google Scholar 

  3. Idumah, C.I.: Design, fabrication, characterization and properties of metallic and conductive smart polymeric textiles for multifunctional applications. Nano-Struct. & Nano-Objects. 1(35), 100982 (2023)

    Article  Google Scholar 

  4. Wang, Y., Zhang, Z., Chu, F., Liu, M., He, Y., Li, P., Yuan, J., Yang, M.: Designing polydopamine-capped [BMIm] PF6@ halloysite/NaL microcapsule optimize the wear-resistance of polymer composite liner. Tribol. Int. 1(179), 108104 (2023)

    Article  Google Scholar 

  5. Navaratnam, S., Selvaranjan, K., Jayasooriya, D., Rajeev, P., Sanjayan, J.: Applications of natural and synthetic fiber reinforced polymer in infrastructure: a suitability assessment. J. Build. Engineering. 10, 105835 (2023)

    Article  Google Scholar 

  6. Song, Y., Qu, Z., Liao, H., Ai, S.: Material twins generation of woven polymer composites based on ResL-U-Net convolutional neural networks. Compos. Struct. 1(307), 116672 (2023)

    Article  Google Scholar 

  7. Hossain, M.A.: Simultaneous thermoregulated and sensorial effect of smart textiles with artificial composite phase change materials (CPCM) incorporated with Carbon Nano Conductive Materials for special workers and extreme weather conditions. School of Fashions and Textiles, RMIT University, Victoria 3056, Australia (engr. anowar@ yahoo. com). (2023)

    Google Scholar 

  8. Priyanka, P., Sharma, P., Mali, H.S., Sharma, P.: High strain rate compression response of kevlar and interyarn hybrid carbon-kevlar polymer composites. J. Mater. Eng. Perform. 27, 1–4 (2023)

    Google Scholar 

  9. Xia, Y., He, Y., Zhang, F., Liu, Y., Leng, J.: A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater. 33(6), 2000713 (2021)

    Article  Google Scholar 

  10. Hussain, A., Podgursky, V., Viljus, M., Awan, M.R.: The role of paradigms and technical strategies for implementation of the circular economy in the polymer and composite recycling industries. Adv. Ind. Eng. Polym. Research. 6(1), 1–2 (2023)

    Google Scholar 

  11. Pander, M., Gil-San-Millan, R., Delgado, P., Perona-Bermejo, C., Kostrzewa, U., Kaczkowski, K., Kubicki, D.J., Navarro, J.A., Bury, W.: MOF/polymer hybrids through in situ free radical polymerization in metal-organic frameworks. Mater. Horiz. 10(4), 1301–1308 (2023)

    Article  Google Scholar 

  12. Cui, Y., Zheng, G., Jiang, Z., Zhou, M., Wang, P., Yu, Y., Wang, Q.: Preparation of multifunctional composite materials based on PEDOT via enzymatic cascade polymerization. Surf. Interfaces. 1(39), 102961 (2023)

    Article  Google Scholar 

  13. Selvam, S., Yim, J.H.: Effective self-charge boosting sweat electrolyte textile supercapacitors array from bio-compatible polymer metal chelates. J. Power Sources 1(556), 232511 (2023)

    Article  Google Scholar 

  14. Jhang, J.C., Kao, H., Lin, J.H., Lou, C.W.: Composite planks consisting of high resilience buffer nonwoven fabrics and conductive elastic polymer films via hot pressing lamination: manufacturing techniques and mechanical, buffer, and electrical properties. Fibers and Polymers. 24(5), 1781–1788 (2023)

    Article  Google Scholar 

  15. Panneke, N., Ehrmann, A.: Stab-resistant polymers—recent developments in materials and structures. Polymers 15(4), 983 (2023)

    Article  Google Scholar 

  16. Wang, L., Zhang, F., Liu, Y., Leng, J.: Shape memory polymer fibers: materials, structures, and applications. Adv. Fiber Materials. 1, 1–9 (2022)

    Google Scholar 

  17. Mishra, R.K.: Advances in textile structural composites. polymers. 15(4), 808 (2023)

    Google Scholar 

  18. Pl, J., Bose, S.: Evolution of surface engineering in the development of textile-based EMI shields─A review. ACS Appl. Electron. Mater. 5(4), 1947–1969 (2023)

    Article  Google Scholar 

  19. Meena, J.S., Choi, S.B., Khanh, T.D., Shin, H.S., Choi, J.S., Joo, J., Kim, J.W.: Highly stretchable and robust textile-based capacitive mechanical sensor for human motion detection. Appl. Surf. Sci. 15(613), 155961 (2023)

    Article  Google Scholar 

  20. Li, H.Y., Huang, D.N., Ren, K.F., Ji, J.: Inorganic-polymer composite coatings for biomedical devices. Smart Materials in Medicine. 1(2), 1–4 (2021)

    Article  Google Scholar 

  21. Zhan, Y., Santillo, C., Meng, Y., Lavorgna, M.: Recent advances and perspectives on silver-based polymer composites for electromagnetic interference shielding. J. Mater. Chem. C., (2023)

    Google Scholar 

  22. Akram, S., Ashraf, M., Javid, A., Abid, H.A., Ahmad, S., Nawab, Y., Rasheed, A., Xue, Z., Nosheen, A.: Recent advances in electromagnetic interference (EMI) shielding textiles: A comprehensive review. Synth. Met. 1(294), 117305 (2023)

    Article  Google Scholar 

  23. Aruchamy, K., Mylsamy, B., Palaniappan, S.K., Subramani, S.P., Velayutham, T., Rangappa, S.M., Siengchin, S.: Influence of weave arrangements on mechanical characteristics of cotton and bamboo woven fabric reinforced composite laminates. J. Reinf. Plast. Compos. 21, 07316844221140350 (2023)

    Google Scholar 

  24. Benny Mattam, L., Bijoy, A., Abraham Thadathil, D., George, L., Varghese, A.: Conducting polymers: a versatile material for biomedical applications. ChemistrySelect 7(42), e202201765 (2022)

    Article  Google Scholar 

  25. Mohit, H., Mavinkere Rangappa, S., Siengchin, S., Gorbatyuk, S., Manimaran, P., Alka Kumari, C., Khan, A., Doddamani, M.: A comprehensive review on performance and machinability of plant fiber polymer composites. Polym. Compos. 43(1), 608–623 (2022)

    Article  Google Scholar 

  26. Ražić, S.E., Ludaš, A., Kaurin, T., Zonjić, T.: Applicability of polymers printed on textiles with a 3D printer for possible use in car interior. In: IOP conference series: earth and environmental science, vol. 1128, No. 1, p. 012027. IOP Publishing, (2023)

    Google Scholar 

  27. Erdem, G., Grothe, T., Ehrmann, A.: Adhesion of new thermoplastic materials printed on textile fabrics. Tekstilec. 10(66), 1–7 (2023)

    Article  Google Scholar 

  28. Swain, S.K., Jawaid, M., eds.: Nanostructured polymer composites for biomedical applications. Elsevier, (2019)

    Google Scholar 

  29. Das, P., Manna, S., Behera, A.K., Shee, M., Basak, P., Sharma, A.K.: Current synthesis and characterization techniques for clay-based polymer nano-composites and its biomedical applications: A review. Environ. Res. 1(212), 113534 (2022)

    Article  Google Scholar 

  30. Grings, K.J., Carneiro Ribeiro, F.R., Junior, D.V., de Azevedo, A.R., Kulakowski, M.P.: Evaluation of light cementitious matrix with composite textile reinforcement from garment waste. Materials. 16(2), 733 (2023)

    Article  Google Scholar 

  31. Guo, W.T., Tang, X.G., Tang, Z., Sun, Q.J.: Recent advances in polymer composites for flexible pressure sensors. Polymers 15(9), 2176 (2023)

    Article  Google Scholar 

  32. Mitra, D., Kang, E.T., Neoh, K.G.: Polymer-based coatings with integrated antifouling and bactericidal properties for targeted biomedical applications. ACS Appl. Polym. Materials. 3(5), 2233–2263 (2021)

    Article  Google Scholar 

  33. Kozior, T., Ehrmann, A.: First proof-of-principle of polyjet 3D printing on textile fabrics. Polymers 15(17), 3536 (2023)

    Article  Google Scholar 

  34. Idumah, C.I.: Recent advancements in conducting polymer bionanocomposites and hydrogels for biomedical applications. Int. J. Polym. Mater. Polym. Biomater. 71(7), 513–530 (2022)

    Article  Google Scholar 

  35. Jalalah, M., Ahmad, A., Saleem, A., Qadir, M.B., Khaliq, Z., Khan, M.Q., Nazir, A., Faisal, M., Alsaiari, M., Irfan, M., Alsareii, S.A.: Electrospun nanofiber/textile supported composite membranes with improved mechanical performance for biomedical applications. Membranes 12(11), 1158 (2022)

    Article  Google Scholar 

  36. Aisyah, H.A., Paridah, M.T., Sapuan, S.M., Ilyas, R.A., Khalina, A., Nurazzi, N.M., Lee, S.H., Lee, C.H.: A comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers 13(3), 471 (2021)

    Article  Google Scholar 

  37. Ozimek, J., Pielichowski, K.: Recent advances in polyurethane/POSS hybrids for biomedical applications. Molecules 27(1), 40 (2021)

    Article  Google Scholar 

  38. Joe, M.S., Sudherson, D.P., Suyambulingam, I., Siengchin, S.: Extraction and characterization of novel biomass–based cellulosic plant fiber from Ficus benjamina L. stem for a potential polymeric composite reinforcement. Biomass Convers. Biorefinery., 1–5 (2023)

    Google Scholar 

  39. Wankhede, B., Bisaria, H., Ojha, S., Dakre, V.S.: A review on cotton fibre-reinforced polymer composites and their applications. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications. 237(6), 1347–1362 (2023)

    Article  Google Scholar 

  40. de M de Lima, T.A., de Lima, G.G., Nugent, M.J.: Natural fibre-reinforced polymer composites: manufacturing and biomedical applications. Polym. Nat. Compos.: Mater., Manuf. Biomed. Appl., 25–63 (2022)

    Google Scholar 

  41. Tseghai, G.B., Mengistie, D.A., Malengier, B., Fante, K.A., Van Langenhove, L.: PEDOT: PSS-based conductive textiles and their applications. Sensors. 20(7), 1881 (2020)

    Article  Google Scholar 

  42. Oladele, I.O., Omotosho, T.F., Adediran, A.A.: Polymer-based composites: an indispensable material for present and future applications. Int. J. Polym. Science. 19(2020), 1–2 (2020)

    Article  Google Scholar 

  43. Jahangir, H., Soleymani, A., Esfahani, M.R.: Investigating the confining effect of steel-reinforced polymer and grout composites on compressive behaviour of square concrete columns. Iran. J. Sci. Technol., Trans. Civ. Engineering. 47(2), 775–791 (2023)

    Article  Google Scholar 

  44. Akter, M., Uddin, M.H., Anik, H.R.: Plant fibre-reinforced polymer composites: a review on modification, fabrication, properties, and applications. Polym. Bull. 17, 1–85 (2023)

    Google Scholar 

  45. Zhang, D., Liu, L., Xu, P., Zhao, Y., Li, Q., Lan, X., Zou, X., Li, Y., He, Y., Liu, Y., Leng, J.: Ancient papyrus scroll-inspired self-deployable mechanism based on shape memory polymer composites for Mars explorations. Compos. Struct. 15(304), 116391 (2023)

    Article  Google Scholar 

  46. Seidi, F., Yazdi, M.K., Jouyandeh, M., Dominic, M., Naeim, H., Nezhad, M.N., Bagheri, B., Habibzadeh, S., Zarrintaj, P., Saeb, M.R., Mozafari, M.: Chitosan-based blends for biomedical applications. Int. J. Biol. Macromol. 31(183), 1818–1850 (2021)

    Article  Google Scholar 

  47. Ornaghi, H.L., Jr., Bianchi, O.: Temperature-dependent shape-memory textiles: physical principles and applications. Textiles. 3(2), 257–274 (2023)

    Article  Google Scholar 

  48. Nimra, S.S., Rehan, Z.A., Ali, S.H., Atir, S., Fatima, K., Shahzadi, F., Shakir, H.F., Alamir, M.A., EL-Bagory, T.M., Shahid, I.: Electrically conductive fibers fabrication and characterization via in-situ polymerization of aniline for the protection against EMI and thermal imaging signals. J. Mater. Res. Technol. 23, 2399–409 (2023)

    Google Scholar 

  49. Renkler, N.Z., Cruz-Maya, I., Bonadies, I., Guarino, V.: Electro fluid dynamics: a route to design polymers and composites for biomedical and bio-sustainable applications. Polymers 14(19), 4249 (2022)

    Article  Google Scholar 

  50. Kupińska, K., Michalik, M., Krajenta, J., Bielicka, M., Markiewicz, K.H., Kalska-Szostko, B., Wilczewska, A.Z.: An In-Situ Fabrication Method of ZnO and Other Zn (II) Compounds Containing Polypropylene Composites. Int. J. Mol. Sci. 24(3), 2357 (2023)

    Article  Google Scholar 

  51. Kumar, J., Kumar, K., Jaiswal, B., Kumar, K., Verma, R.K.: Investigation on the physio-mechanical properties of carpet waste polymer composites incorporated with multi-wall carbon nanotube (MWCNT). J. Text. Inst. 114(4), 664–673 (2023)

    Article  Google Scholar 

  52. Biswas, B., Mandal, G., Das, A., Majumdar, A., Sinha, A.: Ceramic particle–dispersed polymer composites. In: Advances in biomedical polymers and composites, pp. 399–432. Elsevier, (2023)

    Google Scholar 

  53. Mandal, L., Verma, B., Patel, P.K.: Review on polymer nanocomposite for ballistic & aerospace applications. Mater. Today: Proceedings. 1(26), 3161–3166 (2020)

    Google Scholar 

  54. Zhalmuratova, D., Chung, H.J.: Reinforced gels and elastomers for biomedical and soft robotics applications. ACS Appl. Polym. Materials. 2(3), 1073–1091 (2020)

    Article  Google Scholar 

  55. Kiran, S., Adeel, S., Abrar, S., Iqbal, S., Naz, S., Amin, N.: Textile applications of nanofibers and nanocomposites. In: Handbook of nanofibers and nanocomposites, pp. 149–167. Jenny Stanford Publishing, (2024)

    Google Scholar 

  56. Parachuru, R.: Selected research briefs on the fabrication of value added composites using recycled textile waste as reinforcement material. Int. J. Mater. Eng. Technology. 22(1), 43–53 (2023)

    Google Scholar 

  57. Agossou, O.G., Homoro, O., Amziane, S.: Application of natural FRCM composites in structural strengthening/rehabilitation: state-of-the-art analysis. In: International conference on bio-based building materials, pp. 613–626. Springer Nature Switzerland, Cham (2023)

    Google Scholar 

  58. Maithil, P., Gupta, P., Chandravanshi, M.L.: Study of mechanical properties of the natural-synthetic fiber reinforced polymer matrix composite. Mater. Today: Proc. (2023)

    Google Scholar 

  59. Aziz, T., Haq, F., Farid, A., Kiran, M., Faisal, S., Ullah, A., Ullah, N., Bokhari, A., Mubashir, M., Chuah, L.F., Show, P.L.: Challenges associated with cellulose composite material: Facet engineering and prospective. Environ. Res. 4, 115429 (2023)

    Article  Google Scholar 

  60. Cho, C., Kim, D., Lee, C., Oh, J.H.: Ultrasensitive Ionic Liquid Polymer Composites with a Convex and Wrinkled Microstructure and Their Application as Wearable Pressure Sensors. ACS Appl. Mater. Interfaces. 15(10), 13625–13636 (2023)

    Article  Google Scholar 

  61. Singh, S., Ramakrishna, S., Berto, F.: 3D Printing of polymer composites: A short review. Mater. Des. & Process. Communications. 2(2), e97 (2020)

    Google Scholar 

  62. Deng, B., Fang, L., Fang, K., Han, X., Liang, Y.: Scalable preparation of MWCNTs/PAN conductive composite fibers with Tai Chi structure for thermotherapy textiles. Compos. Sci. Technol. 8(232), 109866 (2023)

    Article  Google Scholar 

  63. Kalirajan, C., Dukle, A., Nathanael, A.J., Oh, T.H., Manivasagam, G.: A critical review on polymeric biomaterials for biomedical applications. Polymers 13(17), 3015 (2021)

    Article  Google Scholar 

  64. Saleh Alghamdi, S., John, S., Roy Choudhury, N., Dutta, N.K.: Additive manufacturing of polymer materials: Progress, promise and challenges. Polymers 13(5), 753 (2021)

    Article  Google Scholar 

  65. Biswas, M.C., Chowdhury, A., Hossain, M.M., Hossain, M.K.: Applications, drawbacks, and future scope of nanoparticle-based polymer composites. In: Nanoparticle-based polymer composites, pp. 243–275. Woodhead Publishing, (2022)

    Google Scholar 

  66. Park, S., Pal, S.K., Otoufat, T., Kim, G.: Radiative-cooling composites with enhanced infrared emissivity by structural infrared scattering through indium tin oxide nanoparticles in a polymer matrix. ACS Appl. Mater. Interfaces. 15(12), 16026–16033 (2023)

    Article  Google Scholar 

  67. Kumar, S.D., Samvel, R., Aravindh, M., Vibin, R.A., Poovarasu, E., Prasad, M.S.: Ballistic studies on synthetic fibre reinforced polymer composites and it’s applications–A brief review. Mater. Today: Proc. (2023)

    Google Scholar 

  68. Chakraborty, S., Biswas, M.C.: 3D printing technology of polymer-fiber composites in textile and fashion industry: A potential roadmap of concept to consumer. Compos. Struct. 15(248), 112562 (2020)

    Article  Google Scholar 

  69. Seydibeyoğlu, M.Ö., Dogru, A., Wang, J., Rencheck, M., Han, Y., Wang, L., Seydibeyoğlu, E.A., Zhao, X., Ong, K., Shatkin, J.A., Shams, E.-H.: Review on hybrid reinforced polymer matrix composites with nanocellulose, nanomaterials, and other fibers. Polymers 15(4), 984 (2023)

    Article  Google Scholar 

  70. Rehman, A., Houshyar, S., Wang, X.: Nanodiamond in composite: Biomedical application. J. Biomed. Mater. Res., Part A 108(4), 906–922 (2020)

    Article  Google Scholar 

  71. Tarhini, A., Tehrani-Bagha, A.R.: Advances in preparation methods and conductivity properties of graphene-based polymer composites. Appl. Compos. Mater. 5, 1–26 (2023)

    Google Scholar 

  72. Luo, H.B., Lin, F.R., Liu, Z.Y., Kong, Y.R., Idrees, K.B., Liu, Y., Zou, Y., Farha, O.K., Ren, X.M.: MOF–polymer mixed matrix membranes as chemical protective layers for solid-phase detoxification of toxic organophosphates. ACS Appl. Mater. Interfaces. 15(2), 2933–2939 (2023)

    Article  Google Scholar 

  73. Li, C., Song, J., Xing, W., Wang, L., Cui, Y., Pei, X.: Mechanical properties of interlayer hybrid textile composite materials based on modified aramid and UHMWPE fabrics. Polym. Adv. Technol. 34(1), 205–216 (2023)

    Article  Google Scholar 

  74. Salunkhe, S., Murali, A.P., Mohammed Abdel Moneam, H., Naranje, V., Shanmugam, R.: 3D printing of plant fiber reinforced polymer composites (PFRC’s): an insight into methods, challenges and opportunities. Polym.-Plast. Technol. Mater. 62(6), 816–38 (2023)

    Google Scholar 

  75. Zhao, C., Zhang, C., Wang, P., Chen, Z., Wang, Y., Zhu, J., Gao, C., Gao, Q.: Wet-spun PEDOT: PSS/ionic liquid composite fibers for wearable e-textiles. Eur. Polymer J. 25(190), 112025 (2023)

    Article  Google Scholar 

  76. Jagadeshvaran, P.L., Parasuram, S., Bose, S.: Polymer-based nanocomposites for smart and functional textiles. Smart Funct. Textiles. 3, 183 (2023)

    Article  Google Scholar 

  77. Kumar Gurajala, N., Neelapala, R., Kumar, A.V., Sai, Y.K., Manikanta, J.E.: Biodegradable polymer reinforced natural fiber composition for mechanical properties: A review. Mater. Today: Proc., (2023)

    Google Scholar 

  78. Nivetha, R., Vennila, A., Dharshini, B.: A review on various properties of textile reinforced concrete. Mater. Today: Proc., (2023)

    Google Scholar 

  79. Sonali, S., Farzana, M., Haque, M.M., Saha, A., Khan, R.A., Mollah, M.Z.: Natural fiber reinforced polymer-based composites: importance of jute fiber. GSC Adv. Res. Reviews. 15(1), 021–029 (2023)

    Article  Google Scholar 

  80. Chen, X., Zhao, Y., Li, L., Wang, Y., Wang, J., Xiong, J., Du, S., Zhang, P., Shi, X., Yu, J.: MXene/polymer nanocomposites: preparation, properties, and applications. Polym. Rev. 61(1), 80–115 (2021)

    Article  Google Scholar 

  81. Maity, S., Kunal, S., Pintu, P.: Speciality coatings and laminations on textiles. Smart Funct. Textiles. 3, 151 (2023)

    Article  Google Scholar 

  82. Abubakre, O.K., Medupin, R.O., Akintunde, I.B., Jimoh, O.T., Abdulkareem, A.S., Muriana, R.A., James, J.A., Ukoba, K.O., Jen, T.C., Yoro, K.O.: Carbon nanotube-reinforced polymer nanocomposites for sustainable biomedical applications: A review. J. Sci.: Adv. Mater. Devices. 24, 100557 (2023)

    Google Scholar 

  83. Liu, J., Shi, L., Deng, Y., Zou, M., Cai, B., Song, Y., Wang, Z., Wang, L.: Silk sericin-based materials for biomedical applications. Biomaterials 17, 121638 (2022)

    Article  Google Scholar 

  84. Sikdar, P., Dip, T.M., Dhar, A.K., Bhattacharjee, M., Hoque, M.S., Ali, S.B.: Polyurethane (PU) based multifunctional materials: Emerging paradigm for functional textiles, smart, and biomedical applications. J. Appl. Polym. Sci. 139(38), e52832 (2022)

    Article  Google Scholar 

  85. Mali, H.S., Sharma, P.: Machinability of high-strength fiber-reinforced polymer textile composites: a review. Mech. Compos. Mater. 59(1), 1–28 (2023)

    Article  Google Scholar 

  86. Santos, T.F., Santos, C.M., Hussein, E.K., Zilio, L., Dias, M., Sanjay, M.R., Fonseca, R., Amaral, A., Aquino, M.: Tensile behavior of weft-knitted structure for potential use in composite reinforcement via factorial and 3D Surface. In: Green hybrid composite in engineering and non-engineering applications, pp. 233–259. Springer Nature Singapore, Singapore (2023)

    Google Scholar 

  87. Khalid, M.Y., Arif, Z.U., Noroozi, R., Zolfagharian, A., Bodaghi, M.: 4D printing of shape memory polymer composites: A review on fabrication techniques, applications, and future perspectives. J. Manuf. Process. 1(81), 759–797 (2022)

    Article  Google Scholar 

  88. Jiang, W.: Metal implant clinical applications. (2023). https://app.biorender.com/biorender-templates/figures/all/t-6470c9ba874beee9d19864a8-metal-implant-clinical-applications

  89. Yu, X., Su, X., Liu, Y., Yu, D., Ren, Y., Liu, X.: Biomass intumescent flame retardant polyacrylonitrile composite: flame retardancy, smoke suppression and recycling. Compos. A Appl. Sci. Manuf. 7, 107647 (2023)

    Article  Google Scholar 

  90. Lopes, C., Ferreira, A., Correa, M., Machado Rodrigues, A., Mendes, P., Vaz, F.: EMI shielding and conductive textiles functionalized with (Ti, Cu) nanomaterials for biomedical applications. ACS Appl. Mater. & Interfaces., (2023)

    Google Scholar 

  91. Mobaraki, M., Liu, M., Masoud, A.R., Mills, D.K.: Biomedical applications of blow-spun coatings, mats, and scaffolds—a mini-review. J. Compos. Science. 7(2), 86 (2023)

    Article  Google Scholar 

  92. Torğut, G., Yazdıç, F.C., Gürler, N.: Synthesis, characterization, pH-sensitive swelling and antimicrobial activities of chitosan–graft-poly (hydroxyethyl methacrylate) hydrogel composites for biomedical applications. Polym. Eng. Sci. 62(8), 2552–2559 (2022)

    Article  Google Scholar 

  93. Radu, E.R., Voicu, S.I., Thakur, V.K.: Polymeric membranes for biomedical applications. Polymers. 15(3), 619 (2023)

    Google Scholar 

  94. Arif, Z.U., Khalid, M.Y., Sheikh, M.F., Zolfagharian, A., Bodaghi, M.: Biopolymeric sustainable materials and their emerging applications. J. Environ. Chem. Eng. 10(4), 108159 (2022)

    Article  Google Scholar 

  95. Min, J.H., Patel, M., Koh, W.-G.: Incorporation of conductive materials into hydrogels for tissue engineering applications. Polymers 10, 1078 (2018). https://doi.org/10.3390/polym10101078

    Article  Google Scholar 

  96. Business Bliss Consultants FZE. Polymers used in tissue engineering [Internet]. (2018). [Accessed 10 October 2023]. Available from https://ukdiss.com/examples/tissue-engineering-polymers.php?vref=1

  97. Wang, Y., Zhang, Z., Liu, M., He, Y., Li, P., Yuan, J., Yang, M., Liu, W.: Halloysite–gold core–shell nanosystem synergistically enhances thermal conductivity and mechanical properties to optimize the wear-resistance of a pheonlic-PBO/PTFE textile composite liner. Friction. 29, 1–5 (2023)

    Google Scholar 

  98. Popescu, M., Ungureanu, C.: Green nanomaterials for smart textiles dedicated to environmental and biomedical applications. Materials. 16(11), 4075 (2023)

    Article  Google Scholar 

  99. Athar, A.Z.: Biomedical applications of composite materials: a review

    Google Scholar 

  100. Veerabagu, U., Palza, H., Quero, F.: Auxetic polymer-based mechanical metamaterials for biomedical applications. ACS Biomater. Sci. Eng. 8(7), 2798–2824 (2022)

    Article  Google Scholar 

  101. Jones, S.: Masquelet Technique. (2023). https://app.biorender.com/biorender-templates/figures/all/t-63dd838c54ec321a0a15b040-masquelet-technique

  102. Merzah, Z.F., Fakhry, S., Allami, T.G., Yuhana, N.Y., Alamiery, A.: Enhancement of the properties of hybridizing epoxy and nanoclay for mechanical, industrial, and biomedical applications. Polymers 14(3), 526 (2022)

    Article  Google Scholar 

  103. Tamulevičius, T.: Nanotechnologies in Textiles. Materials. 15(4), 1466 (2022)

    Google Scholar 

  104. Salifu, S., Ogunbiyi, O., Olubambi, P.A.: Potentials and challenges of additive manufacturing techniques in the fabrication of polymer composites. Int. J. Adv. Manuf. Technology. 122(2), 577–600 (2022)

    Article  Google Scholar 

  105. Dhanasekar, S., Stella, T.J., Thenmozhi, A., Bharathi, N.D., Thiyagarajan, K., Singh, P., Reddy, Y.S., Srinivas, G., Jayakumar, M.: Study of polymer matrix composites for electronics applications. J. Nanomater. 20, 2022 (2022)

    Google Scholar 

  106. Syed, M.H., Zahari, M.A., Khan, M.M., Beg, M.D., Abdullah, N.: An overview on recent biomedical applications of biopolymers: Their role in drug delivery systems and comparison of major systems. J. Drug Deliv. Sci. Technology. 29, 104121 (2022)

    Google Scholar 

  107. Mousavi, S.M., Hashemi, S.A., Kalashgrani, M.Y., Omidifar, N., Bahrani, S., Vijayakameswara Rao, N., Babapoor, A., Gholami, A., Chiang, W.H.: Bioactive graphene quantum dots based polymer composite for biomedical applications. Polymers 14(3), 617 (2022)

    Article  Google Scholar 

  108. Pryadko, A.S., Botvin, V.V., Mukhortova, Y.R., Pariy, I., Wagner, D.V., Laktionov, P.P., Chernonosova, V.S., Chelobanov, B.P., Chernozem, R.V., Surmeneva, M.A., Kholkin, A.L.: Core-shell magnetoactive PHB/gelatin/magnetite composite electrospun scaffolds for biomedical applications. Polymers 14(3), 529 (2022)

    Article  Google Scholar 

  109. Idumah, C.I.: Recently emerging advancements in polymeric cryogel nanostructures and biomedical applications. Int. J. Polym. Mater. Polym. Biomater. 72(16), 1307–1327 (2023)

    Article  Google Scholar 

  110. Afshar, A., Gultekinoglu, M., Edirisinghe, M.: Binary polymer systems for biomedical applications. Int. Mater. Rev. 68(2), 184–224 (2023)

    Article  Google Scholar 

  111. Fatullayeva, S., Tagiyev, D., Zeynalov, N., Mammadova, S., Aliyeva, E.: Recent advances of chitosan-based polymers in biomedical applications and environmental protection. J. Polym. Res. 29(7), 259 (2022)

    Article  Google Scholar 

  112. Chandana, A., Mallick, S.P., Dikshit, P.K., Singh, B.N., Sahi, A.K.: Recent developments in bacterial nanocellulose production and its biomedical applications. J. Polym. Environ. 30(10), 4040–4067 (2022)

    Article  Google Scholar 

  113. Wan, X., Zhao, Y., Li, Z., Li, L.: Emerging polymeric electrospun fibers: From structural diversity to application in flexible bioelectronics and tissue engineering. In: Exploration, vol. 2, no. 1, p. 20210029. (2022)

    Google Scholar 

  114. Shahbaz, A., Hussain, N., Mahmood, T., Iqbal, H.M., Emran, T.B., Show, P.L., Bilal. M.: Polymer nanocomposites for biomedical applications. In: Smart polymer nanocomposites, pp. 379–394. Elsevier, (2023)

    Google Scholar 

  115. Rai, R., Dhar, P.: Biomedical engineering aspects of nanocellulose: A review. Nanotechnology 33(36), 362001 (2022)

    Article  Google Scholar 

  116. Barman, J., Tirkey, A., Batra, S., Paul, A.A., Panda, K., Deka, R., Babu, P.J.: The role of nanotechnology based wearable electronic textiles in biomedical and healthcare applications. Mater. Today Commun. 16, 104055 (2022)

    Article  Google Scholar 

  117. Kumar, A., Yadav, S., Pramanik, J., Sivamaruthi, B.S., Jayeoye, T.J., Prajapati, B.G., Chaiyasut, C.: Chitosan-based composites: development and perspective in food preservation and biomedical applications. Polymers 15(15), 3150 (2023)

    Article  Google Scholar 

  118. Kumar, S., Manna, A., Dang, R.: A review on applications of natural Fiber-Reinforced composites (NFRCs). Materials Today: Proceedings. 1(50), 1632–1636 (2022)

    Google Scholar 

  119. Mohamed Haneef, I.N., Mohd Shaffiar, N., Buys, Y.F., Syed Shaharuddin, S.I., Abdul Hamid, A.M., Widiyati, K.: Recent advancement in polymer/halloysite nanotube nanocomposites for biomedical applications. J. Biomed. Mater. Res. B Appl. Biomater. 110(11), 2574–2588 (2022)

    Article  Google Scholar 

  120. Naikwadi, A.T., Sharma, B.K., Bhatt, K.D., Mahanwar, P.A.: Gamma radiation processed polymeric materials for high performance applications: A review. Front. Chem. 14(10), 837111 (2022)

    Article  Google Scholar 

  121. Varaprasad, K., Jayaramudu, T., Kanikireddy, V., Toro, C., Sadiku, E.R.: Alginate-based composite materials for wound dressing application: A mini review. Carbohyd. Polym. 15(236), 116025 (2020)

    Article  Google Scholar 

  122. Biswal, T., BadJena, S.K., Pradhan, D.: Synthesis of polymer composite materials and their biomedical applications. Materials Today: Proce. 1(30), 305–315 (2020)

    Google Scholar 

  123. Kim, K., Yoo, H., Lee, E.K.: New Opportunities for organic semiconducting polymers in biomedical applications. Polymers 14(14), 2960 (2022)

    Article  Google Scholar 

  124. Jiang, W.: Maxillofacial metal implant. (2023). https://app.biorender.com/biorender-templates/figures/all/t-64750ea8c4b1599f9c02e392-maxillofacial-metal-implant

  125. Singh, S.K., Jameel, Y., Goyal, R.K., Srivastava, A.: Recent trends and future potential for polymeric materials (natural and synthetic). In: Assessment of polymeric materials for biomedical applications, pp. 1–12. CRC Press

    Google Scholar 

  126. Sharma, S., Rostamabadi, H., Gupta, S., Nadda, A.K., Kharazmi, M.S., Jafari, S.M.: Nano/micro-formulations of keratin in biocomposites, wound healing and drug delivery systems; recent advances in biomedical applications. Eur. Polymer J. 3, 111614 (2022)

    Article  Google Scholar 

  127. Kanjwal, M.A., Ghaferi, A.A.: Graphene incorporated electrospun nanofiber for electrochemical sensing and biomedical applications: A critical review. Sensors. 22(22), 8661 (2022)

    Article  Google Scholar 

  128. Namathoti, S., Rama Sreekanth, P.S.: A review on progress in magnetic, microwave, ultrasonic responsive Shape-memory polymer composites. Mater. Today: Proc. 56, 1182–1191 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amulyaratna Behera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acharya, B., Behera, A., Moharana, S., Behera, S. (2024). State-Of-The-Art in Textile Polymer Composites and Applications. In: Moharana, S., Sahu, B.B., Nayak, A.K., Tiwari, S.K. (eds) Polymer Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-97-2075-0_12

Download citation

Publish with us

Policies and ethics