Skip to main content

Effect of Small Inner Cracks on Macrocrack Propagation

  • Chapter
  • First Online:
Creep-Fatigue Fracture: Analysis of Internal Damage

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 344))

  • 29 Accesses

Abstract

In this chapter, time-dependent and cycle-dependent crack propagation tests were conducted using notched specimens of SUS304 stainless steel in 4 major cases to investigate the effect of small inner cracks introduced by high-temperature cp-type creep-fatigue on macrocrack propagation. For the case of a macrocrack propagation in the zone containing no small crack (Case 1), the macrocrack propagation under cc-type and cp-type conditions is time-dependent, while the macrocrack propagation under pp-type and pc-type conditions is cycle-dependent. For the case of a macrocrack propagation in the zone containing uniformly distributed pre-small cracks (Case 2), the existing small inner cracks accelerate both time-dependent and cycle-dependent macrocrack propagation. For the case of a macrocrack propagation in the process zone with small crack nucleation (Case 3), many small intergranular cracks were observed near the main crack inside the specimen, and the macrocrack propagation rate was approximately 4 times higher than that of the time-dependent crack propagation of case 1. For the case of a macrocrack propagation combined with Case 2 and Case 3 (Case 4), the macrocrack propagation rate is almost equal to that in Case 3 under same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Taira, R. Ohtani, High-temperature Strength of Materials, Ohmsha (1980) (in Japanese).

    Google Scholar 

  2. R. Ohtani, K. Komai, Kankyou kouon kyoudogaku. Sougou zairyou kyoudogaku kouza, Ohmsha 7, 177–346 (1984). ((in Japanese))

    Google Scholar 

  3. H.D. Solomom, L.F. Coffin Jr., Effects of frequency and environment on fatigue rack growth in A286 at 1100 °F. ASTM STP 1973(520), 112–122 (1973)

    Google Scholar 

  4. T. Ohmura, R.M. Pelloux, M.J. Grant, High-temperature fatigue crack growth in a cobalt-base superalloy. Eng. Fracture Mech. 5, 909–922 (1973)

    Google Scholar 

  5. S. Taira, R. Ohtani, T. Komatsu, Application of J-Integral to high-temperature crack propagation, Part II-fatigue crack propagation. Trans. ASME J. Eng. Mater. Technol. 101(2), 162–167 (1979)

    Article  CAS  Google Scholar 

  6. S. Taira, R. Ohtani, T. Kitamura, K. Yamada, J-Integral approach to crack propagation under combined creep and fatigue condition. J. Soc. Mat. Sci. Jpn. 28(308), 414–420 (1979) (in Japanese)

    Google Scholar 

  7. R. Ohtani, Crack propagation under creep-fatigue interaction. Int. Conf. Eng. Aspect. Creep I Mech E 2, 17–22 (1980)

    Google Scholar 

  8. R. Koterazawa, T. Mori, T. Nakai, Crack propagation under fatigue-creep conditions and fractography. J. Soc. Mat. Sci. Jpn 29(321), 592–598 (1980) (in Japanese)

    Google Scholar 

  9. S. Taira, R. Ohtani, Ta. Yonekura, M. Osada, T. Kitamura, Time dependent fatigue crack propagation at elevated temperature. Trans. Jpn Soc. Mechan. Eng. Ser. A 46(408), 861–869 (1982) (in Japanese)

    Google Scholar 

  10. R. Ohtani, K. Yamada, T. Kashiwagi, H. Matsubara, Crack propagation of 304 stainless steel in low cycle fatigue at elevated temperature. Trans. Jpn Soc. Mechan. Eng. Ser. A 48, 1378–1390 (1982). ((in Japanese))

    Article  Google Scholar 

  11. M. Okazaki, F. Shiraiwa, I. Hattori, T. Koizumi, Effect of strain wave shape on low-cycle fatigue crack propagation of type SUS 304 stainless steel at elevated temperatures. J. Soc. Mat. Sci. Jpn 32(357), 645–650 (1983) (in Japanese)

    Google Scholar 

  12. K. Ohji, K. Ogura, S. Kubo, H. Saito, M. Fukumoto, Crack growth in SUS 304 stainless steel under creep-fatigue interaction. J. Soc. Mat. Sci. Jpn 33(365), 145–151 (1984) (in Japanese)

    Google Scholar 

  13. K. Kuwabara, A. Nitta, T. Kitamura, Crack propagation behavior and fracture modes of austenitic stainless and ferritic low-alloy steels in elevated temperature low cycle fatigue. J. Soc. Mat. Sci. Jpn 33(366), 338–344 (1984) (in Japanese)

    Google Scholar 

  14. R. Ohtani, Characteristics of high-temperature strength from the point of view of the creep-fatigue crack propagation. Trans. Jpn Soc. Mechan. Eng. Ser. A 52(478), 1461–1468 (1980) (in Japanese)

    Google Scholar 

  15. T. Kitamura, R. Ohtani, Crack propagation under creep-fatigue interaction condition. Trans. Jpn Soc. Mechan. Eng. Ser. A 52, 1816–1823 (1986). ((in Japanese))

    Article  Google Scholar 

  16. T. Kitamura, Kyoto University Doctoral Dissertation (1986)

    Google Scholar 

  17. R. Ohtani, T. Kitamura, Creep-fatigue interaction under high-temperature conditions, in Handbook of fatigue crack propagation in metallic structures, 2. ed. by C. Andrea (The Netherlands, Elsevier, 1994), pp.1347–1383

    Chapter  Google Scholar 

  18. R. Ohtani, T. Kitamura, W. Zhou, Effect of internal creep microcracks on fatigue macrocrack propagation at high temperatures. Mater. Sci. Res. Int. 1(4), 238–246 (1995)

    CAS  Google Scholar 

  19. W. Zhou, Research on the Initiation, Growth, and Healing of Small Inner Cracks Under High-Temperature Creep-Fatigue Conditions of Heat-Resistant Steel. Kyoto University Doctoral Dissertation (1995) (in Japanese)

    Google Scholar 

  20. J.R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks. Trans. ASME, Series E 35, 379–386 (1968)

    Article  Google Scholar 

  21. J.D. Landes, J.A. Begley, A fracture mechanics to creep crack growth. ASTM STP 590, 128–148 (1976)

    CAS  Google Scholar 

  22. K. Ohji, K. Ogura, S. Kubo, Estimates of J-Integral in the general yielding range and its application to creep crack problems. Trans. Jpn Soc. Mechan. Eng. 44, 1831–1838 (1978). ((in Japanese))

    Article  Google Scholar 

  23. N.E. Dowling, Geometry effects and the J-Integral approach to elastic-plastic fatigue crack growth. ASTM STP 601, 19–32 (1976)

    Google Scholar 

  24. P. Paris, F. Erdogan, A critical analysis of crack propagation laws. Trans. ASME Ser. D 85, 528–534 (1963)

    Article  CAS  Google Scholar 

  25. R. Ohtani, T. Kitamura, W. Zhou, Effect of compressive creep on crack propagation of type 304 stainless steel under time-dependent creep-fatigue conditions. J. Soc. Mater. Sci. Jpn 40(457), 1290–1296 (1991) (in Japanese)

    Google Scholar 

  26. W. Zhou, T. Kitamura, R. Ohtani, Effect of pre-creep damage on crack propagation of type 304 stainless steel in high temperature fatigue. J. Soc. Mat. Sci. Jpn 42(474), 290–296 (1993) (in Japanese)

    Google Scholar 

  27. R. Ohtani, T. Kitamura, W. Zhou, Effect of pre-creep damage on fatigue crack propagation at high temperature, in Proceedings of 1992 Sino-Japan Bilateral Symposium on High Temperature Strength of Materials (The Chinese Mechanical Engineering Society, 1992), pp. 219–227

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisheng Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, W., Tada, N., Sakamoto, J. (2024). Effect of Small Inner Cracks on Macrocrack Propagation. In: Creep-Fatigue Fracture: Analysis of Internal Damage. Springer Series in Materials Science, vol 344. Springer, Singapore. https://doi.org/10.1007/978-981-97-1879-5_7

Download citation

Publish with us

Policies and ethics