Skip to main content

Immune Cells: Critical Players in Drug Resistance

  • Chapter
  • First Online:
Drug Resistance in Cancer: Mechanisms and Strategies
  • 55 Accesses

Abstract

The chapter explores the complicated relationship between immune cells and cancer drug resistance. The immune cell composition in the tumor microenvironment (TME), encompassing B cells, effector and regulatory T cells, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and tumor-associated neutrophils (TANs), plays a decisive role in tumorigenesis. Various studies showed that MDSCs can create immunosuppressive microenvironment, allowing cancer cells to evade drug-induced cytotoxicity. The dynamics of the tumor microenvironment, influenced by immune cells, play a crucial role in modulating drug responsiveness. The chapter navigates through the signaling pathways, molecular cross talk, and adaptive mechanisms that define the immune landscape in the context of cancer drug resistance. It explores the potential of immunotherapeutic interventions, such as immune checkpoint inhibitors, to recalibrate immune responses and overcome resistance mechanisms. In essence, this exploration underscores the pivotal role of immune cells in shaping the destiny of cancer drug resistance. By deciphering the intricacies of these interactions, the chapter aims to provide insights that pave the way for innovative therapeutic strategies, pushing the boundaries of cancer treatment toward greater efficacy and resilience against resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112(8):1142–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad G et al (2022) Myrica esculenta Buch.-ham. (ex D. Don): a review on its phytochemistry, pharmacology and nutritional potential. Comb Chem High Throughput Screen 25(14):2372–2386

    Article  CAS  PubMed  Google Scholar 

  • Ahmadzadeh M et al (2009) Tumor antigen–specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114(8):1537–1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvey C, Discher DE (2017) Engineering macrophages to eat cancer: from “marker of self” CD47 and phagocytosis to differentiation. J Leukoc Biol 102(1):31–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amarnath S et al (2011) The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med 3(111):111ra120

    Article  PubMed  PubMed Central  Google Scholar 

  • Amit M, Gil Z (2013) Macrophages increase the resistance of pancreatic adenocarcinoma cells to gemcitabine by upregulating cytidine deaminase. Oncoimmunology 2(12):e27231

    Article  PubMed  PubMed Central  Google Scholar 

  • Anestakis D et al (2020) Carboplatin chemoresistance is associated with CD11b+/Ly6C+ myeloid release and upregulation of TIGIT and LAG3/CD160 exhausted T cells. Mol Immunol 118:99–109

    Article  CAS  PubMed  Google Scholar 

  • Ansell SM et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372(4):311–319

    Article  PubMed  Google Scholar 

  • Apte MV et al (2004) Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas 29(3):179–187

    Article  CAS  PubMed  Google Scholar 

  • Bagchi S, Yuan R, Engleman EG (2021) Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol 16:223–249

    Article  CAS  PubMed  Google Scholar 

  • Baghdadi M et al (2016) Chemotherapy-induced IL34 enhances immunosuppression by tumor-associated macrophages and mediates survival of chemoresistant lung cancer cells. Cancer Res 76(20):6030–6042

    Article  CAS  PubMed  Google Scholar 

  • Barclay AN, Van den Berg TK (2014) The interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol 32:25–50

    Article  CAS  PubMed  Google Scholar 

  • Basaria S et al (2002) Long-term effects of androgen deprivation therapy in prostate cancer patients. Clin Endocrinol 56(6):779–786

    Article  CAS  Google Scholar 

  • Belperio JA et al (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Benson DM Jr et al (2011) IPH2101, a novel anti-inhibitory KIR antibody, and lenalidomide combine to enhance the natural killer cell versus multiple myeloma effect. Blood 118(24):6387–6391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertran E et al (2013) Overactivation of the TGF-β pathway confers a mesenchymal-like phenotype and CXCR4-dependent migratory properties to liver tumor cells. Hepatology 58(6):2032–2044

    Article  CAS  PubMed  Google Scholar 

  • Bhowmick NA, Neilson EG, Moses HL (2004) Stromal fibroblasts in cancer initiation and progression. Nature 432(7015):332–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896

    Article  CAS  PubMed  Google Scholar 

  • Bottsford-Miller J et al (2015) Differential platelet levels affect response to taxane-based therapy in ovarian cancer. Clin Cancer Res 21(3):602–610

    Article  CAS  PubMed  Google Scholar 

  • Broxterman HJ, Lankelma J, Hoekman K (2003) Resistance to cytotoxic and anti-angiogenic anticancer agents: similarities and differences. Drug Resist Updat 6(3):111–127

    Article  CAS  PubMed  Google Scholar 

  • Bruchard M et al (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19(1):57–64

    Article  CAS  PubMed  Google Scholar 

  • Bui TM, Sumagin R (2019) Progressing from recurring tissue injury to genomic instability: a new mechanism of neutrophil pathogenesis. DNA Cell Biol 38(8):747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bui TM et al (2021) Neutrophils alter DNA repair landscape to impact survival and shape distinct therapeutic phenotypes of colorectal cancer. Gastroenterology 161(1):225–238

    Article  CAS  PubMed  Google Scholar 

  • Butin-Israeli V et al (2019) Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing. J Clin Invest 129(2):712–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Calcinotto A et al (2018) IL-23 secreted by myeloid cells drives castration-resistant prostate cancer. Nature 559(7714):363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao M et al (2009) Gamma irradiation alters the phenotype and function of CD4+ CD25+ regulatory T cells. Cell Biol Int 33(5):565–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlsten M et al (2016) Checkpoint inhibition of KIR2D with the monoclonal antibody IPH2101 induces contraction and hyporesponsiveness of NK cells in patients with myeloma. Clin Cancer Res 22(21):5211–5222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes F et al (2003) Imatinib mesylate therapy of chronic phase chronic myeloid leukemia resistant or intolerant to interferon: results and prognostic factors for response and progression-free survival in 150 patients. Haematologica 88(10):1117–1122

    CAS  PubMed  Google Scholar 

  • Chanmee T et al (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 6(3):1670–1690

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H et al (2013) Direct TGF-β1 signaling between activated platelets and pancreatic cancer cells primes cisplatin insensitivity. Cell Biol Int 37(5):478–484

    Article  CAS  PubMed  Google Scholar 

  • Chen C-F et al (2017) ATR mutations promote the growth of melanoma tumors by modulating the immune microenvironment. Cell Rep 18(10):2331–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho K-M et al (2017) Neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and their dynamic changes during chemotherapy is useful to predict a more accurate prognosis of advanced biliary tract cancer. Oncotarget 8(2):2329

    Article  PubMed  Google Scholar 

  • Choi YH et al (2014) CXCR4, but not CXCR7, discriminates metastatic behavior in non–small cell lung cancer cells. Mol Cancer Res 12(1):38–47

    Article  CAS  PubMed  Google Scholar 

  • Chung AS et al (2013) An interleukin-17–mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med 19(9):1114–1123

    Article  CAS  PubMed  Google Scholar 

  • Clara JA et al (2020) Targeting signalling pathways and the immune microenvironment of cancer stem cells—a clinical update. Nat Rev Clin Oncol 17(4):204–232

    Article  PubMed  Google Scholar 

  • Conley-LaComb MK et al (2013) PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling. Mol Cancer 12(1):1–10

    Article  Google Scholar 

  • Contursi A et al (2017) Platelets as crucial partners for tumor metastasis: from mechanistic aspects to pharmacological targeting. Cell Mol Life Sci 74(19):3491–3507

    Article  PubMed  Google Scholar 

  • Cuello-López J et al (2018) Platelet-to-lymphocyte ratio as a predictive factor of complete pathologic response to neoadjuvant chemotherapy in breast cancer. PLoS One 13(11):e0207224

    Article  PubMed  PubMed Central  Google Scholar 

  • de Visser KE, Jonkers J (2009) Towards understanding the role of cancer-associated inflammation in chemoresistance. Curr Pharm Des 15(16):1844–1853

    Article  PubMed  Google Scholar 

  • Elaskalani O et al (2017) Targeting platelets for the treatment of cancer. Cancers 9(7):94

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang L et al (2018) Prognostic role of multidrug resistance-associated protein 1 expression and platelet count in operable non-small cell lung cancer. Oncol Lett 16(1):1123–1132

    PubMed  PubMed Central  Google Scholar 

  • Feng P-H et al (2018) Bevacizumab reduces S100A9-positive MDSCs linked to intracranial control in patients with EGFR-mutant lung adenocarcinoma. J Thorac Oncol 13(7):958–967

    Article  PubMed  Google Scholar 

  • Fisher T et al (2007) Mechanisms operative in the antitumor activity of temozolomide in glioblastoma multiforme. Cancer J 13(5):335–344

    Article  CAS  PubMed  Google Scholar 

  • Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4(4):330–336

    Article  CAS  PubMed  Google Scholar 

  • Fracchiolla NS, Fattizzo B, Cortelezzi A (2017) Mesenchymal stem cells in myeloid malignancies: a focus on immune escaping and therapeutic implications. Stem Cells Int 2017:6720594

    Article  PubMed  PubMed Central  Google Scholar 

  • Francisco LM et al (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206(13):3015–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12(4):253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallipoli P et al (2014) JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood 124(9):1492–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gawaz M, Langer H, May AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115(12):3378–3384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gay LJ, Felding-Habermann B (2011) Contribution of platelets to tumour metastasis. Nat Rev Cancer 11(2):123–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glicksman R et al (2017) The predictive value of nadir neutrophil count during treatment of cervical cancer: interactions with tumor hypoxia and interstitial fluid pressure (IFP). Clin Transl Radiat Oncol 6:15–20

    PubMed  PubMed Central  Google Scholar 

  • Gong W et al (2018) After neoadjuvant chemotherapy platelet/lymphocyte ratios negatively correlate with prognosis in gastric cancer patients. J Clin Lab Anal 32(5):e22364

    Article  PubMed  Google Scholar 

  • Gonzalez H et al (2018) Roles of the immune system in cancer: from tumor initiation to metastatic progression. Genes Dev 32(19–20):1267–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon PM, Dias S, Williams DA (2014) Cytokines secreted by bone marrow stromal cells protect c-KIT mutant AML cells from c-KIT inhibitor-induced apoptosis. Leukemia 28(11):2257–2260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwald RJ et al (2001) CTLA-4 regulates induction of anergy in vivo. Immunity 14(2):145–155

    Article  CAS  PubMed  Google Scholar 

  • Guan J et al (2014) Retinoic acid inhibits pancreatic cancer cell migration and EMT through the downregulation of IL-6 in cancer associated fibroblast cells. Cancer Lett 345(1):132–139

    Article  CAS  PubMed  Google Scholar 

  • Haemmerle M et al (2018) The platelet lifeline to cancer: challenges and opportunities. Cancer Cell 33(6):965–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han H et al (2014) Expression of angiogenesis regulatory proteins and epithelial-mesenchymal transition factors in platelets of the breast cancer patients. Sci World J 2014:1

    CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695

    Article  CAS  PubMed  Google Scholar 

  • Hassan S et al (2020) Dipsacus inermis Wall. modulates inflammation by inhibiting NF-κB pathway: an in vitro and in vivo study. J Ethnopharmacol 254:112710

    Article  CAS  PubMed  Google Scholar 

  • He L et al (2017) Resveratrol suppresses pulmonary tumor metastasis by inhibiting platelet-mediated angiogenic responses. J Surg Res 217:113–122

    Article  CAS  PubMed  Google Scholar 

  • Heldin C-H et al (2004) High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813

    Article  CAS  PubMed  Google Scholar 

  • Hill BS et al (2020) Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Semin Cancer Biol 60:202

    Article  PubMed  Google Scholar 

  • Ho EA, Piquette-Miller M (2006) Regulation of multidrug resistance by pro-inflammatory cytokines. Curr Cancer Drug Targets 6(4):295–311

    Article  CAS  PubMed  Google Scholar 

  • Holohan C et al (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726

    Article  CAS  PubMed  Google Scholar 

  • Huang H et al (2017) M2-polarized tumour-associated macrophages in stroma correlate with poor prognosis and Epstein–Barr viral infection in nasopharyngeal carcinoma. Acta Otolaryngol 137(8):888–894

    Article  CAS  PubMed  Google Scholar 

  • Huanwen W et al (2009) Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Mol Cancer 8(1):1–16

    Article  Google Scholar 

  • Huijbers EJM et al (2016) Role of the tumor stroma in resistance to anti-angiogenic therapy. Drug Resist Updat 25:26–37

    Article  PubMed  Google Scholar 

  • Huong PT et al (2019) The role of platelets in the tumor-microenvironment and the drug resistance of cancer cells. Cancers 11(2):240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ihrig A et al (2020) Patient expectations are better for immunotherapy than traditional chemotherapy for cancer. J Cancer Res Clin Oncol 146:3189–3198

    Article  PubMed  PubMed Central  Google Scholar 

  • Itatani Y et al (2020) Suppressing neutrophil-dependent angiogenesis abrogates resistance to anti-VEGF antibody in a genetic model of colorectal cancer. Proc Natl Acad Sci 117(35):21598–21608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahandideh B et al (2020) The pro-inflammatory cytokines effects on mobilization, self-renewal and differentiation of hematopoietic stem cells. Hum Immunol 81(5):206–217

    Article  CAS  PubMed  Google Scholar 

  • Janes KA et al (2005) A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310(5754):1646–1653

    Article  CAS  PubMed  Google Scholar 

  • Jedlitschky G, Greinacher A, Kroemer HK (2012) Transporters in human platelets: physiologic function and impact for pharmacotherapy. Blood 119(15):3394–3402

    Article  CAS  PubMed  Google Scholar 

  • Keir ME et al (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalaf K et al (2021) Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Front Immunol 12:656364

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan SU, Fatima K, Malik F (2022a) Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clin Exp Metastasis 39:1–12

    Article  Google Scholar 

  • Khan SU et al (2022b) Activation of lysosomal mediated cell death in the course of autophagy by mTORC1 inhibitor. Sci Rep 12(1):1–13

    Google Scholar 

  • Khan SU et al (2023a) Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. Med Oncol 40(1):1–21

    Google Scholar 

  • Khan SU et al (2023b) Cancer metastasis: molecular mechanisms and clinical perspectives. Pharmacol Ther 250:108522

    Article  CAS  PubMed  Google Scholar 

  • Khan SU et al (2023c) Lavender plant: farming and health benefits. Curr Mol Med. https://doi.org/10.2174/1566524023666230518114027

  • Khan SU et al (2023d) Targeting redox regulation and autophagy systems in cancer stem cells. Clin Exp Med 23(5):1405–1423

    Article  PubMed  Google Scholar 

  • Khan SU et al (2023e) Small molecule ‘4ab’induced autophagy and endoplasmic reticulum stress-mediated death of aggressive cancer cells grown under adherent and floating conditions. Med Oncol 40(4):121

    Article  CAS  PubMed  Google Scholar 

  • Knitz MW et al (2021) Targeting resistance to radiation-immunotherapy in cold HNSCCs by modulating the Treg-dendritic cell axis. J Immunother Cancer 9(4):e001955

    Article  PubMed  PubMed Central  Google Scholar 

  • Köck K et al (2007) Expression of adenosine triphosphate-binding cassette (ABC) drug transporters in peripheral blood cells: relevance for physiology and pharmacotherapy. Clin Pharmacokinet 46:449–470

    Article  PubMed  Google Scholar 

  • Komohara Y et al (2016) Tumor-associated macrophages: potential therapeutic targets for anti-cancer therapy. Adv Drug Deliv Rev 99:180–185

    Article  CAS  PubMed  Google Scholar 

  • Kumar V et al (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 37(3):208–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Bhattacharya P, Prabhakar BS (2018) A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 95:77–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo TC et al (2020) Targeting the myeloid checkpoint receptor SIRPα potentiates innate and adaptive immune responses to promote anti-tumor activity. J Hematol Oncol 13(1):1–19

    Article  Google Scholar 

  • Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20(5):576–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinwand J, Miller G (2020) Regulation and modulation of antitumor immunity in pancreatic cancer. Nat Immunol 21(10):1152–1159

    Article  CAS  PubMed  Google Scholar 

  • Li J-Y et al (2014) Selective depletion of regulatory T cell subsets by docetaxel treatment in patients with nonsmall cell lung cancer. J Immunol Res 2014:286170

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2015) Bone marrow microenvironment confers imatinib resistance to chronic myelogenous leukemia and oroxylin A reverses the resistance by suppressing Stat3 pathway. Arch Toxicol 89:121–136

    Article  CAS  PubMed  Google Scholar 

  • Li T-J et al (2017) Interleukin-17–producing neutrophils link inflammatory stimuli to disease progression by promoting angiogenesis in gastric cancer. Clin Cancer Res 23(6):1575–1585

    Article  CAS  PubMed  Google Scholar 

  • Li B, Chan HL, Chen P (2019) Immune checkpoint inhibitors: basics and challenges. Curr Med Chem 26(17):3009–3025

    Article  CAS  PubMed  Google Scholar 

  • Ling X et al (2012) Increased P-glycoprotein expression in mitochondria is related to acquired multidrug resistance in human hepatoma cells depleted of mitochondrial DNA. Int J Oncol 40(1):109–118

    CAS  PubMed  Google Scholar 

  • Liu L et al (2019) IL-17A promotes CXCR2-dependent angiogenesis in a mouse model of liver cancer. Mol Med Rep 20(2):1065–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lomnytska M et al (2018) Platelet protein biomarker panel for ovarian cancer diagnosis. Biomark Res 6(1):1–14

    Article  Google Scholar 

  • Ma R et al (2017) Enhanced procoagulant activity of platelets after chemotherapy in non-small cell lung cancer. Cancer Biol Ther 18(8):627–634

    Article  PubMed  PubMed Central  Google Scholar 

  • Manier S et al (2012) Bone marrow microenvironment in multiple myeloma progression. Biomed Res Int 2012:157496

    CAS  Google Scholar 

  • Mantovani A et al (2021) Tumor-associated myeloid cells: diversity and therapeutic targeting. Cell Mol Immunol 18(3):566–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 125(9):3356–3364

    Article  PubMed  PubMed Central  Google Scholar 

  • Massena S et al (2015) Identification and characterization of VEGF-A–responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood 126(17):2016–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matlung HL et al (2017) The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol Rev 276(1):145–164

    Article  CAS  PubMed  Google Scholar 

  • McMillin DW, Negri JM, Mitsiades CS (2013) The role of tumour–stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov 12(3):217–228

    Article  CAS  PubMed  Google Scholar 

  • Meirow Y, Kanterman J, Baniyash M (2015) Paving the road to tumor development and spreading: myeloid-derived suppressor cells are ruling the fate. Front Immunol 6:523

    Article  PubMed  PubMed Central  Google Scholar 

  • Mintoo M et al (2021) A rohitukine derivative IIIM-290 induces p53 dependent mitochondrial apoptosis in acute lymphoblastic leukemia cells. Mol Carcinog 60(10):671–683

    Article  CAS  PubMed  Google Scholar 

  • Mitrugno A et al (2017) Aspirin therapy reduces the ability of platelets to promote colon and pancreatic cancer cell proliferation: implications for the oncoprotein c-MYC. American J Physiol Cell Physiol 312:C176

    Article  Google Scholar 

  • Moser B et al (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25(2):75–84

    Article  CAS  PubMed  Google Scholar 

  • Nalli Y et al (2019) Isolation, structural modification of macrophin from endophytic fungus Phoma macrostoma and their cytotoxic potential. Med Chem Res 28:260–266

    Article  CAS  Google Scholar 

  • Naugler WE, Karin M (2008) The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 14(3):109–119

    Article  CAS  PubMed  Google Scholar 

  • Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41(1):49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci 103(33):12493–12498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oevermann L et al (2009) Hematopoietic stem cell differentiation affects expression and function of MRP4 (ABCC4), a transport protein for signaling molecules and drugs. Int J Cancer 124(10):2303–2311

    Article  CAS  PubMed  Google Scholar 

  • Pan B et al (2015) Interleukin-17 promotes angiogenesis by stimulating VEGF production of cancer cells via the STAT3/GIV signaling pathway in non-small-cell lung cancer. Sci Rep 5(1):16053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parker KH, Beury DW, Ostrand-Rosenberg S (2015) Myeloid-derived suppressor cells: critical cells driving immune suppression in the tumor microenvironment. Adv Cancer Res 128:95–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertusini E et al (2001) Investigating the platelet-sparing mechanism of paclitaxel/carboplatin combination chemotherapy. Blood 97(3):638–644

    Article  CAS  PubMed  Google Scholar 

  • Poh AR, Ernst M (2018) Targeting macrophages in cancer: from bench to bedside. Front Oncol 8:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Polier G et al (2015) Targeting CDK9 by wogonin and related natural flavones potentiates the anti-cancer efficacy of the Bcl-2 family inhibitor ABT-263. Int J Cancer 136(3):688–698

    Article  CAS  PubMed  Google Scholar 

  • Porcelijn L et al (2017) Lack of detectable platelet autoantibodies is correlated with nonresponsiveness to rituximab treatment in ITP patients. Blood 129(25):3389–3391

    Article  CAS  PubMed  Google Scholar 

  • Porta C, Sica A, Riboldi E (2018) Tumor-associated myeloid cells: new understandings on their metabolic regulation and their influence in cancer immunotherapy. FEBS J 285(4):717–733

    Article  CAS  PubMed  Google Scholar 

  • Postow MA, Sidlow R, Hellmann MD (2018) Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378(2):158–168

    Article  CAS  PubMed  Google Scholar 

  • Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi OS et al (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332(6029):600–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radziwon-Balicka A et al (2012) Platelets increase survival of adenocarcinoma cells challenged with anticancer drugs: mechanisms and implications for chemoresistance. Br J Pharmacol 167(4):787–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramchandren R et al (2019) Nivolumab for newly diagnosed advanced-stage classic Hodgkin lymphoma: safety and efficacy in the phase II CheckMate 205 study. J Clin Oncol 37(23):1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raychaudhuri B et al (2011) Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro-Oncology 13(6):591–599

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritter CA et al (2005) Cellular export of drugs and signaling molecules by the ATP-binding cassette transporters MRP4 (ABCC4) and MRP5 (ABCC5). Drug Metab Rev 37(1):253–278

    Article  CAS  PubMed  Google Scholar 

  • Romagné F et al (2009) Preclinical characterization of 1-7F9, a novel human anti–KIR receptor therapeutic antibody that augments natural killer–mediated killing of tumor cells. Blood 114(13):2667–2677

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8(11):1227–1234

    Article  CAS  PubMed  Google Scholar 

  • Sabrkhany S et al (2018) Exploration of the platelet proteome in patients with early-stage cancer. J Proteome 177:65–74

    Article  CAS  Google Scholar 

  • Saida Y et al (2015) Critical roles of chemoresistant effector and regulatory T cells in antitumor immunity after lymphodepleting chemotherapy. J Immunol 195(2):726–735

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Yamasaki S (2003) Negative feedback of T cell activation through inhibitory adapters and costimulatory receptors. Immunol Rev 192(1):143–160

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi S et al (2020) Regulatory T cells and human disease. Annu Rev Immunol 38:541–566

    Article  CAS  PubMed  Google Scholar 

  • Saleh R, Elkord E (2020) FoxP3+ T regulatory cells in cancer: prognostic biomarkers and therapeutic targets. Cancer Lett 490:174–185

    Article  CAS  PubMed  Google Scholar 

  • Sameer Ullah, Khan Kaneez, Fatima Shariqa, Aisha Fayaz, Malik (2024) Unveiling the mechanisms and challenges of cancer drug resistance Abstract Cell Communication and Signaling 22(1) 10.1186/s12964-023-01302-1

    Google Scholar 

  • Scapini P et al (2004) CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J Immunol 172(8):5034–5040

    Article  CAS  PubMed  Google Scholar 

  • Schneider H et al (2006) Reversal of the TCR stop signal by CTLA-4. Science 313(5795):1972–1975

    Article  CAS  PubMed  Google Scholar 

  • Sedighzadeh SS et al (2021) A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications. Transl Lung Cancer Res 10(4):1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma D et al (2014) Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol 229(8):1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Shaul ME, Fridlender ZG (2019) Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol 16(10):601–620

    Article  PubMed  Google Scholar 

  • Shi L et al (2018) Predictable resistance and overall survival of gemcitabine/cisplatin by platelet activation index in non-small cell lung cancer. Med Sci Monit 24:8655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiravand Y et al (2022) Immune checkpoint inhibitors in cancer therapy. Curr Oncol 29(5):3044–3060

    Article  PubMed  PubMed Central  Google Scholar 

  • Shojaei F et al (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450(7171):825–831

    Article  CAS  PubMed  Google Scholar 

  • Singh U et al (2017) Design of novel 3-pyrimidinylazaindole CDK2/9 inhibitors with potent in vitro and in vivo antitumor efficacy in a triple-negative breast cancer model. J Med Chem 60(23):9470–9489

    Article  CAS  PubMed  Google Scholar 

  • Solito S et al (2014) Myeloid-derived suppressor cell heterogeneity in human cancers. Ann N Y Acad Sci 1319(1):47–65

    Article  CAS  PubMed  Google Scholar 

  • Stout RD et al (2005) Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 175(1):342–349

    Article  CAS  PubMed  Google Scholar 

  • Straussman R et al (2012) Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487(7408):500–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabe Y, Konopleva M (2014) Advances in understanding the leukaemia microenvironment. Br J Haematol 164(6):767–778

    Article  PubMed  PubMed Central  Google Scholar 

  • Takao S, Ding Q, Matsubara S (2012) Pancreatic cancer stem cells: regulatory networks in the tumor microenvironment and targeted therapy. J Hepatobiliary Pancreat Sci 19:614–620

    Article  PubMed  Google Scholar 

  • Takeuchi K et al (2014) Interaction of novel platelet-increasing agent eltrombopag with rosuvastatin via breast cancer resistance protein in humans. Drug Metab Dispos 42(4):726–734

    Article  PubMed  Google Scholar 

  • Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27(1):109–118

    Article  CAS  PubMed  Google Scholar 

  • Tie Y et al (2020) Targeting folate receptor β positive tumor-associated macrophages in lung cancer with a folate-modified liposomal complex. Signal Transduct Target Ther 5(1):6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tjon-Kon-Fat LA et al (2018) Platelets harbor prostate cancer biomarkers and the ability to predict therapeutic response to abiraterone in castration resistant patients. Prostate 78(1):48–53

    Article  CAS  PubMed  Google Scholar 

  • Traer E et al (2012) Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia 26(5):1140–1143

    Article  CAS  PubMed  Google Scholar 

  • Turley SJ, Cremasco V, Astarita JL (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15(11):669–682

    Article  CAS  PubMed  Google Scholar 

  • Van de Donk N et al (2004) G3139, a Bcl-2 antisense oligodeoxynucleotide, induces clinical responses in VAD refractory myeloma. Leukemia 18(6):1078–1084

    Article  PubMed  Google Scholar 

  • van der Meijden PEJ, Heemskerk JWM (2019) Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol 16(3):166–179

    Article  PubMed  Google Scholar 

  • Veillette A, Chen J (2018) SIRPα–CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol 39(3):173–184

    Article  CAS  PubMed  Google Scholar 

  • Vendramini-Costa DB, Carvalho JE (2012) Molecular link mechanisms between inflammation and cancer. Curr Pharm Des 18(26):3831–3852

    Article  CAS  PubMed  Google Scholar 

  • Vey N et al (2012) A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood 120(22):4317–4323

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa B et al (2020) AKT isoforms have discrete expression in triple negative breast cancers and roles in cisplatin sensitivity. Oncotarget 11(45):4178

    Article  PubMed  PubMed Central  Google Scholar 

  • Wainwright DA et al (2013) Targeting Tregs in malignant brain cancer: overcoming IDO. Front Immunol 4:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L et al (2018a) Effects of modified FOLFOX-6 chemotherapy on cellular immune function in patients with gastric cancer. Oncol Lett 15(6):8635–8640

    PubMed  PubMed Central  Google Scholar 

  • Wang Z et al (2018b) High platelet levels attenuate the efficacy of platinum-based treatment in non-small cell lung cancer. Cell Physiol Biochem 48(6):2456–2469

    Article  CAS  PubMed  Google Scholar 

  • Wani A et al (2021) Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway. Autophagy 17(11):3813–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei SC et al (2017) Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170(6):1120–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weizman N et al (2014) Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 33(29):3812–3819

    Article  CAS  PubMed  Google Scholar 

  • White MJ et al (2012) Caspase-9 mediates the apoptotic death of megakaryocytes and platelets, but is dispensable for their generation and function. Blood 119(18):4283–4290

    Article  CAS  PubMed  Google Scholar 

  • Xu J et al (2017) Association of neutrophil/lymphocyte ratio and platelet/lymphocyte ratio with ER and PR in breast cancer patients and their changes after neoadjuvant chemotherapy. Clin Transl Oncol 19:989–996

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki E et al (2017) Hyper-recovery of platelets after induction therapy is a predictor of relapse-free survival in acute myeloid leukemia. Leuk Lymphoma 58(1):104–109

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura A (2006) Signal transduction of inflammatory cytokines and tumor development. Cancer Sci 97(6):439–447

    Article  CAS  PubMed  Google Scholar 

  • Zahreddine H, Borden KL (2013) Mechanisms and insights into drug resistance in cancer. Front Pharmacol 4(2013):28

    PubMed  PubMed Central  Google Scholar 

  • Zhang H et al (2015) Paracrine SDF-1α signaling mediates the effects of PSCs on GEM chemoresistance through an IL-6 autocrine loop in pancreatic cancer cells. Oncotarget 6(5):3085

    Article  PubMed  Google Scholar 

  • Zheng Y et al (2013) PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma. Leukemia 27(3):702–710

    Article  CAS  PubMed  Google Scholar 

  • Zhu L et al (2014) TSC1 controls macrophage polarization to prevent inflammatory disease. Nat Commun 5(1):4696

    Article  CAS  PubMed  Google Scholar 

  • Zhu X et al (2018) Evaluation of platelet indices as diagnostic biomarkers for colorectal cancer. Sci Rep 8(1):11814

    Article  PubMed  PubMed Central  Google Scholar 

  • Zurrida S, Veronesi U (2015) Milestones in breast cancer treatment. Breast J 21(1):3–12

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, S.U., Jan, S., Fatima, K., Malik, F. (2024). Immune Cells: Critical Players in Drug Resistance. In: Khan, S.U., Malik, F. (eds) Drug Resistance in Cancer: Mechanisms and Strategies. Springer, Singapore. https://doi.org/10.1007/978-981-97-1666-1_4

Download citation

Publish with us

Policies and ethics