Skip to main content

Gut Microbes: Role in Cancer and Cancer Drug Resistance

  • Chapter
  • First Online:
Drug Resistance in Cancer: Mechanisms and Strategies
  • 50 Accesses

Abstract

The gut microbiota is becoming more and more of a research area in many diseases, including cancer, obesity, diabetes, brain disease, rheumatoid arthritis, and cardiovascular disease. The human digestive tract contains about 100 trillion microorganisms. Cancer is the most prevalent malignancy in the world. The likelihood of survival can be increased by an accurate, early diagnosis and the necessary medical care. Recent studies have demonstrated that the microbiome has an impact on cancer. Different microbial signatures with various patterns have been found in the cancer, depending on the stage and biological subgroups. In cancer, the gut microbiota has been shown to modulate the efficacy of anticancer drugs. The changed gut microbiota is linked to resistance to immunological checkpoint inhibitors (ICIs) and chemotherapy treatments, whereas the addition of certain species of bacteria can restore the responsiveness to anticancer medications. Various evidence suggested the potential of gut microbiota manipulation to increase the effectiveness of anticancer medications. In this book chapter, we focused on the gut microbiota population and its relationship to cancer therapy resistance, with a particular emphasis on its potential to serve as a biomarker for the disease. Despite the important results from preclinical models and patient clinical data, a deeper comprehension of the interactions between microbiota and cancer therapy aids in the identification of novel strategies for cancer prevention, the stratification of patients for more effective treatment, and the reduction of treatment complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghamajidi A, Maleki Vareki S (2022) The effect of the gut microbiota on systemic and anti-tumor immunity and response to systemic therapy against cancer. Cancers (Basel) 14(15):3563

    Article  CAS  PubMed  Google Scholar 

  • Allen J, Sears CL (2019) Impact of the gut microbiome on the genome and epigenome of colon epithelial cells: contributions to colorectal cancer development. Genome Med 11(1):1–18

    Article  CAS  Google Scholar 

  • Alpuim Costa D et al (2021) Human microbiota and breast cancer—is there any relevant link?—a literature review and new horizons toward personalised medicine. Front Microbiol 12:584332

    Article  PubMed  PubMed Central  Google Scholar 

  • Anand P et al (2008) Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25:2097–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrew C et al (2007) Small intestinal bacterial overgrowth. Gastroenterol Hepatol (N Y) 3(2):112–122

    Google Scholar 

  • Azimirad M et al (2020) Treatment of recurrent Clostridioides difficile infection using fecal microbiota transplantation in Iranian patients with underlying inflammatory bowel disease. J Inflamm Res 13:563–570

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldi S et al (2021) Microbiota shaping—the effects of probiotics, prebiotics, and fecal microbiota transplant on cognitive functions: a systematic review. World J Gastroenterol 27(39):6715

    Article  PubMed  PubMed Central  Google Scholar 

  • Beaugerie L et al (2003) Antibiotic-associated diarrhoea and Clostridium difficile> in the community. Aliment Pharmacol Ther 17(7):905–912

    Article  CAS  PubMed  Google Scholar 

  • Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt AP, Redinbo MR, Bultman SJ (2017) The role of the microbiome in cancer development and therapy. CA Cancer J Clin 67(4):326–344

    Article  PubMed  PubMed Central  Google Scholar 

  • Boussios S et al (2012) Systemic treatment-induced gastrointestinal toxicity: incidence, clinical presentation and management. Ann Gastroenterol 25(2):106

    PubMed  PubMed Central  Google Scholar 

  • Bultman SJ (2016) The microbiome and its potential as a cancer preventive intervention. Elsevier

    Google Scholar 

  • Carlson JL et al (2018) Health effects and sources of prebiotic dietary fiber. Curr Dev Nutr 2(3):nzy005

    Article  PubMed  PubMed Central  Google Scholar 

  • Cejas RB et al (2024) Anthracycline toxicity: light at the end of the tunnel? Annu Rev Pharmacol Toxicol 64:115

    Article  CAS  PubMed  Google Scholar 

  • Chen X et al (2021) Polysaccharides from the roots of Millettia speciosa champ modulate gut health and ameliorate cyclophosphamide-induced intestinal injury and immunosuppression. Front Immunol 12:766296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng WT, Kantilal HK, Davamani F (2020) The mechanism of Bacteroides fragilis toxin contributes to colon cancer formation. Malaysian J Med Sci 27(4):9

    Article  Google Scholar 

  • Chow J et al (2010) Host–bacterial symbiosis in health and disease. Adv Immunol 107:243–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chrysostomou D et al (2023) Gut microbiota modulation of efficacy and toxicity of cancer chemotherapy and immunotherapy. Gastroenterology 164(2):198–213

    Article  CAS  PubMed  Google Scholar 

  • Ciernikova S, Mego M, Chovanec M (2021) Exploring the potential role of the gut microbiome in chemotherapy-induced neurocognitive disorders and cardiovascular toxicity. Cancers (Basel) 13(4):782

    Article  CAS  PubMed  Google Scholar 

  • Cui L, Morris A, Ghedin E (2013) The human mycobiome in health and disease. Genome Med 5(7):1–12

    Article  Google Scholar 

  • Daillère R et al (2016) Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45(4):931–943

    Article  PubMed  Google Scholar 

  • Das TK et al (2022) Current status of probiotic and related health benefits. Appl Food Res 2(2):100185

    Article  CAS  Google Scholar 

  • Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davani-Davari D et al (2019) Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 8(3):92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis CD (2016) The gut microbiome and its role in obesity. Nutr Today 51(4):167

    Article  PubMed  PubMed Central  Google Scholar 

  • de Sousa E Melo F, Vermeulen L (2016) Wnt signaling in cancer stem cell biology. Cancers (Basel) 8(7):60

    Article  PubMed  Google Scholar 

  • DeGruttola AK et al (2016) Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 22(5):1137–1150

    Article  PubMed  Google Scholar 

  • Del Re M et al (2010) Dihydropyrimidine dehydrogenase polymorphisms and fluoropyrimidine toxicity: ready for routine clinical application within personalized medicine? EPMA J 1:495–502

    Article  PubMed  PubMed Central  Google Scholar 

  • Deleemans JM et al (2021) The use of prebiotic and probiotic interventions for treating gastrointestinal and psychosocial health symptoms in cancer patients and survivors: a systematic review. Integr Cancer Ther 20:15347354211061733

    Article  PubMed  PubMed Central  Google Scholar 

  • Descamps HC et al (2019) The path toward using microbial metabolites as therapies. EBioMedicine 44:747–754

    Article  PubMed  PubMed Central  Google Scholar 

  • Durack J, Lynch SV (2019) The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med 216(1):20–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enright EF et al (2016) Focus: microbiome: the impact of the gut microbiota on drug metabolism and clinical outcome. Yale J Biol Med 89(3):375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ervin SM, Ramanan SV, Bhatt AP (2020) Relationship between the gut microbiome and systemic chemotherapy. Dig Dis Sci 65:874–884

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng W et al (2020) Targeting gut microbiota for precision medicine: focusing on the efficacy and toxicity of drugs. Theranostics 10(24):11278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fong W, Li Q, Yu J (2020) Gut microbiota modulation: a novel strategy for prevention and treatment of colorectal cancer. Oncogene 39(26):4925–4943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Francescone R, Hou V, Grivennikov SI (2014) Microbiome, inflammation and cancer. Cancer J 20(3):181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu C et al (2021) The interaction between gut microbiome and anti-tumor drug therapy. Am J Cancer Res 11(12):5812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fulbright LE, Ellermann M, Arthur JC (2017) The microbiome and the hallmarks of cancer. PLoS Pathog 13(9):e1006480

    Article  PubMed  PubMed Central  Google Scholar 

  • Gagliardi A et al (2018) Rebuilding the gut microbiota ecosystem. Int J Environ Res Public Health 15(8):1679

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardiner BJ et al (2015) Clinical and microbiological characteristics of Eggerthella lenta bacteremia. J Clin Microbiol 53(2):626–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geller LT, Straussman R (2018) Intratumoral bacteria may elicit chemoresistance by metabolizing anticancer agents. Mol Cell Oncol 5(1):e1405139

    Article  PubMed  Google Scholar 

  • Gilbert JA et al (2018) Current understanding of the human microbiome. Nat Med 24(4):392–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gmeiner WH (2020) Fluoropyrimidine modulation of the anti-tumor immune response―prospects for improved colorectal cancer treatment. Cancers (Basel) 12(6):1641

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan V et al (2018) The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 33(4):570–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gori S et al (2019) Gut microbiota and cancer: how gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit Rev Oncol Hematol 143:139–147

    Article  PubMed  Google Scholar 

  • Górska A et al (2019) Probiotic bacteria: a promising tool in cancer prevention and therapy. Curr Microbiol 76:939–949

    Article  PubMed  PubMed Central  Google Scholar 

  • Grivennikov SI (2013) IL-11: a prominent pro-tumorigenic member of the IL-6 family. Cancer Cell 24(2):145–147

    Article  CAS  PubMed  Google Scholar 

  • Guarner F, Malagelada J-R (2003) Gut flora in health and disease. Lancet 361(9356):512–519

    Article  PubMed  Google Scholar 

  • Guo P et al (2020) FadA promotes DNA damage and progression of Fusobacterium nucleatum-induced colorectal cancer through up-regulation of chk2. J Exp Clin Cancer Res 39:1–13

    Article  Google Scholar 

  • Gupta S, Allen-Vercoe E, Petrof EO (2016) Fecal microbiota transplantation: in perspective. Ther Adv Gastroenterol 9(2):229–239

    Article  Google Scholar 

  • Hajjo R, Sabbah DA, Al Bawab AQ (2022) Unlocking the potential of the human microbiome for identifying disease diagnostic biomarkers. Diagnostics (Basel) 12(7):1742

    Article  CAS  PubMed  Google Scholar 

  • Hamamah S et al (2022) Fecal microbiota transplantation in non-communicable diseases: recent advances and protocols. Front Med 9:1060581

    Article  Google Scholar 

  • Han YW (2015) Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol 23:141–147

    Article  CAS  PubMed  Google Scholar 

  • Hannachi N, Camoin-Jau L (2021) Drug response diversity: a hidden bacterium? J Person Med 11(5):345

    Article  Google Scholar 

  • Haque SZ, Haque M (2017) The ecological community of commensal, symbiotic, and pathogenic gastrointestinal microorganisms—an appraisal. Clin Exp Gastroenterol 10:91–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemarajata P, Versalovic J (2013) Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Ther Adv Gastroenterol 6(1):39–51

    Article  CAS  Google Scholar 

  • Hertz DL (2021) Exploring pharmacogenetics of paclitaxel-and docetaxel-induced peripheral neuropathy by evaluating the direct pharmacogenetic-pharmacokinetic and pharmacokinetic-neuropathy relationships. Expert Opin Drug Metab Toxicol 17(2):227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill C et al (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506

    Article  PubMed  Google Scholar 

  • Hillman ET et al (2017) Microbial ecology along the gastrointestinal tract. Microbes Environ 32(4):300–313

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodroj K et al (2021) Issues and limitations of available biomarkers for fluoropyrimidine-based chemotherapy toxicity, a narrative review of the literature. ESMO open 6(3):100125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J et al (2022a) Involvement of abnormal gut microbiota composition and function in doxorubicin-induced cardiotoxicity. Front Cell Infect Microbiol 12:155

    Google Scholar 

  • Huang J et al (2022b) Effects of microbiota on anticancer drugs: current knowledge and potential applications. EBioMedicine 83:104197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang S et al (2020) Dietary salt administration decreases enterotoxigenic Bacteroides fragilis (ETBF)-promoted tumorigenesis via inhibition of colonic inflammation. Int J Mol Sci 21(21):8034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadosh E et al (2020) The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586(7827):133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kechagia M et al (2013) Health benefits of probiotics: a review. ISRN Nutr 2013:481651

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan SU, Fatima K, Malik F (2022a) Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clin Exp Metastasis 39:715–726

    Article  PubMed  Google Scholar 

  • Khan SU et al (2022b) Activation of lysosomal mediated cell death in the course of autophagy by mTORC1 inhibitor. Sci Rep 12(1):1–13

    Google Scholar 

  • Khan SU et al (2023a) Targeting redox regulation and autophagy systems in cancer stem cells. Clin Exp Med 23(5):1405–1423

    Article  PubMed  Google Scholar 

  • Khan SU et al (2023b) Small molecule ‘4ab’induced autophagy and endoplasmic reticulum stress-mediated death of aggressive cancer cells grown under adherent and floating conditions. Med Oncol 40(4):121

    Article  CAS  PubMed  Google Scholar 

  • Khan SU et al (2023c) Lavender plant: farming and health benefits

    Google Scholar 

  • Khan SU et al (2023d) Cancer metastasis: molecular mechanisms and clinical perspectives, p 108522

    Google Scholar 

  • Khan SU et al (2023e) Redox balance and autophagy regulation in cancer progression and their therapeutic perspective. Med Oncol 40(1):1–21

    Google Scholar 

  • Khanna S, Tosh PK (2014) A clinician’s primer on the role of the microbiome in human health and disease. Elsevier

    Google Scholar 

  • Kho ZY, Lal SK (2018) The human gut microbiome—a potential controller of wellness and disease. Front Microbiol 9:1835

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim KO, Gluck M (2019) Fecal microbiota transplantation: an update on clinical practice. Clin Endosc 52(2):137–143

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R et al (2017) Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLoS Pathog 13(7):e1006440

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Patel GK, Ghoshal UC (2021) Helicobacter pylori-induced inflammation: possible factors modulating the risk of gastric cancer. Pathogens 10(9):1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunika NF, Rangrez AY (2023) Exploring the involvement of gut microbiota in cancer therapy-induced cardiotoxicity. Int J Mol Sci 24(8):7261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwakman JJM et al (2020) Management of cytotoxic chemotherapy-induced hand-foot syndrome. Oncol Rev 14(1):442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langdon A, Crook N, Dantas G (2016) The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 8(1):1–16

    Article  Google Scholar 

  • Leeming ER et al (2019) Effect of diet on the gut microbiota: rethinking intervention duration. Nutrients 11(12):2862

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, He J, Jia W (2016) The influence of gut microbiota on drug metabolism and toxicity. Expert Opin Drug Metab Toxicol 12(1):31–40

    Article  PubMed  Google Scholar 

  • Li J et al (2017) Antimicrobial activity and resistance: influencing factors. Front Pharmacol 8:364

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Deng X, Chen T (2021) Exploring the modulatory effects of gut microbiota in anti-cancer therapy. Front Oncol 11:644454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2022) Gut microbiome in modulating immune checkpoint inhibitors. EBioMedicine 82:104163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llor C, Bjerrum L (2014) Antimicrobial resistance: risk associated with antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug Saf 5(6):229–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucas C et al (2020) Autophagy of intestinal epithelial cells inhibits colorectal carcinogenesis induced by colibactin-producing Escherichia coli in ApcMin/+ mice. Gastroenterology 158(5):1373–1388

    Article  CAS  PubMed  Google Scholar 

  • Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375(24):2369–2379

    Article  CAS  PubMed  Google Scholar 

  • Ma W et al (2019) Gut microbiota shapes the efficiency of cancer therapy. Front Microbiol 10:1050

    Article  PubMed  PubMed Central  Google Scholar 

  • Maier E, Anderson RC, Roy NC (2014) Understanding how commensal obligate anaerobic bacteria regulate immune functions in the large intestine. Nutrients 7(1):45–73

    Article  PubMed  PubMed Central  Google Scholar 

  • Malone ER et al (2020) Molecular profiling for precision cancer therapies. Genome Med 12(1):1–19

    Article  Google Scholar 

  • Mansoori B et al (2017) The different mechanisms of cancer drug resistance: a brief review. Adv Pharma Bull 7(3):339

    Article  CAS  Google Scholar 

  • Markowiak P, Åšliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9(9):1021

    Article  PubMed  PubMed Central  Google Scholar 

  • Markowiak-Kopeć P, Åšliżewska K (2020) The effect of probiotics on the production of short-chain fatty acids by human intestinal microbiome. Nutrients 12(4):1107

    Article  PubMed  PubMed Central  Google Scholar 

  • Mellemgaard A, Gaarslev K (1988) Risk of hepatobiliary cancer in carriers of Salmonella typhi. JNCI J Natl Cancer Inst 80(4):288–288

    Article  CAS  PubMed  Google Scholar 

  • Mirzaei R et al (2021) Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother 139:111619

    Article  CAS  PubMed  Google Scholar 

  • Morales-Sánchez A, Fuentes-Pananá EM (2014) Human viruses and cancer. Viruses 6(10):4047–4079

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee S et al (2018) Gut microbes as future therapeutics in treating inflammatory and infectious diseases: lessons from recent findings. J Nutr Biochem 61:111–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh B et al (2021) The gut microbiome and gastrointestinal toxicities in pelvic radiation therapy: a clinical review. Cancers (Basel) 13(10):2353

    Article  CAS  PubMed  Google Scholar 

  • Oliero M et al (2022) Prevalence of pks+ bacteria and enterotoxigenic Bacteroides fragilis in patients with colorectal cancer. Gut Pathog 14(1):1–6

    Article  Google Scholar 

  • Oliva M et al (2021) Tumor-associated microbiome: where do we stand? Int J Mol Sci 22(3):1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parida S et al (2021) A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates notch and β-catenin axes. Cancer Discov 11(5):1138–1157

    Article  CAS  PubMed  Google Scholar 

  • Patangia DV et al (2022) Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 11(1):e1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel A et al (2023) Evaluation of Argyreia speciosa root extract as a protective agent against cyclophosphamide-induced toxicities. J Appl Pharma Sci 13(12):153–161

    CAS  Google Scholar 

  • Piscione M et al (2021) Eradication of Helicobacter pylori and gastric cancer: a controversial relationship. Front Microbiol 12:630852

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi X et al (2022) The species of gut bacteria associated with antitumor immunity in cancer therapy. Cells 11(22):3684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quigley EMM (2013) Gut bacteria in health and disease. Gastroenterol Hepatol 9(9):560

    Google Scholar 

  • Raman M et al (2013) Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes 4(3):181–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Arrastia M et al (2021) Probiotic supplements on oncology patients’ treatment-related side effects: a systematic review of randomized controlled trials. Int J Environ Res Public Health 18(8):4265

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi T et al (2020) Microbiota-derived metabolites in tumor progression and metastasis. Int J Mol Sci 21(16):5786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rottenberg S, Disler C, Perego P (2021) The rediscovery of platinum-based cancer therapy. Nat Rev Cancer 21(1):37–50

    Article  CAS  PubMed  Google Scholar 

  • Routy B et al (2018) Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 359(6371):91–97

    Article  CAS  PubMed  Google Scholar 

  • Rowland I et al (2018) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57:1–24

    Article  CAS  PubMed  Google Scholar 

  • Sameer Ullah, Khan Kaneez, Fatima Shariqa, Aisha Fayaz, Malik (2024) Unveiling the mechanisms and challenges of cancer drug resistance Abstract Cell Communication and Signaling 22(1) 10.1186/s12964-023-01302-1

    Google Scholar 

  • Sarhadi VK, Armengol G (2022) Molecular biomarkers in cancer. Biomolecules 12(8):1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears CL (2005) A dynamic partnership: celebrating our gut flora. Anaerobe 11(5):247–251

    Article  PubMed  Google Scholar 

  • Sedighi M et al (2019) Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med 8(6):3167–3181

    Article  PubMed  PubMed Central  Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533

    Article  PubMed  PubMed Central  Google Scholar 

  • Sevcikova A et al (2022) The impact of the microbiome on resistance to cancer treatment with chemotherapeutic agents and immunotherapy. Int J Mol Sci 23(1):488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapira M (2016) Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol Evol 31(7):539–549

    Article  PubMed  Google Scholar 

  • Silva YP, Bernardi A, Frozza RL (2020) The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol 11:25

    Article  Google Scholar 

  • Singh U et al (2017a) Design of novel 3-pyrimidinylazaindole CDK2/9 inhibitors with potent in vitro and in vivo antitumor efficacy in a triple-negative breast cancer model. J Med Chem 60(23):9470–9489

    Article  CAS  PubMed  Google Scholar 

  • Singh RK et al (2017b) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15(1):1–17

    Article  Google Scholar 

  • Smorenburg CH et al (2001) Combination chemotherapy of the taxanes and antimetabolites: its use and limitations. Eur J Cancer 37(18):2310–2323

    Article  CAS  PubMed  Google Scholar 

  • Song BC, Bai J (2021) Microbiome-gut-brain axis in cancer treatment-related psychoneurological toxicities and symptoms: a systematic review. Support Care Cancer 29:605–617

    Article  PubMed  Google Scholar 

  • Spanogiannopoulos P et al (2022) Host and gut bacteria share metabolic pathways for anti-cancer drug metabolism. Nat Microbiol 7(10):1605–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  • Taddese R et al (2021) Streptococcus gallolyticus increases expression and activity of aryl hydrocarbon receptor-dependent CYP1 biotransformation capacity in colorectal epithelial cells. Front Cell Infect Microbiol 11:740704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tannock GW (1995) Normal microflora: an introduction to microbes inhabiting the human body. Springer Science & Business Media

    Google Scholar 

  • Taylor JC et al (2023) A pathogenicity locus of Streptococcus gallolyticus subspecies gallolyticus. Sci Rep 13(1):6291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorn CF et al (2011) PharmGKB summary: fluoropyrimidine pathways. Pharmacogenet Genomics 21(4):237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ting NL-N, Lau HC-H, Yu J (2022) Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut 71:1412

    Article  PubMed  Google Scholar 

  • Torres-Maravilla E et al (2021) Role of gut microbiota and probiotics in colorectal cancer: onset and progression. Microorganisms 9(5):1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toschi L et al (2005) Role of gemcitabine in cancer therapy. Future Oncol 1:7

    Article  CAS  PubMed  Google Scholar 

  • Turashvili G, Brogi E (2017) Tumor heterogeneity in breast cancer. Front Med 4:227

    Article  Google Scholar 

  • Valguarnera E, Wardenburg JB (2020) Good gone bad: one toxin away from disease for Bacteroides fragilis. J Mol Biol 432(4):765–785

    Article  CAS  PubMed  Google Scholar 

  • Velasco R, Bruna J (2015) Taxane-induced peripheral neurotoxicity. Toxics 3(2):152–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veziant J et al (2021) Gut microbiota as potential biomarker and/or therapeutic target to improve the management of cancer: focus on colibactin-producing Escherichia coli in colorectal cancer. Cancers (Basel) 13(9):2215

    Article  CAS  PubMed  Google Scholar 

  • Vivarelli S et al (2019) Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel) 11(1):38

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa B et al (2020) AKT isoforms have discrete expression in triple negative breast cancers and roles in cisplatin sensitivity. Oncotarget 11(45):4178

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Fu K (2023) Genotoxins: the mechanistic links between Escherichia coli and colorectal cancer. Cancers (Basel) 15(4):1152

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang P, Zhang X (2021) Probiotics regulate gut microbiota: an effective method to improve immunity. Molecules 26(19):6076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani A et al (2021) Crocetin promotes clearance of amyloid-β by inducing autophagy via the STK11/LKB1-mediated AMPK pathway. Autophagy 17(11):3813–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei D et al (2018) Probiotics for the prevention or treatment of chemotherapy-or radiotherapy-related diarrhoea in people with cancer. Cochrane Database Syst Rev 8(8):CD008831

    PubMed  Google Scholar 

  • Wiertsema SP et al (2021) The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients 13(3):886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wroblewski LE, Peek RM Jr, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 23(4):713–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H-J, Wu E (2012) The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3(1):4–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Li Q, Fu X (2019) Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing host immunity. Transl Oncol 12(6):846–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu X, Zhang X (2015) Effects of cyclophosphamide on immune system and gut microbiota in mice. Microbiol Res 171:97–106

    Article  CAS  PubMed  Google Scholar 

  • Xu H et al (2022) Antitumor effects of fecal microbiota transplantation: implications for microbiome modulation in cancer treatment. Front Immunol 13:949490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X et al (2019) Alteration of methanogenic archaeon by ethanol contribute to the enhancement of biogenic methane production of lignite. Front Microbiol 10:2323

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi M et al (2019) Manipulating gut microbiota composition to enhance the therapeutic effect of cancer immunotherapy. Integr Cancer Ther 18:1534735419876351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin B et al (2022) Research progress on the effect of gut and tumor microbiota on antitumor efficacy and adverse effects of chemotherapy drugs. Front Microbiol 13:3784

    Article  Google Scholar 

  • Zhang Y-J et al (2015) Impacts of gut bacteria on human health and diseases. Int J Mol Sci 16(4):7493–7519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T et al (2019) Akkermansia muciniphila is a promising probiotic. Microb Biotechnol 12(6):1109–1125

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2021) The influence of the gut microbiota on the bioavailability of oral drugs. Acta Pharm Sin B 11(7):1789–1812

    Article  CAS  PubMed  Google Scholar 

  • Zhang C et al (2022a) Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 12(5):2115

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J et al (2022b) Impact of intestinal dysbiosis on breast cancer metastasis and progression. Front Oncol 12:1037831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng D, Liwinski T, Elinav E (2020) Interaction between microbiota and immunity in health and disease. Cell Res 30(6):492–506

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou H et al (2021) Gut microbiota: a potential target for cancer interventions. Cancer Manag Res Volume 13:8281–8296

    Article  Google Scholar 

  • Zwezerijnen-Jiwa FH et al (2023) A systematic review of microbiome-derived biomarkers for early colorectal cancer detection. Neoplasia 36:100868

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehraj, S., Fatima, K., Ali, S., Khan, S.U. (2024). Gut Microbes: Role in Cancer and Cancer Drug Resistance. In: Khan, S.U., Malik, F. (eds) Drug Resistance in Cancer: Mechanisms and Strategies. Springer, Singapore. https://doi.org/10.1007/978-981-97-1666-1_10

Download citation

Publish with us

Policies and ethics