Skip to main content

Plant Functional Traits: A Key Framework for Understanding and Managing Ecosystem Responses to Global Environmental Challenges

  • Chapter
  • First Online:
Plant Functional Traits for Improving Productivity

Abstract

The greatest threat to present and future biodiversity is climate change. It is estimated that climatic and related environmental changes will threaten global food security and sustainable development goals. Climate change profoundly impacts ecosystem services and disrupts the intricate interactions between biotic and abiotic factors. Plant functional diversity provides a complex nexus of biodiversity, ecosystem services, agroecosystems, and soils. Plant functional traits (PFTs) are heritable morphological, physiological, or phenological properties that influence individual performance and fitness and, in turn, the species’ responses to ecological shifts and climatic changes. The PFTs are categorized into morphological, physiological, and phenological traits, providing a comprehensive realization of how plants interact with their environment and influence ecosystem processes. The ecological roles of PFTs, their roles in community assembly, and their impact on ecosystem functions such as nutrient cycling and carbon sequestration are critical components in understanding and managing the dynamics of ecosystems and their resilience in the face of environmental change. PFTs significantly influence the species’ responses to environmental changes and guide ecosystem restoration and land-use planning decisions. The chapter highlights the crucial role of plant functional traits in advancing ecological research, offering insights into species’ adaptations, community dynamics, and responses to environmental challenges. Further, integrating functional traits into interdisciplinary studies will contribute to a holistic understanding of ecological patterns and processes, informing sustainable management and conservation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Badgery W, Kemp D, Michalk D, King W (2005) Competition for nitrogen between Australian native grass and the introduced weed Nassella trichotoma. Ann Bot 96:799–809

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakker MA, Carreno-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol 25:473–483

    Article  Google Scholar 

  • Bender SF, Wagg C, van der Heijden MG (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31(6):440–452

    Article  PubMed  Google Scholar 

  • Berg M, Ellers J (2010) Trait plasticity in species interactions: a driving force of community dynamics. Evol Ecol 24:617–629

    Article  Google Scholar 

  • Chambers JQ, Higuchi N, Schimel JP, Ferreira LV, Melack JM (2000) Decomposition and carbon cycling of dead trees in tropical forests of the Central Amazon. Oecologia 122:380–388

    Article  CAS  PubMed  Google Scholar 

  • Chave J, Coomes D, Jansen S, Lewis S, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366

    Article  PubMed  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, P’erez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Daily GC, Matson PA (2008) Ecosystem services: from theory to implementation. Proc Natl Acad Sci 105(28):9455–9456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JC, Bardgett R, Berg M, Cipriotti P, Feld C, Hering D, Martins da Silva P, Potts S, Sandin L, Sousa J, Storkey J, Wardle D, Harrison P (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893

    Article  Google Scholar 

  • De Deyn GB, Cornelissen JH, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531

    Article  PubMed  Google Scholar 

  • de Vries FT, Manning P, Tallowin JRB, Mortimer SR, Pilgrim ES, Harrison KA, Hobbs PJ, Quirk H, Shipley B, Cornelissen JHC, Kattge J, Bardgett RD (2012) Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol Lett 15:1230–1239

    Article  PubMed  Google Scholar 

  • Díaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655

    Article  Google Scholar 

  • Dijkstra FA, Hobbie SE, Reich PB (2006) Soil processes affected by sixteen grassland species grown under different environmental conditions. Soil Sci Soc Am J 70:770–777

    Article  CAS  Google Scholar 

  • Eviner VT, Chapin FS III (2003) Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Evol Syst 34:455–485

    Article  Google Scholar 

  • Faucon MP, Houben D, Lambers H (2017) Plant functional traits: soil and ecosystem services. Trends Plant Sci 22(5):385–394

    Article  CAS  PubMed  Google Scholar 

  • Firn J, Mac Dougall AS, Schmidt S, Buckley YM (2010) Early emergence and resource availability can competitively favour natives over a functionally similar invader. Oecologia 163:775–784

    Article  PubMed  Google Scholar 

  • Firn J, Prober SM, Buckley YM (2012) Plastic traits of an exotic grass contribute to its abundance but are not always favorable. PLoS One 7:e35870. https://doi.org/10.1371/journal.pone.0035870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) A plant economics spectrum of litter decomposability. Funct Ecol 26:56–65

    Article  Google Scholar 

  • Funk JL (2008) Differences in plasticity between invasive and native plants from a low resource environment. J Ecol 96:1162–1174

    Article  Google Scholar 

  • Funk JL (2013) The physiology of invasive plants in low-resource environments. Conserv Physiol 1:cot026. https://doi.org/10.1093/conphys/cot1026

    Article  PubMed  PubMed Central  Google Scholar 

  • Garibaldi LA, Semmartin M, Chaneton EJ (2007) Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands. Oecologia 151:650–662

    Article  PubMed  Google Scholar 

  • Garnier E, Navas M-L (2012) A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A review. Agron Sustain Dev 32:365–399

    Article  Google Scholar 

  • Giri K, Mishra G, Suyal DC, Kumar N, Doley B, Das N, Baruah RC, Bhattacharyya R, Bora N (2023) Performance evaluation of native plant growth-promoting rhizobacteria for paddy yield enhancement in the jhum fields of Mokokchung, Nagaland, North East India. Heliyon 9:e14588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M, Kastl E, Arnoldi C, Bardgett RD, Poly F, Pommier T, Schloter M, Tappeiner U, Bahn M, Clement JC (2013) Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J Ecol 101:47–57

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Article  Google Scholar 

  • Gross N, Robson TM, Lavorel S, Albert C, Le Bagousse-Pinguet Y, Guillemin R (2008) Plant response traits mediate the effects of subalpine grasslands on soil moisture. New Phytol 180:652–662

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Buckley YM, Firn J (2012) An invasive grass shows colonization advantages over native grasses under conditions of low resource availability. Plant Ecol 213:1117–1130

    Article  Google Scholar 

  • Kastovska E, Edwards K, Picek T, Santruckova H (2015) A larger investment into exudation by competitive versus conservative plants is connected to more coupled plant–microbe N cycling. Biogeochemistry 122:47–59

    Article  CAS  Google Scholar 

  • Klumpp K, Soussana JF (2009) Using functional traits to predict grassland ecosystem change: a mathematical test of the response-and-effect trait approach. Glob Chang Biol 15:2921–2934

    Article  Google Scholar 

  • Kumar N, Kumar N, Shukla A, Shankhdhar SC, Shankhdhar D (2015) Impact of terminal heat stress on pollen viability and yield attributes of rice (Oryza sativa L.). Cereal Res Commun 43(4):616–626

    Article  CAS  Google Scholar 

  • Kumar N, Shankhdhar SC, Shankhdhar D (2016) Impact of elevated temperature on antioxidant activity and membrane stability in different genotypes of rice (Oryza sativa L.). Indian J Plant Physiol 21(1):37–43

    Article  Google Scholar 

  • Kumar N, Suyal DC, Sharma IP, Verma A, Singh H (2017) Elucidating stress proteins in rice (Oryza sativa L.) genotype under elevated temperature: a proteomic approach to understand heat stress response. 3 Biotech 7:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Jeena N, Singh H (2019) Elevated temperature modulates rice pollen structure: a study from foothill Himalayan agro-ecosystem in India. 3 Biotech 9:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Dwivedi GK, Tewari S, Paul J, Anand R, Kumar N, Kumar P, Singh H, Kaushal R (2020a) Carbon mineralization and inorganic nitrogen pools under Terminalia chebula Retz.-based agroforestry system in Himalayan foothills, India. For Sci 66(5):634–643

    Google Scholar 

  • Kumar A, Kumar P, Singh H, Kumar N (2020b) Adaptation and mitigation potential of roadside trees with bio-extraction of heavy metals under vehicular emissions and their impact on physiological traits during seasonal regimes. Urban For Urban Green 58:126900

    Article  Google Scholar 

  • Kumar A, Dwivedi GK, Tewari S, Paul J, Sah VK, Singh H, Kumar P, Kumar N, Kaushal R (2020c) Soil organic carbon pools under Terminalia chebula Retz. based agroforestry system in Himalayan foothills, India. Curr Sci 118(7):1098–1103

    Article  CAS  Google Scholar 

  • Kumar A, Kumar P, Singh H, Bisht S, Kumar N (2021a) Relationship of physiological plant functional traits with soil carbon stock in temperate forest of Garhwal Himalaya. Curr Sci 120(8):1368–1373

    Article  CAS  Google Scholar 

  • Kumar A, Kumar P, Singh H, Kumar N (2021b) Modulation of plant functional traits under essential plant nutrients during seasonal regime in natural forests of Garhwal Himalayas. Plant Soil 465:197–212

    Article  CAS  Google Scholar 

  • Kumar A, Kumar P, Singh H, Kumar N (2021c) Impact of plant functional traits on near saturated hydraulic conductivity of soil under different forests of Kempty watershed in Garhwal Himalaya. Indian J Soil Conserv 49(1):38–44

    Google Scholar 

  • Kumar A, Tewari S, Singh H, Kumar P, Kumar N, Bisht S, Kushwaha S, Tamta N, Kaushal R (2021d) Biomass accumulation and carbon stocks in different agroforestry system prevalent in Himalayan foothills, India. Curr Sci 120(6):1083–1088

    Article  CAS  Google Scholar 

  • Langley JA, Chapman SK, Hungate BA (2006) Ectomycorrhizal colonization slows root decomposition: the post-mortem fungal legacy. Ecol Lett 9:955–959

    Article  PubMed  Google Scholar 

  • Larson JE, Funk JL (2016) Seedling root responses to soil moisture and the identification of a belowground trait spectrum across three growth forms. New Phytol 210:827–838. https://doi.org/10.1111/nph.13829

    Article  PubMed  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Lavorel S, Grigulis K (2012) How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. J Ecol 100:128–140

    Article  Google Scholar 

  • Lee JE, Oliveira RS, Dawson TE, Fung I (2005) Root functioning modifies seasonal climate. Proc Natl Acad Sci 102:17576–17581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loranger J, Meyer ST, Shipley B, Kattge J, Loranger H, Roscher C, Weisser WW (2012) Predicting invertebrate herbivory from plant traits: evidence from 51 grassland species in experimental monocultures. Ecology 93:2674–2682

    Article  PubMed  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692

    Article  CAS  PubMed  Google Scholar 

  • O’Grady AP, Cook PG, Eamus D, Duguid A, Wischusen JDH, Fass T, Worldege D (2009) Convergence of tree water use within an arid-zone woodland. Oecologia 160:643–655

    Article  PubMed  Google Scholar 

  • Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD (2010) Linkages of plant traits to soil properties and the functioning of temperate grassland. J Ecol 98:1074–1083

    Article  Google Scholar 

  • Reich PB (2012) Key canopy traits drive forest productivity. Proc R Soc B Biol Sci 279:2128–2134

    Article  Google Scholar 

  • Reich PB, Rich RL, Lu X, Wang YP, Oleksyn J (2014) Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections. Proc Natl Acad Sci 111:13703–13708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Santiago LS (2007) Extending the leaf economics spectrum to decomposition: evidence from a tropical forest. Ecology 88:1126–1131

    Article  PubMed  Google Scholar 

  • Santiago LS, Schuur EAG, Silvera K (2005) Nutrient cycling and plant-soil feedbacks along a precipitation gradient in lowland Panama. J Trop Ecol 21:461–470

    Article  Google Scholar 

  • Siebenkas A, Schumacher J, Roscher C (2015) Phenotypic plasticity to light and nutrient availability alters functional trait ranking across eight perennial grassland species. AoB Plants 7:plv029. https://doi.org/10.1093/aobpla/plv029

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh H, Verma A (2013a) Physiological responses of rice cultivars to various nitrogen levels. Int J Agric Environ Biotechnol 6(3):383–388

    Article  Google Scholar 

  • Singh H, Verma A (2013b) Characterization and screening of high nitrogen efficient rice genotype to curtail environmental pollution. Int J Agric Environ Biotechnol 6(1):23–30

    Google Scholar 

  • Singh H, Verma A, Shukla A (2010a) Comparative study of yield and yield components of hybrid and inbred genotypes of rice (Oryza Sativa L.). Int J Agric Environ Biotechnol 3:355–360

    Google Scholar 

  • Singh H, Verma A, Krishnamoorthy Mand Shukla A (2010b) Consequence of diverse nitrogen levels on leaf pigments in five rice genotypes under field emergent circumstance. Int J Bioresour Stress Manage 1:189–193

    Google Scholar 

  • Singh H, Verma A, Rai SK (2013a) Biochemical evaluation of different rice genotypes grown at various nitrogen levels using SDS-PAGE. Curr Adv Agric Sci 5(1):144–146

    Google Scholar 

  • Singh H, Verma A, Shukla A (2013b) Guttation fluid as a physiological marker for selection of nitrogen efficient rice (Oryza sativa L.) genotypes. Afr J Biotechnol 12(44):6276–6281

    Article  Google Scholar 

  • Singh H, Verma A, Ansari MW, Shukla A (2014) Physiological response of rice (Oryza sativa L.) genotypes to elevated nitrogen applied under field conditions. Plant Signal Behav 9:e29015. https://doi.org/10.4161/psb.29015

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh H, Yadav M, Kumar N, Kumar A, Kumar M (2020) Assessing adaptation and mitigation potential of roadside trees under the influence of vehicular emissions: a case study of Grevillea robusta and Mangifera indica planted in an urban city of India. PLoS One 15(1):e0227380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh S, Singh H, Sharma SK, Nautiyal R (2021) Seasonal variation in biochemical responses of bamboo clones in the sub-tropical climate of Indian Himalayan foothills. Heliyon 7(4):e06859. https://doi.org/10.1016/j.heliyon.2021.e06859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Singh H, Kumar A, Kumar M, Barthwal S, Thakur A (2024) Soil nitrogen availability determines the CO2 fertilization effect on tree species (Neolamarckia cadamba): growth and physiological evidence. Environ Sustain. https://doi.org/10.1007/s42398-023-00300-w

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res 79:7–31

    Article  Google Scholar 

  • Stokes A, Atger C, Bengough A, Fourcaud T, Sidle R (2009) Desirable plant root traits for protecting natural and engineered slopes against landslides. Plant Soil 324:1–30

    Article  CAS  Google Scholar 

  • Nash Suding K, Goldberg DE, Hartman KM (2003) Relationships among species traits: separating levels of response and identifying linkages to abundance. Ecology 84:1–16

    Google Scholar 

  • Sutton-Grier AE, Wright J, Richardson C (2012) Different plant traits affect two pathways of riparian nitrogen removal in a restored freshwater wetland. Plant Soil 365:41–57

    Article  Google Scholar 

  • Swaffer BA, Holland KL (2015) Comparing ecophysiological traits and evapotranspiration of an invasive exotic, Pinus halepensisin native woodland overlying a karst aquifer. Ecohydrology 8:230–242

    Article  Google Scholar 

  • Valladares F, Matesanz S, Guilhaumon F, Ara’ujo MB, Balaguer L, Benito-Garz’on M, Cornwell W, Gianoli E, van Kleunen M, Naya DE, Nicotra AB, Poorter H, Zavala MA (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17:1351–1364

    Article  PubMed  Google Scholar 

  • WEF (2020) New nature economy report. https://www.weforum.org/reports/new-nature-economy-report-series/. Accessed 24 Nov 2023

  • Wright JP, Naeem S, Hector A, Lehman C, Reich PB, Schmid B, Tilman D (2006) Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecol Lett 9:111–120

    Article  PubMed  Google Scholar 

  • Yang Y, Zhu Q, Peng C, Wang H, Chen H (2015) From plant functional types to plant functional traits: a new paradigm in modelling global vegetation dynamics. Prog Phys Geogr 39(4):514–535

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rao, A.S., Chhawri, R., Chauhan, A., Yadav, S.S., Meena, K.C., Bansal, P. (2024). Plant Functional Traits: A Key Framework for Understanding and Managing Ecosystem Responses to Global Environmental Challenges. In: Kumar, N., Singh, H. (eds) Plant Functional Traits for Improving Productivity. Springer, Singapore. https://doi.org/10.1007/978-981-97-1510-7_15

Download citation

Publish with us

Policies and ethics