Skip to main content

Abstract

Bioprocess technology is the amalgamation of technology with bioprocess which is the use of any living cell (microorganism or merely its enzymes) or one of its components with defined nutritive supplements and under controlled conditions to obtain a specific desirable product that is useful for mankind. Bioprocess technology is the alteration of significant processes to create value-added products. It deals with designing and developing equipment and processes for products such as food, chemicals, feed, nutraceuticals, amino acids, polymers, or abundantly required and useful pharmaceuticals such as antibiotics, viral vaccines, etc. The use of these processes can be traced back to as old as the ancient Egyptian period where unknowingly they employed this technology for the production of beers, wines, bread, cheese, yogurts, and fermented pickles. The current perspective of bioprocess technology deals with the use of exceedingly advanced computer-operated automatic bioreactors to produce elevated quantity and quality of desired end product around which the process is curated. Future applications of bioprocess technology have significant potential since they will be used in large-scale industries, where its use is currently limited. It has been anticipated that combining bioinformatics and nanotechnology with bioprocess technology would open countless unexplored doors and lead to substantial progress in understanding complex biological systems and their underlying mechanisms and designing and screening new biologically useful components. Besides umpteen useful traits, bioprocess technology still needs to overcome a large number of hurdles and possess an advantage over other competing methods such as chemical engineering to be viable in any specific industrial context. Nevertheless, this technology holds great potential which needs to be efficiently explored to use it to the best of its capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adrio JL, Demain AL (2010) Recombinant organisms for production of industrial products. Bioeng Bugs 1(2):116–131

    Article  PubMed  Google Scholar 

  • Al-Hamdany MHA, Hassan AA (2017) Microbiological quality of white local sheep cheese in Mosul city markets. Iraqi J Vet Sci 31(1):1–6

    Article  Google Scholar 

  • Allman T (2018) Bioreactors: design, operation, and applications. In: Fermentation microbiology and biotechnology, 4th edn. CRC Press, Boca Raton, FL, pp 283–308

    Google Scholar 

  • Barragán-Ocaña A, Silva-Borjas P, Olmos-Peña S, Polanco-Olguín M (2020) Biotechnology and bioprocesses: their contribution to sustainability. PRO 8(4):436

    Google Scholar 

  • Behera BK, Varma A (2017) Microbial biomass process technologies and management. Springer, Basel

    Book  Google Scholar 

  • Berenjian A (ed) (2019) Essentials in fermentation technology. Springer, Basel

    Google Scholar 

  • Bergemann K, Eckermann C, Garidel P, Grammatikos S, Jacobi A, Kaufmann H, Kempken R, Pisch-Heberle S (2007) Production and downstream processing. In: Handbook of therapeutic antibodies, pp 199–237

    Chapter  Google Scholar 

  • Berovic M (2009) Upstream processing—sterilization in bioprocess technology. Biotechnology 4:80

    Google Scholar 

  • Borgosz L, Dikicioglu D (2024) Industrial internet of things: what does it mean for the bioprocess industries? Biochem Eng J 201:109122

    Article  Google Scholar 

  • Brakmann S, Johnsson K, Flickinger MC, Drew SW (1999) Encyclopedia of bioprocess technology. Synthesis

    Google Scholar 

  • Büchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7(2):91–98

    Article  PubMed  Google Scholar 

  • Chemat F, Vian MA, Fabiano-Tixier AS, Nutrizio M, Jambrak AR, Munekata PE, Lorenzo JM, Barba FJ, Binello A, Cravotto G (2020) A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem 22(8):2325–2353

    Article  CAS  Google Scholar 

  • Chisti Y (1998) Strategies in downstream processing. Bioseparation and bioprocessing: a handbook 2:3–30

    CAS  Google Scholar 

  • Clapp KP, Castan A, Lindskog EK (2018) Upstream processing equipment. In: Biopharmaceutical processing. Elsevier, pp 457–476

    Chapter  Google Scholar 

  • Clementschitsch F, Bayer K (2006) Improvement of bioprocess monitoring: development of novel concepts. Microb Cell Factories 5:1–11

    Article  Google Scholar 

  • Cooney CL (1983) Bioreactors: design and operation. Science 219(4585):728–733

    Article  CAS  PubMed  Google Scholar 

  • Davenport T, Kalakota R (2019) The potential for artificial intelligence in healthcare. Future Healthc J 6(2):94

    Article  PubMed  PubMed Central  Google Scholar 

  • Delvigne F, Zune Q, Lara AR, Al-Soud W, Sørensen SJ (2014) Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity. Trends Biotechnol 32(12):608–616

    Article  CAS  PubMed  Google Scholar 

  • Doran PM (1995) Bioprocess engineering principles. Elsevier, Amsterdam

    Google Scholar 

  • Felo M, Christensen B, Higgins J (2013) Process cost and facility considerations in the selection of primary cell culture clarification technology. Biotechnol Prog 29(5):1239–1245

    Article  CAS  PubMed  Google Scholar 

  • Flickinger MC (ed) (2013) Downstream industrial biotechnology: recovery and purification. Wiley, New York

    Google Scholar 

  • Frahm B, Brod H, Langer U (2009) Improving bioreactor cultivation conditions for sensitive cell lines by dynamic membrane aeration. Cytotechnology 59(1):17–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Fernandez C, Lopez-Fernandez A, Borros S, Lecina M, Vives J (2020) Strategies for large-scale expansion of clinical-grade human multipotent mesenchymal stromal cells. Biochem Eng J 159:107601

    Article  CAS  Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23(7–8):471–499

    Article  CAS  PubMed  Google Scholar 

  • Ge C, Selvaganapathy PR, Geng F (2023) Advancing our understanding of bioreactors for industrial-sized cell culture: health care and cellular agriculture implications. Am J Phys Cell Phys 325(3):C580–C591

    CAS  Google Scholar 

  • Gerzon G, Sheng Y, Kirkitadze M (2022) Process analytical technologies–advances in bioprocess integration and future perspectives. J Pharm Biomed Anal 207:114379

    Article  CAS  PubMed  Google Scholar 

  • Grote F, Ditz R, Strube J (2012) Downstream of downstream processing: development of recycling strategies for biopharmaceutical processes. J Chem Technol Biotechnol 87(4):481–497

    Article  CAS  Google Scholar 

  • Haldar D, Purkait MK (2020) Lignocellulosic conversion into value-added products: a review. Process Biochem 89:110–133

    Article  CAS  Google Scholar 

  • Hartmann FS, Udugama IA, Seibold GM, Sugiyama H, Gernaey KV (2022) Digital models in biotechnology: towards multi-scale integration and implementation. Biotechnol Adv 60:108015

    Article  CAS  PubMed  Google Scholar 

  • Heinzle E, Biwer AP, Cooney CL (2007) Development of sustainable bioprocesses: modeling and assessment. Wiley, Hoboken, NJ

    Google Scholar 

  • Henry HC, Gilbert JB (1973) Scale up of pilot plant data for catalytic hydroprocessing. Ind Eng Chem Process Design Dev 12(3):328–334

    Article  CAS  Google Scholar 

  • Hole G, Hole AS, McFalone-Shaw I (2021) Digitalization in pharmaceutical industry: what to focus on under the digital implementation process? Int J Pharm X 3:100095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jain E, Kumar A (2008) Upstream processes in antibody production: evaluation of critical parameters. Biotechnol Adv 26(1):46–72

    Article  CAS  PubMed  Google Scholar 

  • Javaid M, Haleem A, Singh RP, Suman R, Gonzalez ES (2022) Understanding the adoption of Industry 4.0 technologies in improving environmental sustainability. Sustain Oper Comput 3:203–217

    Article  Google Scholar 

  • Jha N, Prashar D, Nagpal A (2021) Combining artificial intelligence with robotic process automation—an intelligent automation approach. In: Deep learning and big data for intelligent transportation: enabling technologies and future trends, pp 245–264

    Chapter  Google Scholar 

  • Jornitz MW (ed) (2019) Filtration and purification in the biopharmaceutical industry. CRC Press, Boca Raton, FL

    Google Scholar 

  • Kalyanpur M (2002) Downstream processing in the biotechnology industry. Mol Biotechnol 22:87–98

    Article  CAS  PubMed  Google Scholar 

  • Labík L, Petricříček R, Moucha T, Brucato A, Caputo G, Grisafi F, Scargiali F (2018) Scale-up and viscosity effects on gas–liquid mass transfer rates in unbaffled stirred tanks. Chem Eng Res Des 132:584–592

    Article  Google Scholar 

  • Langeveld JWA, Dixon J, Jaworski JF (2010) Development perspectives of the biobased economy: a review. Crop Sci 50:S-142

    Article  Google Scholar 

  • Lim AC (2005) A decision-support tool for strategic decision-making in biopharmaceutical manufacture. University of London, London

    Google Scholar 

  • Lindskog EK (2018) The upstream process: principal modes of operation. In: Biopharmaceutical processing. Elsevier, Amsterdam, pp 625–635

    Chapter  Google Scholar 

  • Liu S (2020) Bioprocess engineering: kinetics, sustainability, and reactor design. Elsevier, Amsterdam

    Book  Google Scholar 

  • Long Q, Liu X, Yang Y, Li L, Harvey L, McNeil B, Bai Z (2014) The development and application of high throughput cultivation technology in bioprocess development. J Biotechnol 192:323–338

    Article  CAS  PubMed  Google Scholar 

  • Makkapati S (2006) Recombinant production of peptides using SUMO as a fusion partner. The University of Manchester, Manchester

    Google Scholar 

  • Marques MP, Cabral JM, Fernandes P (2010) Bioprocess scale-up: quest for the parameters to be used as criterion to move from microreactors to lab-scale. J Chem Technol Biotechnol 85(9):1184–1198

    Article  CAS  Google Scholar 

  • Mitra S, Murthy GS (2022) Bioreactor control systems in the biopharmaceutical industry: a critical perspective. Syst Microbiol nd Biomanuf 2:1–22

    Google Scholar 

  • Molina G, Usmani Z, Sharma M, Benhida R, Kuhad RC, Gupta VK (eds) (2023) Microbial bioprocessing of agri-food wastes: industrial enzymes. CRC Press, Boca Raton, FL

    Google Scholar 

  • Moser A (2012) Bioprocess technology: kinetics and reactors. Springer, New York

    Google Scholar 

  • Mowbray M, Savage T, Wu C, Song Z, Cho BA, Del Rio-Chanona EA, Zhang D (2021) Machine learning for biochemical engineering: a review. Biochem Eng J 172:108054

    Article  CAS  Google Scholar 

  • Nadal-Rey G, McClure DD, Kavanagh JM, Cornelissen S, Fletcher DF, Gernaey KV (2021) Understanding gradients in industrial bioreactors. Biotechnol Adv 46:107660

    Article  CAS  PubMed  Google Scholar 

  • Nandy SK (2016) Bioprocess technology governs enzyme use and production in industrial biotechnology: an overview. Enz Eng 144(5):1–5

    Google Scholar 

  • Narayanan H, Luna MF, von Stosch M, Cruz Bournazou MN, Polotti G, Morbidelli M, Butté A, Sokolov M (2020) Bioprocessing in the digital age: the role of process models. Biotechnol J 15(1):1900172

    Article  CAS  Google Scholar 

  • Neubauer P, Junne S (2010) Scale-down simulators for metabolic analysis of large-scale bioprocesses. Curr Opin Biotechnol 21(1):114–121

    Article  CAS  PubMed  Google Scholar 

  • Nikita S, Mishra S, Gupta K, Runkana V, Gomes J, Rathore AS (2023) Advances in bioreactor control for production of biotherapeutic products. Biotechnol Bioeng. 120(5):1189–1214

    Article  CAS  PubMed  Google Scholar 

  • Nurfarahin AH, Mohamed MS, Phang LY (2018) Culture medium development for microbial-derived surfactants production—an overview. Molecules 23(5):1049

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation: I-bioprocesses and products. Process Biochem 35(10):1153–1169

    Article  CAS  Google Scholar 

  • Pandey K, Pandey M, Kumar V, Aggarwal U, Singhal B (2023) Bioprocessing 4.0 in biomanufacturing: paving the way for sustainable bioeconomy. Syst Microbiol Biomanuf:1–18

    Google Scholar 

  • Panke S, Wubbolts MG (2002) Enzyme technology and bioprocess engineering. Curr Opin Biotechnol 13(2):111–116

    Article  CAS  PubMed  Google Scholar 

  • Pisano R, Adali MB, Stratta L (2023) Modernizing manufacturing of parenteral products: from batch to continuous lyophilization. In: Continuous pharmaceutical processing and process analytical technology. CRC Press, pp 285–307

    Google Scholar 

  • Prothero J (2002) Perspectives on dimensional analysis in scaling studies. Perspect Biol Med 45(2):175–189

    Article  PubMed  Google Scholar 

  • Quinn R (2013) Rethinking antibiotic research and development: World War II and the penicillin collaborative. Am J Public Health 103(3):426–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Rader R (2018) Current challenges in bioprocesses development. BioPharm Int 31(3):12–13

    Google Scholar 

  • Rathore AS, Mishra S, Nikita S, Priyanka P (2021) Bioprocess control: current progress and future perspectives. Life 11(6):557

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathore AS, Nikita S, Thakur G, Mishra S (2023) Artificial intelligence and machine learning applications in biopharmaceutical manufacturing. Trends Biotechnol 41(4):497–510

    Article  CAS  PubMed  Google Scholar 

  • Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C (2023) Training strategies from the undergraduate degree in chemical engineering focused on bioprocesses using PBL in the last decade. Educ Chem Eng 44:104–116

    Article  Google Scholar 

  • Roussos S, Olmos A, Raimbault M, Saucedo-Castañeda G, Lonsane BK (1991) Strategies for large scale inoculum development for solid state fermentation system: conidiospores of Trichoderma harzianum. Biotechnol Tech 5(6):415–420

    Article  Google Scholar 

  • Sarker IH (2021) Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput Sci 2(6):420

    Article  PubMed  PubMed Central  Google Scholar 

  • Schaechter M, Kolter R, Buckley M (2004) Microbiology in the 21st century: where are we and where are we going? American Academy of Microbiology, Washington DC

    Google Scholar 

  • Silindir M, Özer AY (2009) Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. Fabad J Pharm Sci 34(1):43

    Google Scholar 

  • Singh A, Singh B, Ward O (2012) Potential applications of bioprocess technology in petroleum industry. Biodegradation 23:865–880

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Pandey S, Singh RP, Gani KM, Yadav M, Thanki A, Kumar T (2020) Bioreactor and bioprocess technology for bioremediation of domestic and municipal wastewater. In: Bioremediation of pollutants. Elsevier, pp 251–273

    Chapter  Google Scholar 

  • Sonnleitner B (2006) New concepts for quantitative bioprocess research and development. In: Metabolic engineering, pp 155–188

    Google Scholar 

  • Spier MR, Vandenberghe LPDS, Medeiros ABP, Soccol CR (2011) Application of different types of bioreactors in bioprocesses. In: Bioreactors: design, properties and applications, pp 53–87

    Google Scholar 

  • Sun H, Zhao W, Mao X, Li Y, Wu T, Chen F (2018) High-value biomass from microalgae production platforms: strategies and progress based on carbon metabolism and energy conversion. Biotechnol Biofuels 11:1–23

    Google Scholar 

  • Sweetlove LJ, Nielsen J, Fernie AR (2017) Engineering central metabolism—a grand challenge for plant biologists. Plant J 90(4):749–763

    Article  CAS  PubMed  Google Scholar 

  • Tekere M, Jacob-Lopes E, Zepka LQ (2019) Microbial bioremediation and different bioreactors designs applied. In: Biotechnology and bioengineering, pp 1–19

    Google Scholar 

  • Tung G, Morris K, Perrone P, Reinbigler R, Miller S, Lai C (2019) The value of plug-and-play automation in single-use technology. BioProcess Int 17:12–19

    Google Scholar 

  • Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP (2023) Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 15(7):1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh G (2013) Biopharmaceuticals: biochemistry and biotechnology. Wiley, Chichester

    Google Scholar 

  • Wang SJ, Zhong JJ (2007) Bioreactor engineering. In: Bioprocessing for value-added products from renewable resources. Elsevier, pp 131–161

    Chapter  Google Scholar 

  • Wang G, Tang W, Xia J, Chu J, Noorman H, van Gulik WM (2015) Integration of microbial kinetics and fluid dynamics toward model-driven scale-up of industrial bioprocesses. Eng Life Sci 15(1):20–29

    Article  CAS  Google Scholar 

  • Wheelwright SM (1989) The design of downstream processes for large-scale protein purification. J Biotechnol 11(2–3):89–102

    Article  CAS  Google Scholar 

  • Whitford WG, Lundgren M, Fairbank A (2018) Cell culture media in bioprocessing. In: Biopharmaceutical processing. Elsevier, pp 147–162

    Chapter  Google Scholar 

  • Xia T, Malasarn D, Lin S, Ji Z, Zhang H, Miller RJ, Keller AA, Nisbet RM, Harthorn BH, Godwin HA, Lenihan HS (2013) Implementation of a multidisciplinary approach to solve complex nano EHS problems by the UC center for the environmental implications of nanotechnology. Small 9(9–10):1428–1443

    Article  CAS  PubMed  Google Scholar 

  • Zhong JJ (2011) 2.14—bioreactor engineering. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Academic Press, Burlington, pp 165–177

    Chapter  Google Scholar 

  • Zlokarnik M (2006) Scale-up in chemical engineering. Wiley, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Vimal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, F. et al. (2024). Introduction to Bioprocess Technology. In: Dhagat, S., Jujjavarapu, S.E., Sampath Kumar, N., Mahapatra, C. (eds) Recent Advances in Bioprocess Engineering and Bioreactor Design. Springer, Singapore. https://doi.org/10.1007/978-981-97-1451-3_1

Download citation

Publish with us

Policies and ethics