Skip to main content

Identification of Hub Biomarkers and Immune Cell Infiltration Characteristics in Ulcerative Colitis by Bioinformatics Analysis and Machine Learning

  • Conference paper
  • First Online:
Proceedings of 2023 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2023) (MICAD 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1166))

  • 90 Accesses

Abstract

Ulcerative colitis (UC) is a chronic inflammatory disease characterized by abdominal pain, diarrhea, mucous pus, and blood stool. However, effective and reliable diagnostic biomarkers are not available. This study aimed to identify the key biomarkers and potential therapeutic targets of UC and analyze the role of immune cell infiltration in the pathogenesis of the disease. Methods: Acquired the microarray dataset GSE94648 for UC from the Gene Expression Omnibus database. Using the limma package in R software, differentially expressed genes (DEGs) were examined. Obtain potential key genes by intersecting weighted gene co-expression networks with differentially expressed genes (DEGs), and perform enrichment analysis on key genes. The hub genes were confirmed using two machine learning algorithms, LASSO and RandomFores, and their diagnostic value was estimated. Furthermore, the level of 22 immune cell infiltration in UC patients was evaluated using the CIBERSORT method. Results: A total of 201 genes with differential expression were discovered. The combination of differentially expressed genes and WGCNA analysis resulted in the identification of 95 intersecting genes altogether. Subsequently, CARD16, GJB6, HIST1H4H, KCNJ15, and SLC22A4 were ultimately identified as potential biomarkers for UC by machine learning algorithms and ROC curves. Immune infiltration analysis revealed that T cells follicular helper, T cells regulatory, Macrophages M0 may be related to the advancement of UC. Conclusion: CARD16, GJB6, HIST1H4H, KCNJ15, and SLC22A4 genes could be potential biomarkers and therapeutic targets for UC. Immune cell infiltration may be crucial to the development and progression of UC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feuerstein, J.D., Moss, A.C., Farraye, F. A.:  Ulcerative colitis. Mayo Clin. Proc. 94(7),  1357–1373 (2019). https://doi.org/10.1016/j.mayocp.2019.01.018

  2. Ng, S.C., et al.:  Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 390(10114), 2769–2778 (2017). https://doi.org/10.1016/s0140-6736(17)32448-0

  3. Ungaro, R., Mehandru, S., Allen, P.B., Peyrin-Biroulet, L., Colombel, J.F.: Ulcerative colitis. Lancet 389(10080), 1756–1770 (2017). https://doi.org/10.1016/s0140-6736(16)32126-2

    Article  Google Scholar 

  4. Roberts-Thomson, I.C., Bryant, R.V., Costello, S.P.: Uncovering the cause of ulcerative colitis. JGH Open 3(4), 274–276 (2019). https://doi.org/10.1002/jgh3.12216

    Article  Google Scholar 

  5. Tripathi, K.,  Feuerstein, J.D.:  New developments in ulcerative colitis: latest evidence on management, treatment, and maintenance. Drugs Context 8, 212572 (2019). https://doi.org/10.7573/dic.212572

  6. Carrière, J., Darfeuille-Michaud, A., Nguyen, H. T.: Infectious etiopathogenesis of Crohn's disease. World J Gastroenterol, 20(34): 12102–12117 (2014).http://https://doi.org/10.3748/wjg.v20.i34.12102

  7. Ng, S.C., et al.: Geographical variability and environmental risk factors in inflammatory bowel disease. Gut 62(4), 630–649 (2013). https://doi.org/10.1136/gutjnl-2012-303661

    Article  Google Scholar 

  8. Sarvestani, S.K., et al.: Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat. Commun. 12(1), 262 (2021). https://doi.org/10.1038/s41467-020-20351-5

  9. Shi, W., et al.: Analysis of Genes involved in ulcerative colitis activity and tumorigenesis through systematic mining of gene co-expression networks. Front Physiol 10, 662 (2019). https://doi.org/10.3389/fphys.2019.00662

    Article  Google Scholar 

  10. Xu, M., et al.:  Identification of Immune-Related Gene Signature and Prediction of CeRNA Network in Active Ulcerative Colitis. Front Immunol. 13. 855645 (2022). https://doi.org/10.3389/fimmu.2022.855645

  11. Kotlarz, D., et al.: Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology 143(2), 347–355 (2012). https://doi.org/10.1053/j.gastro.2012.04.045

    Article  Google Scholar 

  12. Sanchez-Munoz, F., Dominguez-Lopez, A., Yamamoto-Furusho, J.K.: Role of cytokines in inflammatory bowel disease. World J. Gastroenterol. 14(27), 4280–4288 (2008). https://doi.org/10.3748/wjg.14.4280

    Article  Google Scholar 

  13. Shah, N., Kammermeier, J., Elawad, M., Glocker, E.O.: Interleukin-10 and interleukin-10-receptor defects in inflammatory bowel disease. Curr. Allergy Asthma Rep. 12(5), 373–379 (2012). https://doi.org/10.1007/s11882-012-0286-z

    Article  Google Scholar 

  14. de Souza, H.S., Fiocchi, C.: Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol. 13(1), 13–27 (2016). https://doi.org/10.1038/nrgastro.2015.186

    Article  Google Scholar 

  15. Maul, J., Zeitz, M.: Ulcerative colitis: immune function, tissue fibrosis and current therapeutic considerations. Langenbecks Arch. Surg. 397(1), 1–10 (2012). https://doi.org/10.1007/s00423-011-0789-4

    Article  Google Scholar 

  16. Neurath, M.F.: Targeting immune cell circuits and trafficking in inflammatory bowel disease. Nat. Immunol. 20(8), 970–979 (2019). https://doi.org/10.1038/s41590-019-0415-0

    Article  Google Scholar 

  17. Long, Y., et al.: The imbalance of circulating follicular Helper T Cells and follicular regulatory T Cells is associated with disease activity in patients with ulcerative colitis. Front Immunol 11, 104 (2020). https://doi.org/10.3389/fimmu.2020.00104

  18. Xue, G., et al.: Aberrant alteration of follicular T helper cells in ulcerative colitis patients and its correlations with interleukin-21 and B cell subsets. Medicine (Baltimore) 98(10), e14757 (2019)

    Google Scholar 

  19. Yamada, A., Arakaki, R., Saito, M., Tsunematsu, T., Kudo, Y., Ishimaru, N.: Role of regulatory T cell in the pathogenesis of inflammatory bowel disease. World J. Gastroenterol. 22(7), 2195–2205 (2016). https://doi.org/10.3748/wjg.v22.i7.2195

    Article  Google Scholar 

  20. Koepsell, H.: Organic cation transporters in health and disease. Pharmacol. Rev. 72(1), 253–319 (2020). https://doi.org/10.1124/pr.118.015578

    Article  Google Scholar 

  21. Okada, Y., et al.: SLC22A4 polymorphism and rheumatoid arthritis susceptibility: a replication study in a Japanese population and a metaanalysis. J. Rheumatol. 35(9), 1723–1728 (2008)

    Google Scholar 

  22. Ren, T.L., et al.: Association of SLC22A4 gene polymorphism with Rheumatoid arthritis in the Chinese population. J. Biochem. Mol. Toxicol. 28(5), 206–210 (2014). https://doi.org/10.1002/jbt.21554

    Article  Google Scholar 

  23. McCann, M.J., et al.: The effect of turmeric (Curcuma longa) extract on the functionality of the solute carrier protein 22 A4 (SLC22A4) and interleukin-10 (IL-10) variants associated with inflammatory bowel disease. Nutrients 6(10), 4178–4190 (2014). https://doi.org/10.3390/nu6104178

    Article  Google Scholar 

  24. Scalise, M., Console, L., Galluccio, M., Pochini, L., Indiveri, C.: Chemical Targeting of membrane transporters: insights into structure/function relationships. ACS Omega 5(5), 2069–2080 (2020). https://doi.org/10.1021/acsomega.9b04078

    Article  Google Scholar 

  25. Shimizu, T., et al.: Gene ablation of carnitine/organic cation transporter 1 reduces gastrointestinal absorption of 5-aminosalicylate in mice. Biol. Pharm. Bull. 38(5), 774–780 (2015). https://doi.org/10.1248/bpb.b15-00109

  26. Karasawa, T., et al.: Oligomerized CARD16 promotes caspase-1 assembly and IL-1β processing. FEBS Open Bio 5, 348–356 (2015). https://doi.org/10.1016/j.fob.2015.04.011

    Article  Google Scholar 

  27. Lara-Reyna, S., et al.: Inflammasome activation: from molecular mechanisms to autoinflammation. Clin. Transl Immunology 11(7), e1404 (2022)

    Google Scholar 

  28. Jagger, D.J., Forge, A.: Connexins and gap junctions in the inner ear-it’s not just about K+ recycling. Cell Tissue Res. 360(3), 633–644 (2015). https://doi.org/10.1007/s00441-014-2029-z

  29. Kikuchi, T., Kimura, R.S., Paul, D.L., Adams, J.C.: Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat. Embryol. (Berl.) 191(2), 101–118 (1995). https://doi.org/10.1007/bf00186783

    Article  Google Scholar 

  30. Mammano, F.:  Inner ear connexin channels: roles in development and maintenance of cochlear function. Cold Spring Harb. Perspect. Med. 9(7) (2019). https://doi.org/10.1101/cshperspect.a033233

  31. Mammano, F., Bortolozzi, M.: Ca(2+) signaling, apoptosis and autophagy in the developing cochlea: milestones to hearing acquisition. Cell Calcium 70, 117–126 (2018). https://doi.org/10.1016/j.ceca.2017.05.006

    Article  Google Scholar 

  32. Xia, J.H., et al.: Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat. Genet. 20(4), 370–373 (1998). https://doi.org/10.1038/3845

    Article  Google Scholar 

  33. Kibar, Z., Der Kaloustian, V.M., Brais, B., Hani, V., Fraser, F.C., Rouleau, G.A.: The gene responsible for Clouston hidrotic ectodermal dysplasia maps to the pericentromeric region of chromosome 13q. Hum. Mol. Genet. 5(4), 543–547 (1996). https://doi.org/10.1093/hmg/5.4.543

    Article  Google Scholar 

  34. Rabionet, R., López-Bigas, N., Arbonès, M.L., Estivill, X.: Connexin mutations in hearing loss, dermatological and neurological disorders. Trends Mol. Med. 8(5), 205–212 (2002). https://doi.org/10.1016/s1471-4914(02)02327-4

    Article  Google Scholar 

  35. Nakamura, S., et al.: KCNJ15 Expression and Malignant Behavior of Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 27(7), 2559–2568 (2020). https://doi.org/10.1245/s10434-019-08189-8

    Article  Google Scholar 

  36. Liu, Y., et al.:  Loss of KCNJ15 expression promotes malignant phenotypes and correlates with poor prognosis in renal carcinoma. Cancer Manag. Res. 11, 1211–1220 (2019).  https://doi.org/10.2147/cmar.S184368

  37. Zhou, X., et al.: Identification of genetic risk factors in the Chinese population implicates a role of immune system in Alzheimer's disease pathogenesis. Proc. Natl. Acad. Sci. USA 115(8),  1697–1706 (2018).  https://doi.org/10.1073/pnas.1715554115

Download references

Acknowledgment

The research was supported by National Natural Science Foundation of China (81600422) and the Basic Research Program of Shanxi Province (Free exploration category) (202303021211108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z., Shen, X., Wang, Y., Jin, C., Yang, C. (2024). Identification of Hub Biomarkers and Immune Cell Infiltration Characteristics in Ulcerative Colitis by Bioinformatics Analysis and Machine Learning. In: Su, R., Zhang, YD., Frangi, A.F. (eds) Proceedings of 2023 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2023). MICAD 2023. Lecture Notes in Electrical Engineering, vol 1166. Springer, Singapore. https://doi.org/10.1007/978-981-97-1335-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1335-6_25

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1334-9

  • Online ISBN: 978-981-97-1335-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics