Skip to main content

Surface Topography

  • Chapter
  • First Online:
Friction and Wear in Metals

Abstract

Surface interactions are influenced by the contacting materials and the surface’s form as well. An engineering material’s surface shape is influenced by both the manufacturing method and the nature of the raw. When analyzed at a small enough scale, all solid surfaces are asymmetrical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaik MA, Golla BR (2020) Two body abrasion wear behaviour of Cu–ZrB2 composites against SiC emery paper. Wear 450:203260

    Google Scholar 

  2. Le HR, Sutcliffe MPF (2002) Measurements of friction in strip drawing under thin film lubrication. Tribol Int 35(2):123–128

    Google Scholar 

  3. Scharf TW, Prasad SV (2013) Solid lubricants: a review. J Mater Sci 48:511–531

    Google Scholar 

  4. Lansdown AR (1996) Lubrication and lubricant selection. A practical guide. MEP, London

    Google Scholar 

  5. Hutchings I, Shipway P (2017) Tribology: friction and wear of engineering materials. Butterworth-Heinemann

    Google Scholar 

  6. Torres H, Rodríguez RM, Prakash B (2018) Tribological behaviour of self-lubricating materials at high temperatures. Int Mater Rev 63:309–340

    Article  CAS  Google Scholar 

  7. American Society of Mechanical Engineers (2003) Standards Committee B46. Classification, Designation of Surface Qualities, & American National Standards Institute. Surface texture: surface roughness, waviness and lay. Amer Society of Mechanical

    Google Scholar 

  8. Bull SJ, Berasetegui EG, Page TF (2004) Modelling of the indentation response of coatings and surface treatments. Wear 256(9–10):857–866

    Article  CAS  Google Scholar 

  9. Greenwood JA, Williamson JBP (1966) Contact of nominally flat rough surfaces. Proc Roy Soc Lond A 295:300–319

    Article  CAS  Google Scholar 

  10. Hamilton GM (1983) Explicit equations for the stresses beneath a sliding spherical contact. Proc Inst Mech Eng C J Mech Eng Sci 197(1):53–59

    Google Scholar 

  11. Johnson KL (1985) Contact mechanics. Cambridge University Press

    Google Scholar 

  12. Neale MJ (1995) The tribology handbook. Elsevier

    Google Scholar 

  13. Åström KJ, Furuta K (2000) Swinging up a pendulum by energy control. Automatica 36(2):287–295

    Google Scholar 

  14. Thomas TR (1982) Rough surfaces. Longman, London, UK

    Google Scholar 

  15. Decrozant-Triquenaux J, Pelcastre L, Prakash B, Hardell J (2021) Influence of lubrication, tool steel composition, and topography on the high temperature tribological behavior of aluminum. Friction 9:155–168

    Google Scholar 

  16. Karimzadeh A, Rouhaghdam AS, Aliofkhazraei M, Miresmaeili R (2020) Sliding wear behavior of Ni–Co–P multilayer coatings electrodeposited by pulse reverse method. Tribol Int 141:105914

    Google Scholar 

  17. Whitehouse DJ (1994) Handbook of surface metrology. Institute of Physics Publishing, Bristol, UK

    Google Scholar 

  18. Mohammed A, Fener M, Comakli R, İnce İ, Balci MC, Kayabalı K (2021) Investigation of the relationships between basic physical and mechanical properties and abrasion wear resistance of several natural building stones used in Turkey. J Build Eng 42:103084

    Article  Google Scholar 

  19. Bunshah RF (ed) (2001) Handbook of hard coatings. Noyes Publications, New Jersey

    Google Scholar 

  20. Zhang S, Zhang X (2012) Toughness evaluation of hard coatings and thin flims—critical review. Thin Solid Films 520:2375–2389

    Article  CAS  Google Scholar 

  21. Tobie T (2000) Einfluss der Einsatzhartungstiefe auf die Grubchen- und Zahnfusstragfahigkeit grosser. Zahnrader, FVA Absclussbericht

    Google Scholar 

  22. Totten G, Howes M, Inoue T (eds) (2002) Handbook of residual stress and deformation of steel. ASM International, Materials Park

    Google Scholar 

  23. Savaria V, Bridier F, Bocher P (2014) Measuring in-depth residual stress gradients: the challenge of induction hardened parts. In: Materials science forum, vol 768. Trans Tech Publications Ltd., pp 158–165

    Google Scholar 

  24. Ferreira DF, Vieira JS, Rodrigues SP, Miranda G, Oliveira FJ, Oliveira JM (2022) Dry sliding wear and mechanical behaviour of selective laser melting processed 18Ni300 and H13 steels for moulds. Wear 488:204179

    Google Scholar 

  25. Budinski KJ (1991) In: Bull SJ, Rickerby DS (eds) Surface engineering for wear resistance. Prentice Hall

    Google Scholar 

  26. Child HC (1980) Surface hardening of steel. Engineering Design Guide No. 37, Oxford University Press

    Google Scholar 

  27. Oh MC, Sharma A, Lee H, Ahn B (2021) Phase separation and mechanical behavior of AlCoCrFeNi-X (X = Cu, Mn, Ti) high entropy alloys processed via powder metallurgy. Intermetallics 139:107369

    Article  CAS  Google Scholar 

  28. Straffelini G (2015) Chapter 6: Materials for tribology. Friction and wear. Springer tracts in mechanical engineering. Springer, Switzerland

    Google Scholar 

  29. Steen WM, Mazumder J (2010) Laser material processing. Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Samarai, R.A., Al-Douri, Y. (2024). Surface Topography. In: Friction and Wear in Metals. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-97-1168-0_8

Download citation

Publish with us

Policies and ethics