Skip to main content

Wear in Metals

  • Chapter
  • First Online:
Friction and Wear in Metals

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

  • 49 Accesses

Abstract

Two significant advancements were achieved in the second half of the twentieth century that are intended to increase the resistance of engineering factors to dry (continuous or intermittent) contact with the counterbody. The first is a thin surface coating, typically made of a hard ceramic, and the second is the treatment for the surface itself using heat and/or chemicals. Numerous studies on the tribology of new structures have brought to light the fact that while the majority of these advancements do provide extreme durability, their long-term dependability is frequently not guaranteed. The fact that safety necessitates expensive processing methods, flaws, and an interface that will lead to non-standard failures all means that they can no longer be used for all purposes and are no longer considered a universal panacea

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sha X, Yue W, Qin W, Wang C (2019) Enhanced tribological behaviors of sintered polycrystalline diamond by annealing treatment under humid condition. Int J Refract Metal Hard Mater 80:85–96

    Article  CAS  Google Scholar 

  2. Sha X, Feng B, Yue W, Wang C (2021) Grain size dependent tribological behaviors of 700 °C annealed polycrystalline diamond. Int J Refract Metal Hard Mater 94:105406

    Article  CAS  Google Scholar 

  3. Zou Q, Wu H, Li Y, Wang X, Dai L, Luo Y (2022) Effects of carbon nanotubes and sintering parameters on microstructure and properties of PCD. Diam Relat Mater 128:109293

    Article  CAS  Google Scholar 

  4. Bulut B, Gunduz O, Baydogan M, Kayali ES (2021) Determination of matrix composition for diamond cutting tools according to the hardness and abrasivity properties of rocks to be cut. Int J Refract Metal Hard Mater 95:105466

    Article  CAS  Google Scholar 

  5. Dong S, Wang W, Gao Y, Deng G (2022) Tribological properties of different-sized black phosphorus nanosheets as water-based lubrication additives for steel/titanium alloy wear contact. Metals 12:288

    Article  CAS  Google Scholar 

  6. Karakulak E, Küçüker YB (2018) Effect of Si addition on microstructure and wear properties of Mg–Sn as-cast alloys. J Mag Alloys 6(4):384–389

    Google Scholar 

  7. Bijwe J, Kumar M (2007) Optimization of steel wool contents in non-asbestos organic (NAO) friction composites for best combination of thermal conductivity and tribo-performance. Wear 263:1243–1248

    Article  CAS  Google Scholar 

  8. Sun H, Li A, Zhou Y, Liao X, Ge D (2019) Dry wear characteristics of machined ZL109 aluminum-silicon alloy surface under unidirectional and reciprocating rolling-contact friction. Surf Topogr Metrol Prop 8:015001

    Article  Google Scholar 

  9. Osipov VN, Fadin YA, Nikanorov SP (2020) Wear and coefficient of friction of a supermodified hypereutectic aluminum-silicon alloy. Tech Phys 65:1981–1986

    Article  CAS  Google Scholar 

  10. Li Z, Zhao S, Ritchie RO, Meyers MA (2019) Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog Mater Sci 102:296–345

    Article  CAS  Google Scholar 

  11. Sharma A, Oh MC, Ahn B (2020) Microstructural evolution and mechanical properties of non-Cantor AlCuSiZnFe lightweight high entropy alloy processed by advanced powder metallurgy. Mater Sci Eng A 797:140066

    Article  CAS  Google Scholar 

  12. Oh MC, Sharma A, Lee H, Ahn B (2021) Phase separation and mechanical behavior of AlCoCrFeNi-X (X=Cu, Mn, Ti) high entropy alloys processed via powder metallurgy. Intermetallics 139:107369

    Article  CAS  Google Scholar 

  13. Straffelini G (2015) Friction and wear, chap. 6. In: Materials for tribology, Springer tracts in mechanical engineering. Springer International Publishing, Switzerland

    Google Scholar 

  14. Takeda M, Onishi T, Nakakubo S, Fujimoto S (2009) Physical properties of iron-oxide scales on Si-containing steels at high temperature. Mater Trans 50:2242–2246

    Article  CAS  Google Scholar 

  15. Wang Q, Liu R, Liu P, Liu C, Sun L, Zhang H (2022) Effects of silica fume on the abrasion resistance of low-heat Portland cement concrete. Constr Build Mater 329:127165

    Article  CAS  Google Scholar 

  16. Lim SC, Ashby MF (1987) Overview no. 55 wear-mechanism maps. Acta Metallurg 35(1):1–24

    Google Scholar 

  17. Clayton P (1996) Tribological aspects of wheel-rail contact: a review of recent experimental research. Wear 191(1–2):170–183

    Article  CAS  Google Scholar 

  18. Sultan MTH, Jamir MRM, Majid MSA, Azmi AI, Saba N (eds) (2021) Tribological applications of composite materials. Springer Singapore

    Google Scholar 

  19. Straffelini G, Pellizzari M, Maines L (2011) Effect of sliding speed and contact pressure on the oxidative wear of austempered ductile iron. Wear 270(9–10):714–719

    Article  CAS  Google Scholar 

  20. Tiedje NS (2010) Solidification, processing and properties of ductile cast iron. Mater Sci Technol 26:505–514

    Article  CAS  Google Scholar 

  21. Straffelini G, Maines L (2013) The relationship between wear of semimetallic friction materials and pearlitic cast iron in dry sliding. Wear 307(1–2):75–80

    Article  CAS  Google Scholar 

  22. Leach PW, Borland DW (1983) The unlubricated wear of flake graphite cast iron. Wear 85(2):257–266

    Article  CAS  Google Scholar 

  23. Abid SR, Hilo AN, Daek YH (2018) Experimental tests on the underwater abrasion of engineered cementitious composites. Constr Build Mater 171:779–792

    Article  CAS  Google Scholar 

  24. Fontanari V, Benedetti M, Straffelini G, Girardi C, Giordanino L (2013) Tribological behavior of the bronze–steel pair for worm gearing. Wear 302(1–2):1520–1527

    Google Scholar 

  25. Silva CV, Zorzi JE, Cruz RC, Dal Molin DC (2019) Experimental evidence that micro and macrostructural surface properties markedly influence on abrasion resistance of concretes. Wear 422:191–200

    Article  Google Scholar 

  26. Rainforth WM, Leonard AJ, Perrin C, Bedolla-Jacuinde A, Wang Y, Jones H, Luo Q (2002) High resolution observations of friction-induced oxide and its interaction with the worn surface. Tribol Int 35:731–748

    Article  CAS  Google Scholar 

  27. Uğurlu Aİ, Karakoç MB, Özcan A (2021) Effect of binder content and recycled concrete aggregate on freeze-thaw and sulfate resistance of GGBFS based geopolymer concretes. Constr Build Mater 301:124246

    Article  Google Scholar 

  28. Cheyad SM, Hilo AN, Al-Gasham TS, Al-Gasham TS (2022) Comparing the abrasion resistance of conventional concrete and geopolymer samples. Mater Today Proc 56:1832–1839

    Article  CAS  Google Scholar 

  29. Yan B, Duan P, Ren D (2017) Mechanical strength, surface abrasion resistance and microstructure of fly ash-metakaolin-sepiolite geopolymer composites. Ceram Int 43(1):1052–1060

    Article  CAS  Google Scholar 

  30. Bailey R, Sun Y (2013) Unlubricated sliding friction and wear characteristics of thermally oxidized commercially pure titanium. Wear 308:61–70

    Article  CAS  Google Scholar 

  31. Straffelini G, Andriani A, Tesi B, Molinari A, Galvanetto E (2004) Lubricated rolling–sliding behaviour of ion nitrided and untreated Ti–6Al–4V. Wear 256(3–4):346–352

    Article  CAS  Google Scholar 

  32. Tang H, Li P, Li Z, Li J, Zhao J, Xu Y, Xiao P (2022) Braking behaviours of C/C–SiC mated with iron/copper-based PM in dry, wet and salt fog conditions. Ceram Int 48(3):3261–3273

    Article  CAS  Google Scholar 

  33. Adachi K, Kato K, Chen N (1997) Wear map of ceramics. Wear 203:291–301

    Article  Google Scholar 

  34. Hsu SM, Shen M (2004) Wear prediction of ceramics. Wear 256:867–878

    Article  CAS  Google Scholar 

  35. Bushan B (ed) (2001) Modern tribology handbook, vol 2. CRC Press, Boca Raton

    Google Scholar 

  36. Chacon-Nava JG, Stott FH, de la Torre SD, Martinez-Villafane A (2002) Erosion of alumina and silicon carbide at low-impact velocities. Mater Lett 55:269–273

    Article  CAS  Google Scholar 

  37. Colclough AF, Yeomans JA (1997) Hard particle erosion of silicon carbide and silicon carbide-titanium diboride from room temperature to 1000 °C. Wear 209(1–2):229–236

    Article  CAS  Google Scholar 

  38. Wu Y, Liu Y, Chen H, Chen Y, Xie D (2019) An investigation into the failure mechanism of severe abrasion of high-speed train brake discs on snowy days. Eng Fail Anal 101:121–134

    Article  Google Scholar 

  39. Dinaharan S, Karpagarajan R, Palanivel J, Selvam DR, (2021) Microstructure and sliding wear behavior of fly ash reinforced dual phase brass surface composites synthesized through friction stir processing. Mater Chem Phys 263:124430

    Google Scholar 

  40. Pirso J, Voljus M, Juhani K, Letunovits S (2009) Two-body dry abrasive wear of cermets. Wear 266(1–2):21–29

    Article  CAS  Google Scholar 

  41. Vankataraman B, Sundararajan G (2002) The influence of sample geometry on the friction behaviour of carbon-carbon composites. Acta Metall Mater 50:1153–1163

    Article  Google Scholar 

  42. Straffelini G, Scardi P, Molinari A, Polini R (2001) Characterization and sliding behavior of HFCVD diamond coatings on WC–Co. Wear 249(5–6):461–472

    Article  CAS  Google Scholar 

  43. Zhang W, Zhang S, Dai W, Wang X, Liu B (2021) Erosion wear characteristics of cemented carbide for mud pulser rotor. Int J Refract Metal Hard Mater 101:105666

    Article  CAS  Google Scholar 

  44. Chen F, Li Z, Luo Y, Li DJ, Ma WJ, Zhang C, Tang HX, Li F, Xiao P (2021) Braking behaviors of Cu-based PM brake pads mating with C/C–SiC and 30CrMnSi steel discs under high-energy braking. Wear 486:204019

    Google Scholar 

  45. Deng G, Tieu AK, Lan X, Su L, Wang L, Zhu Q, Zhu H (2020) Effects of normal load and velocity on the dry sliding tribological behaviour of CoCrFeNiMo0.2 high entropy alloy. Tribol Int 144:106116

    Google Scholar 

  46. Wu W, Wei B, Li G, Chen L, Wang J, Ma J (2022) Study on ammonia gas high temperature corrosion coupled erosion wear characteristics of circulating fluidized bed boiler. Eng Fail Anal 132:105896

    Article  CAS  Google Scholar 

  47. Zum Gahr KH (1987) Microstructure and wear of materials, vol 10. Elsevier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Samarai, R.A., Al-Douri, Y. (2024). Wear in Metals. In: Friction and Wear in Metals. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-97-1168-0_3

Download citation

Publish with us

Policies and ethics