Skip to main content

High Performance Computing and Its Application in Computational Biomimetics

  • Chapter
  • First Online:
High Performance Computing in Biomimetics

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 68 Accesses

Abstract

The convergence of High Performance Computing (HPC) and computational biomimetics has ushered in a new era of scientific exploration and technological innovation. This book chapter shows the intricate relationship between HPC and the field of computational biomimetics, demonstrating how the synergistic interplay between these two domains has revolutionized our understanding of nature-inspired design and complex biological processes. Through a comprehensive analysis of cutting-edge research and architecture, this chapter highlights the pivotal role of HPC in simulating, modeling, and deciphering biological phenomena with remarkable accuracy and efficiency. The chapter begins by elucidating the fundamental principles of HPC and computational biomimetics, elucidating how biological systems serve as inspiration for the development of novel technologies and solutions. It subsequently looks into the underlying architecture and capabilities of modern HPC systems, elucidating how their parallel processing prowess enables the simulation of intricate biological processes and the exploration of large-scale biomimetic design spaces. A significant portion of the chapter is devoted to exploring diverse applications of HPC in the field of computational biomimetics. These applications encompass a wide spectrum of disciplines, ranging from fluid dynamics and materials science to robotics and drug discovery. Each application is accompanied by real-world examples that showcase the transformative impact of HPC-driven computational biomimetics on advancing scientific knowledge and engineering innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dongarra, J., et al.: The international exascale software project roadmap. Int. J. High Perform. Comput. Appl.Comput. Appl. 25(1), 3–60 (2011)

    Article  Google Scholar 

  2. Hwu, W.W., Kirk, D.B.: The landscape of parallel computing research: a view from Berkeley. Comput. Sci. Eng. 19(2), 80–90 (2017)

    Google Scholar 

  3. Chapman, B., et al.: Using OpenMP: Portable Shared Memory Parallel Programming. MIT Press (2007)

    Google Scholar 

  4. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill (2003)

    Google Scholar 

  5. Gao, W., Ovchinnikov, S.: High-performance computing in finance. ACM Comput. Surv.Comput. Surv. 50(3), 43 (2017)

    Google Scholar 

  6. Dongarra, J., et al.: The international exascale software project roadmap. Int. J. High Perform. Comput. Appl.Comput. Appl. 28(3), 201–290 (2014)

    Google Scholar 

  7. Kuhlman, C.J., Reed, D.A.: Computing the universe: simulating the cosmos from grand challenge to desktop. Sci. Am. 286(2), 42–49 (2002)

    Google Scholar 

  8. Coveney, P.V., Highfield, R.R.: The computation-powered revolution: building the virtual universe. J. Comput. Sci.Comput. Sci. 45, 101151 (2020)

    Google Scholar 

  9. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  10. Jagadish, H.V., et al.: Big data and its technical challenges. Commun. ACM. ACM 57(7), 86–90 (2014)

    Article  Google Scholar 

  11. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit. In: Proceedings of the 44th Annual International Symposium on Computer Architecture, pp. 1–12 (2017)

    Google Scholar 

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  13. Bangerth, W., Heister, T., Heltai, L., Kronbichler, M., Maier, M.: Algorithms and data structures for massive parallelism on large-scale machines. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2068), 20150189 (2016)

    Google Scholar 

  14. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann (1999)

    Google Scholar 

  15. Gustafson, J.L.: Reevaluating Amdahl’s law. Commun. ACM. ACM 31(5), 532–533 (1988)

    Article  Google Scholar 

  16. Foster, I., Lusk, E.: The globus project: a status report. In: Proceedings of the 7th IEEE Symposium on High Performance Distributed Computing, pp. 4–10 (1995)

    Google Scholar 

  17. Margo, D.W.: Supercomputers: charting the future of cyberinfrastructure. Issues Sci. Technol. 31(4), 43–51 (2015)

    Google Scholar 

  18. Dongarra, J., et al.: The international exascale software project roadmap. Int. J. High Perform. Comput. Appl.Comput. Appl. 34(1), 3–73 (2020)

    Google Scholar 

  19. Campbell-Kelly, M., Aspray, W.: Computer: A History of the Information Machine. Westview Press (1996)

    Google Scholar 

  20. Saraf, P.R., et al.: Scalable Parallel Computing: Technology, Architecture. McGraw-Hill, Programming (1990)

    Google Scholar 

  21. Sterling, T., et al.: High Performance Computing: Modern Systems and Practices. Morgan Kaufmann (1994)

    Google Scholar 

  22. Buyya, R., et al.: A case for economy grid architecture for service-oriented grid computing. J. Concurr. Comput.: Pract. Exp. 17(2–4), 337–355 (1999)

    Google Scholar 

  23. Becker, D., Sterling, T.: How to Build a Beowulf: A Guide to the Implementation and Application of PC Clusters. The MIT Press (1995)

    Google Scholar 

  24. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Comput. Graph. Forum 26(1), 80–113 (2007)

    Article  Google Scholar 

  25. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann (2012)

    Google Scholar 

  26. Fox, G., Williams, R.: Cloud Computing and Distributed Systems (No. UCB/EECS-2010-10). University of California, Berkeley, EECS Department (2010)

    Google Scholar 

  27. Armbrust, M., et al.: A view of cloud computing. Commun. ACM. ACM 53(4), 50–58 (2010)

    Article  Google Scholar 

  28. Bergman, K., et al.: Exascale Computing Study: Technology Challenges in Achieving Exascale Systems. Technical Report, U.S. Department of Energy (2008)

    Google Scholar 

  29. Sterling, T., et al.: High Performance Computing: Modern Systems and Practices. Morgan Kaufmann (2012)

    Google Scholar 

  30. Bangerth, W., et al.: Algorithms and data structures for massive parallelism on large-scale machines. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374(2068), 20150189 (2016)

    Google Scholar 

  31. Snir, M., et al.: MPI: The Complete Reference. The MIT Press (1996)

    Google Scholar 

  32. Kim, H.S., Gupta, A.: High-speed interconnects in high-performance computing: a review. IEEE Trans. Parallel Distrib. Syst.Distrib. Syst. 25(1), 3–14 (2014)

    Google Scholar 

  33. Hoefler, T., et al.: Scientific computing’s productivity grid: parallelization strategies for a multicore world. IEEE Comput.Comput. 43(4), 51–59 (2010)

    MathSciNet  Google Scholar 

  34. Alnasir, J.J.: Fifteen quick tips for success with HPC, i.e., responsibly BASHing that Linux cluster. PLoS Comput. Biol. 17(8), e1009207 (2021). https://doi.org/10.1371/journal.pcbi.1009207

  35. Carns, P.H., et al.: PVFS: a parallel file system for Linux clusters. In: Proceedings of the 4th Annual Linux Showcase and Conference (2000)

    Google Scholar 

  36. Gibson, G.A., et al.: A cost-effective, high-bandwidth storage architecture. In: Proceedings of the 5th International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 92–103 (1997)

    Google Scholar 

  37. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity data center network architecture. ACM SIGCOMM Comput. Commun. Rev. 38(4), 63–74 (2008)

    Article  Google Scholar 

  38. Gropp, W., et al.: Using MPI: Portable Parallel Programming with the Message-Passing Interface. MIT Press (1996)

    Google Scholar 

  39. Liu, C., Layton, R.A.: Task scheduling in high-performance computing systems. IEEE Trans. Parallel Distrib. Syst.Distrib. Syst. 24(7), 1340–1351 (2013)

    Google Scholar 

  40. Collins, W.D., et al.: The community climate system model version 3 (CCSM3). J. Clim.Clim. 19(11), 2122–2143 (2006)

    Article  Google Scholar 

  41. Houghton, J.T., et al.: Climate Change 2001: The Scientific Basis. Cambridge University Press (2001)

    Google Scholar 

  42. Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer Science & Business Media (2012)

    Google Scholar 

  43. Drikakis, D., Fureby, C.: High-Order Methods for Computational Physics. Cambridge University Press (2012)

    Google Scholar 

  44. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press (2001)

    Google Scholar 

  45. Rappe, A.K., et al.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 118(22), 11225–11236 (1996)

    Google Scholar 

  46. Fernández-Quintero, M.L., DeRose, E.F., Gabel, S.A., Mueller, G.A., Liedl, K.R.: Nanobody paratope ensembles in solution characterized by MD simulations and NMR. Int. J. Mol. Sci. 23(10), 5419 (2022). https://doi.org/10.3390/ijms23105419

  47. Schadt, E.E., Friend, S.H.: Computational approaches to genomics. Science 323(5918), 591–594 (2009)

    Google Scholar 

  48. Aluru, S., Tang, J.: Big data analytics in genomics. In: Big Data Analytics in Bioinformatics and Healthcare, pp. 41–63. CRC Press (2018)

    Google Scholar 

  49. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. CRC Press (1988)

    Book  Google Scholar 

  50. Springel, V., et al.: Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435(7042), 629–636 (2005)

    Article  Google Scholar 

  51. Lavecchia, A.: Machine-learning approaches in drug discovery: methods and applications. Drug Discov. TodayDiscov. Today 20(3), 318–331 (2015)

    Article  Google Scholar 

  52. Kitchen, D.B., Glen, R.C.: A review of in silico tools for the design of bioactive compounds: towards a paradigm shift in drug discovery. J. Chem. Inf. Model. 57(8), 1347–1354 (2017)

    Google Scholar 

  53. Martins, J.R.R.A., Lambe, A.B.: Multidisciplinary design optimization: a survey of architectures. AIAA J. 51(9), 2049–2075 (2013)

    Article  Google Scholar 

  54. Balaji, P., et al.: Advances in high-performance computing for CFD simulations. In: High-Performance Computing for Computational Science—VECPAR 2014, pp. 209–233. Springer (2016)

    Google Scholar 

  55. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media (2009)

    Google Scholar 

  56. Reichstein, M., et al.: Deep learning and process understanding for data-driven earth system science. Nature 566(7743), 195–204 (2019)

    Article  Google Scholar 

  57. Ghanem, R., & Higdon, D. (2007). Handbook of Uncertainty Quantification. Springer Science & Business Media.

    Google Scholar 

  58. Sophie, C.H., et al.: A geometrically adaptable heart valve replacement. Sci. Transl. Med. 12, eaay4006(2020). https://doi.org/10.1126/scitranslmed.aay4006

  59. Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education (2004)

    Google Scholar 

  60. Pacheco, P.: An Introduction to Parallel Programming. Morgan Kaufmann (2011)

    Google Scholar 

  61. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed Systems: Concepts and Design. Pearson Education (2011)

    Google Scholar 

  62. Tanenbaum, A.S., van Steen, M.: Distributed Systems: Principles and Paradigms. Pearson (2016)

    Google Scholar 

  63. Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann (2004)

    Google Scholar 

  64. Berman, F., Fox, G., Hey, A. (eds.): Grid Computing: Making the Global Infrastructure a Reality. Wiley (2003)

    Google Scholar 

  65. Buyya, R., Goscinski, A.: Cluster, cloud and grid computing: a comprehensive survey. Futur. Gener. Comput. Syst.. Gener. Comput. Syst. 46, 3–4 (2015)

    Google Scholar 

  66. Hwang, K., Dongarra, J.: Distributed and Cloud Computing: From Parallel Processing to the Internet of Things. Morgan Kaufmann (2016)

    Google Scholar 

  67. Dongarra, J., Meuer, H., Strohmaier, E. (eds.): TOP500 Supercomputer Sites: Performance, Statistics, and Analysis. Springer (2010)

    Google Scholar 

  68. Hockney, R.W., Jesshope, C.R.: Parallel Computers 2: Architecture, Programming, and Algorithms. CRC Press (1988)

    Google Scholar 

  69. Kirk, D.B., Hwu, W.M.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann (2016)

    Google Scholar 

  70. Smith, A.D., Nettles, S.M.: FPGAs for Software Programmers. Addison-Wesley Professional (2019)

    Google Scholar 

  71. Vincent, J.F.V., Mann, D.L.: Systematic technology transfer from biology to engineering. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 360(1791), 159–173 (2002)

    Google Scholar 

  72. Laflamme, S., Blouin, J.: Modeling flexible multibody systems with contact and friction, application to biological systems. Multibody Sys.Dyn.Sys.Dyn. 9(3), 283–309 (2003)

    Article  Google Scholar 

  73. Benyus, J.M.: Biomimicry: Innovation Inspired by Nature. William Morrow Paperbacks (1997)

    Google Scholar 

  74. Pahl, G., Beitz, W.: Engineering Design: A Systematic Approach. Springer (1996)

    Google Scholar 

  75. Speck, T., Speck, O.: Biomimetics: learning from nature. Biologist 51(3), 109–114 (2004)

    Google Scholar 

  76. Vincent, J.F.V.: Smart Structures and Materials. In Biomimetics: Nature-Based Innovation, pp. 175–191. Springer (2012)

    Google Scholar 

  77. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Mol. Biol. 9(9), 646–652 (2002)

    Article  Google Scholar 

  78. Miller, K.: Challenges and strategies in modeling complex biological systems. Multiscale Model. Simul. 16(2), 631–646 (2018)

    Google Scholar 

  79. Baldi, P., Brunak, S.: Bioinformatics: The Machine Learning Approach. MIT Press (2001)

    Google Scholar 

  80. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)

    Google Scholar 

  81. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)

    Book  Google Scholar 

  82. Ware, C., Franck, G.: Evaluating stereo and motion cues for visualizing information nets in three dimensions. ACM Trans. Graph. 15(2), 121–140 (1996)

    Article  Google Scholar 

  83. Suh, Y.K., Radcliffe, D.F.: CAD visualization for biomimetic design. In: Biomimetic Design Method for Innovation and Sustainability, pp. 71–94. Springer (2011)

    Google Scholar 

  84. Meyers, M.A., Chen, P.Y., Lin, A.Y.M., Seki, Y.: Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53(1), 1–206 (2008)

    Article  Google Scholar 

  85. Espinosa, H.D., Fischer, F.D.: Biomimetic design in nanotechnology: theoretical approaches and examples. Nanotechnol. Rev.. Rev. 1(1), 101–131 (2011)

    Google Scholar 

  86. Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P., Ritchie, R.O.: Bioinspired structural materials. Nat. Mater. 14(1), 23–36 (2015)

    Article  Google Scholar 

  87. Liu, Y., Chen, X., Ding, Y.: Biomimetic design and fabrication of lightweight and strong materials. Bioinspir. Biomim.. Biomim. 13(1), 011001 (2018)

    Google Scholar 

  88. Lentink, D., Dickinson, M.H.: Bioinspired flight control. Philos. Trans. R. Soc. B: Biol. Sci. 364(1521), 3521–3538 (2009)

    Google Scholar 

  89. Goldman, D.I., Revzen, S., Full, R.J.: Active tails enhance arboreal acrobatics in geckos. Proc. Natl. Acad. Sci. 110(46), 18716–18721 (2013)

    Google Scholar 

  90. Pfeifer, R., Bongard, J.: How the Body Shapes the Way we Think: A New View of Intelligence. MIT Press (2006)

    Google Scholar 

  91. Cutkosky, M.R.: Robotic grasping and contact: a review. Robot. Auton. Syst.Auton. Syst. 54(4), 345–353 (2005)

    Google Scholar 

  92. Schatz, M.C., Langmead, B.: The DNA data deluge. Nat. Biotechnol.Biotechnol. 30(5), 423–425 (2013)

    Google Scholar 

  93. O'Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R., Pruitt, K.D., et al.: Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucl.C Acids Res. 44(D1), D733–D745 (2016)

    Google Scholar 

  94. Dill, K.A., MacCallum, J.L.: The protein–folding problem, 50 years on. Science 338(6110), 1042–1046 (2012)

    Article  Google Scholar 

  95. Moult, J.: A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol.. Opin. Struct. Biol. 15(3), 285–289 (2005)

    Article  Google Scholar 

  96. Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J.: Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov.Discov. 3(11), 935–949 (2004)

    Article  Google Scholar 

  97. Friesner, R.A., Banks, J.L., Murphy, R.B., Halgren, T.A., Klicic, J.J., Mainz, D.T., Perry, J.K., et al.: Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 47(7), 1739–1749 (2004)

    Google Scholar 

  98. Durrant, J.D., McCammon, J.A.: Molecular dynamics simulations and drug discovery. BMC Biol. 9(1), 71 (2011)

    Article  Google Scholar 

  99. Gilson, M.K., Zhou, H.X.: Calculation of protein–ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct.. Rev. Biophys. Biomol. Struct. 36, 21–42 (2007)

    Article  Google Scholar 

  100. DeAngelis, D.L., Mooij, W.M.: Individual-based modeling of ecological and evolutionary processes. Annu. Rev. Ecol. Evol. Syst.. Rev. Ecol. Evol. Syst. 36, 147–168 (2005)

    Article  Google Scholar 

  101. Grimm, V., Railsback, S.F.: Pattern-oriented modelling: a ‘multi-scope’ for predictive systems ecology. Philos. Trans. R. Soc. B: Biol. Sci. 367(1586), 298–310 (2012)

    Article  Google Scholar 

  102. Bahaj, A.S., James, P.A.: Urban energy generation: the added value of photovoltaics in social housing. Appl. Energy 84(3), 256–268 (2007)

    Google Scholar 

  103. Siddiqui, O., Rehman, S.: Biomimicry: inspiration for energy-efficient building design. Sustain. Cities Soc. 37, 1–12 (2018)

    Google Scholar 

  104. Zheng, L., Hedrick, T.L., Mittal, R.: Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies. PLoS ONE 8(1), e53060 (2013). https://doi.org/10.1371/journal.pone.0053060

    Article  Google Scholar 

  105. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message-Passing Interface. MIT Press (1996)

    Google Scholar 

  106. Dongarra, J., Foster, I., Fox, G.: Sourcebook of Parallel Computing. Morgan Kaufmann (1997)

    Google Scholar 

  107. Berman, F., Fox, G., Hey, A.: Grid Computing: Making The Global Infrastructure a Reality. Wiley (2003)

    Google Scholar 

  108. Feng, W.C., Feng, J.J.: Energy-aware scheduling for HPC data centers: a survey. ACM Comput. Surv. (CSUR) 48(1), 9 (2015)

    Google Scholar 

  109. Ortega, D.G., Sipper, M.: Computational biomimetics: taking computer science from nature to practice. IEEE Trans. Evol. Comput.Evol. Comput. 11(3), 279–295 (2007)

    Google Scholar 

  110. Zhang, Y., Chen, J., Zhou, X.S.: Deep learning on high-performance computing architectures. IEEE Trans. Neural Netw. Learn. Syst. 31(10), 3622–3634 (2020)

    Google Scholar 

  111. Golkar, A., Yoon, H.J., Niar, S.: A survey on parallel machine learning algorithms on GPU, CPU, and cluster systems. ACM Comput. Surv. (CSUR) 50(6), 1–35 (2017)

    Google Scholar 

  112. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Zaharia, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)

    Google Scholar 

  113. Barker, A., Srinivasan, A., Mueller, F.: Parallel, distributed, and cloud computing technologies for bioinformatics. Brief. Bioinform.Bioinform. 13(6), 639–647 (2012)

    Google Scholar 

  114. Rayner, J.M.V.: Aviation’s golden fleece: using nature to inspire design. Endeavour 22(2), 74–78 (1998)

    Google Scholar 

  115. Menzer, A., Ren, Y., Guo, J., Tobalske, B.W., Dong, H.: Wing kinematics and unsteady aerodynamics of a hummingbird pure yawing maneuver. Biomimetics 7(3), 115 (2022). https://doi.org/10.3390/biomimetics7030115

Download references

Acknowledgements

The authors gratefully acknowledge the contributions of Universiti Putra Malaysia (UPM) in providing opportunities for this Book Chapter to be a success through the university’s Geran Putra—Inisiatif Putra Muda (GP-IPM) research grant; GP-IPM/2022/9730400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balbir Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abas, M.F.b., Singh, B., Ahmad, K.A. (2024). High Performance Computing and Its Application in Computational Biomimetics. In: Ahmad, K.A., Hamid, N.A.W.A., Jawaid, M., Khan, T., Singh, B. (eds) High Performance Computing in Biomimetics. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-97-1017-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-1017-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-1016-4

  • Online ISBN: 978-981-97-1017-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics