Skip to main content

AF-FCOS: An Improved Anchor-Free Object Detection Method

  • Conference paper
  • First Online:
Applied Intelligence (ICAI 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2014))

Included in the following conference series:

  • 150 Accesses

Abstract

The anchor-free object detection method avoids the complex hyper-parameter setting problem of the traditional anchor-based method, and has more advantages in accuracy and speed. However, it still has some problems such as low precision of small-scale object detection and poor detection result under complex background. To solve this problem, an improved anchor-free object detection method based on FCOS is proposed in this paper. By adding an efficient channel attention mechanism module to the feature extraction network and using a local cross-channel interaction strategy without dimensionality reduction, the 1D convolution kernel size is adaptively selected to obtain useful dependencies between channels and improve feature extraction capability. A context extraction module is designed in feature fusion network to explore context information from multiple receptive fields and improve classification accuracy. In the training stage, DIoU loss is used to make the regression of the border more stable and accurate, and the training process converges faster. The proposed method is evaluated on COCO2017. The experimental results show that compared with the baseline FCOS method, the average accuracy of the proposed method is improved by 1.3%, which has advantages in comprehensive performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, Z., Vasconcelos, N.: Cascade r-cnn: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162 (2018)

    Google Scholar 

  2. Cao, J., Chen, Q., Guo, J., Shi, R.: Attention-guided context feature pyramid network for object detection. arXiv preprint arXiv:2005.11475 (2020)

  3. Dai, J., Li, Y., He, K., Sun, J.: R-fcn: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  4. De Boer, P.T., Kroese, D.P., Mannor, S., Rubinstein, R.Y.: A tutorial on the crossentropy method. Ann. Oper. Res. 134, 19–67 (2005)

    Article  MathSciNet  Google Scholar 

  5. Dong, Z., Li, G., Liao, Y., Wang, F., Ren, P., Qian, C.: Centripetalnet: pursuing high-quality keypoint pairs for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10519–10528 (2020)

    Google Scholar 

  6. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: keypoint triplets for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6569–6578 (2019)

    Google Scholar 

  7. Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  11. Huang, L., Yang, Y., Deng, Y., Yu, Y.: Densebox: unifying landmark localization with end to end object detection. arXiv preprint arXiv:1509.04874 (2015)

  12. Kong, T., Sun, F., Liu, H., Jiang, Y., Li, L., Shi, J.: Foveabox: beyound anchor-based object detection. IEEE Trans. Image Process. 29, 7389–7398 (2020)

    Article  Google Scholar 

  13. Law, H., Deng, J.: Cornernet: detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 734–750 (2018)

    Google Scholar 

  14. Lin, T.Y., Doll´ar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Doll´ar, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  16. Lin, TY., et al.: Microsoft coco: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision – ECCV 2014. ECCV 2014, LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

  17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  18. Pang, J., Chen, K., Shi, J., Feng, H., Ouyang, W., Lin, D.: Libra r-cnn: towards balanced learning for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 821–830 (2019)

    Google Scholar 

  19. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  21. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)

    Google Scholar 

  22. Sun, P., et al.: Sparse r-cnn: end-to-end object detection with learnable proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021)

    Google Scholar 

  23. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: fully convolutional one-stage object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9627–9636 (2019)

    Google Scholar 

  24. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: Eca-net: efficient channel attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11534–11542 (2020)

    Google Scholar 

  25. Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X., Lin, L.: Meta r-cnn: towards general solver for instance-level low-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9577–9586 (2019)

    Google Scholar 

  26. Zand, M., Etemad, A., Greenspan, M.: ObjectBox: from centers to boxes for anchor-free object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13670, pp. 390–406. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20080-9_23

  27. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-iou loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12993–13000 (2020)

    Google Scholar 

  28. Zheng, Z., et al.: Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Trans. Cybern. 52(8), 8574–8586 (2021)

    Article  Google Scholar 

  29. Zhou, X., Koltun, V., Krähenbühl, P.: Probabilistic two-stage detection. arXiv preprint arXiv:2103.07461 (2021)

  30. Zhu, C., He, Y., Savvides, M.: Feature selective anchor-free module for single-shot object detection. In: Proceedings of the IEEE/CVF Conference on Computer vision and Pattern Recognition, pp. 840–849 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Grant Nos. 62362014, 62172120, and 62002082), and the Guangxi Natural Science Foundation of China (Grant Nos. 2019GXNSFAA245014, 2020GXNSFBA238014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rushi Lan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, H., Yang, R., Lan, R., Luo, X. (2024). AF-FCOS: An Improved Anchor-Free Object Detection Method. In: Huang, DS., Premaratne, P., Yuan, C. (eds) Applied Intelligence. ICAI 2023. Communications in Computer and Information Science, vol 2014. Springer, Singapore. https://doi.org/10.1007/978-981-97-0903-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0903-8_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0902-1

  • Online ISBN: 978-981-97-0903-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics