Skip to main content

Need of the Hour to Manage Biological Waste and Management: An Emerging Issue

  • Chapter
  • First Online:
Integrated Waste Management
  • 55 Accesses

Abstract

In the face of escalating biological waste from diverse origins and sectors such as agriculture, research, food, and medical domains, this chapter underscores the importance of effective biowaste management. In particular, a subset of biological waste, namely biomedical waste, is examined. Conventional techniques like incineration and landfill are critiqued for their contribution to the greenhouse effect and other toxic residues that are hard to dispose of. This necessitates the use of alternative advanced methods with minimal shortcomings and maximal efficiency. Cutting-edge waste management techniques such as autoclaving, microwaving, hydrothermal carbonization, and catalytic pyrolysis significantly reduce the environmental footprint of biowaste. Emphasis is placed on the synthesis of nanoparticles from biowaste through sustainable and cost-effective green methodologies. Moreover, this chapter highlights biowaste upcycling as an inventive concept to manufacture environmentally friendly bio-products like biodiesel, bioalcohol, bioelectricity, and biogas, presenting a transformative opportunity in waste management. However, the continued research and innovation in harnessing the potential of advanced techniques via the incorporation of nanoparticles is pivotal for the development of a sustainable circular economy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Madeddu C, Roda-Serrat MC, Christensen KV, El-Houri RB, Errico M (2021) A biocascade approach towards the recovery of high-value natural products from biowaste: state-of-art and future trends. Waste Biomass Valorization 12:1143–1166. https://doi.org/10.1007/s12649-020-01082-6

    Article  CAS  Google Scholar 

  2. Singhal L, Tuli AK, Gautam V (2017) Biomedical waste management guidelines 2016: what’s done and what needs to be done. Indian J Med Microbiol 35:194–198. https://doi.org/10.4103/ijmm.IJMM_17_105

    Article  Google Scholar 

  3. Demirbas A (2011) Waste management, waste resource facilities and waste conversion processes. Energy Convers Manag 52:1280–1287. https://doi.org/10.1016/j.enconman.2010.09.025

    Article  Google Scholar 

  4. US EPA (2021) Basic information about landfill gas. United States Environ Prot Agency

    Google Scholar 

  5. Kanyal D, Butola LK, Ambad R (2021) Biomedical waste management in India-a review. Indian J Forensic Med Toxicol 15:108–113

    Article  Google Scholar 

  6. World Health Organization. (2022) Healthcare waste: key facts. WHO 1–4

    Google Scholar 

  7. Mohanty A, Kabi A, Mohanty AP (2019) Health problems in healthcare workers: a review. J Fam Med Prim care 8:2568

    Article  Google Scholar 

  8. Dharmaraj S, Ashokkumar V, Hariharan S, Manibharathi A, Show PL, Chong CT, Ngamcharussrivichai C (2021) The COVID-19 pandemic face mask waste: a blooming threat to the marine environment. Chemosphere 272:129601. https://doi.org/10.1016/j.chemosphere.2021.129601

    Article  CAS  Google Scholar 

  9. Chand S, Shastry CS, Hiremath S, Joel JJ, Krishnabhat CH, Mateti UV (2021) Updates on biomedical waste management during COVID-19: the Indian scenario. Clin Epidemiol Glob Heal 11:100715. https://doi.org/10.1016/j.cegh.2021.100715

    Article  CAS  Google Scholar 

  10. Saxena P, Pradhan IP, Kumar D (2022) Redefining bio medical waste management during COVID-19 in India: a way forward. Mater Today Proc 60:849–858. https://doi.org/10.1016/j.matpr.2021.09.507

    Article  CAS  Google Scholar 

  11. van Wyk JPH (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19:172–177. https://doi.org/10.1016/S0167-7799(01)01601-8

    Article  Google Scholar 

  12. Patil PM, Bohara RA (2020) Nanoparticles impact in biomedical waste management. Waste Manag. Res. 38:1189–1203

    Article  Google Scholar 

  13. Gautam V, Thapar R, Sharma M (2010) Biomedical waste management: incineration vs. environmental safety. Indian J Med Microbiol 28:191–192

    Article  CAS  Google Scholar 

  14. Rajor A, Xaxa M, Mehta R, Kunal (2012) An overview on characterization, utilization and leachate analysis of biomedical waste incinerator ash. J Environ Manage 108:36–41. https://doi.org/10.1016/j.jenvman.2012.04.031

  15. Wojnowska-Baryła I, Kulikowska D, Bernat K, Kasiński S, Zaborowska M, Kielak T (2019) Stabilisation of municipal solid waste after autoclaving in a passively aerated bioreactor. Waste Manag Res 37:542–550. https://doi.org/10.1177/0734242X19833161

    Article  Google Scholar 

  16. Libra JA, Ro KS, Kammann C, Funke A, Berge ND, Neubauer Y, Titirici M-M, Fühner C, Bens O, Kern J, Emmerich K-H (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106. https://doi.org/10.4155/bfs.10.81

    Article  CAS  Google Scholar 

  17. Bhawna KS, Sharma R, Gupta A, Tyagi A, Singh P, Kumar A, Kumar V (2022) Recent insights into SnO2 -based engineered nanoparticles for sustainable H2 generation and remediation of pesticides. New J Chem 46:4014–4048. https://doi.org/10.1039/d1nj05808h

    Article  CAS  Google Scholar 

  18. Borah SJ, Gupta A, Dubey KK, Kumar V (2023) Fabrication of highly efficient encapsulated SnO2@ alginate beads as regenerative nanosorbents for anionic dye pollutants removal from aqueous solution. Mater Adv 4:5160–5174. https://doi.org/10.1039/D3MA00615H

    Article  CAS  Google Scholar 

  19. Kumar V, Govind A, Nagarajan R (2011) Optical and photocatalytic properties of heavily F–doped SnO2 nanocrystals by a novel single-source precursor approach. Inorg Chem 50:5637–5645

    Article  CAS  Google Scholar 

  20. Kumar S, Bhawna YSK, Gupta A, Kumar R, Ahmed J, Chaudhary M, Suhas KV (2022) B-doped SnO2 nanoparticles: a new insight into the photocatalytic hydrogen generation by water splitting and degradation of dyes. Environ Sci Pollut Res 29:47448–47461. https://doi.org/10.1007/s11356-022-18946-0

    Article  CAS  Google Scholar 

  21. Ullah N, Mansha M, Khan I, Qurashi A (2018) Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges. TrAC Trends Anal Chem 100:155–166. https://doi.org/10.1016/j.trac.2018.01.002

    Article  CAS  Google Scholar 

  22. Gupta A, Kumar S, Kumar V (2019) Challenges for assessing toxicity of nanomaterials. In: Biochemical toxicology-heavy metals and nanomaterials. IntechOpen London

    Google Scholar 

  23. Book F, Backhaus T (2022) Aquatic ecotoxicity of manufactured silica nanoparticles: a systematic review and meta-analysis. Sci Total Environ 806:150893. https://doi.org/10.1016/j.scitotenv.2021.150893

    Article  CAS  Google Scholar 

  24. Jyoti S (2023) Science through the lens of nature : recent advances in biomimetic approaches towards pesticide degradation. 33–42. https://doi.org/10.1055/a-2004-7289

  25. Gomathi AC, Xavier Rajarathinam SR, Mohammed Sadiq A, Rajeshkumar S (2020) Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J Drug Deliv Sci Technol 55:101376. https://doi.org/10.1016/j.jddst.2019.101376

    Article  CAS  Google Scholar 

  26. Skiba MI, Vorobyova VI (2019) Synthesis of silver nanoparticles using orange peel extract prepared by plasmochemical extraction method and degradation of methylene blue under solar irradiation. Adv Mater Sci Eng 2019:8306015. https://doi.org/10.1155/2019/8306015

    Article  CAS  Google Scholar 

  27. Im DS, Hong BM, Kim MH, Park WH (2020) Formation of human hair-Ag nanoparticle composites via thermal and photo-reduction: a comparison study. Colloids Surfaces A Physicochem Eng Asp 600:124995. https://doi.org/10.1016/j.colsurfa.2020.124995

    Article  CAS  Google Scholar 

  28. Phang Y-K, Aminuzzaman M, Akhtaruzzaman M, Muhammad G, Ogawa S, Watanabe A, Tey L-H (2021) Green synthesis and characterization of CuO nanoparticles derived from papaya peel extract for the photocatalytic degradation of palm oil mill effluent (POME). Sustainability 13:796. https://doi.org/10.3390/su13020796

    Article  CAS  Google Scholar 

  29. Boonmee A, Jarukumjorn K (2020) Preparation and characterization of silica nanoparticles from sugarcane bagasse ash for using as a filler in natural rubber composites. Polym Bull 77:3457–3472. https://doi.org/10.1007/s00289-019-02925-6

    Article  CAS  Google Scholar 

  30. Zhang Y, Chen Y, Kang Z-W, Gao X, Zeng X, Liu M, Yang D-P (2021) Waste eggshell membrane-assisted synthesis of magnetic CuFe2O4 nanomaterials with multifunctional properties (adsorptive, catalytic, antibacterial) for water remediation. Colloids Surfaces A Physicochem Eng Asp 612:125874. https://doi.org/10.1016/j.colsurfa.2020.125874

    Article  CAS  Google Scholar 

  31. Danial WH, Abdul Majid Z, Mohd Muhid MN, Triwahyono S, Bakar MB, Ramli Z (2015) The reuse of wastepaper for the extraction of cellulose nanocrystals. Carbohydr Polym 118:165–169. https://doi.org/10.1016/j.carbpol.2014.10.072

    Article  CAS  Google Scholar 

  32. Biswas MC, Rangari VK (2022) 16-Highly porous carbon nanoparticles from biowaste for wastewater treatment. In: Iqbal HMN, Bilal M, Nguyen TA (eds) Nano-bioremediation: fundamentals and applications. Elsevier, pp 339–361

    Google Scholar 

  33. Balaraman P, Balasubramanian B, Kaliannan D, Durai M, Kamyab H, Park S, Chelliapan S, Lee CT, Maluventhen V, Maruthupandian A (2020) Phyco-synthesis of silver nanoparticles mediated from marine algae Sargassum myriocystum and its potential biological and environmental applications. Waste Biomass Valorization 11:5255–5271. https://doi.org/10.1007/s12649-020-01083-5

    Article  CAS  Google Scholar 

  34. Rambabu K, Bharath G, Banat F, Show PL (2021) Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J Hazard Mater 402:123560. https://doi.org/10.1016/j.jhazmat.2020.123560

    Article  CAS  Google Scholar 

  35. Gupta S, Gupta GK, Mondal MK (2019) Slow pyrolysis of chemically treated walnut shell for valuable products: effect of process parameters and in-depth product analysis. Energy 181:665–676. https://doi.org/10.1016/j.energy.2019.05.214

    Article  CAS  Google Scholar 

  36. Gupta S, Mondal P (2021) Catalytic pyrolysis of pine needles with nickel doped gamma-alumina: reaction kinetics, mechanism, thermodynamics and products analysis. J Clean Prod 286:124930. https://doi.org/10.1016/j.jclepro.2020.124930

    Article  CAS  Google Scholar 

  37. Choudhary R, Mukhija A, Sharma S, Choudhary R, Chand A, Dewangan AK, Gaurav GK, Klemeš JJ (2023) Energy-saving COVID–19 biomedical plastic waste treatment using the thermal—catalytic pyrolysis. Energy 264:126096. https://doi.org/10.1016/j.energy.2022.126096

    Article  CAS  Google Scholar 

  38. Yuwen C, Liu B, Rong Q, Hou K, Zhang L, Guo S (2023) Mechanism of microwave-assisted iron-based catalyst pyrolysis of discarded COVID-19 masks. Waste Manag 155:77–86. https://doi.org/10.1016/j.wasman.2022.10.041

    Article  CAS  Google Scholar 

  39. Adeoye AO, Quadri RO, Lawal OS (2023) Wet synthesis, characterization of goethite nanoparticles and its application in catalytic pyrolysis of palm kernel shell in TGA. Results Surfs Interfaces 11:100118. https://doi.org/10.1016/j.rsurfi.2023.100118

    Article  Google Scholar 

  40. Knothe G, Razon LF (2017) Biodiesel fuels. Prog Energy Combust Sci 58:36–59. https://doi.org/10.1016/j.pecs.2016.08.001

    Article  Google Scholar 

  41. Sahota S, Shah G, Ghosh P, Kapoor R, Sengupta S, Singh P, Vijay V, Sahay A, Vijay VK, Thakur IS (2018) Review of trends in biogas upgradation technologies and future perspectives. Bioresour Technol Reports 1:79–88. https://doi.org/10.1016/j.biteb.2018.01.002

    Article  Google Scholar 

  42. Aryal N, Kvist T, Ammam F, Pant D, Ottosen LDM (2018) An overview of microbial biogas enrichment. Bioresour Technol 264:359–369. https://doi.org/10.1016/j.biortech.2018.06.013

    Article  CAS  Google Scholar 

  43. Bhatia SK, Kim S-H, Yoon J-J, Yang Y-H (2017) Current status and strategies for second generation biofuel production using microbial systems. Energy Convers Manag 148:1142–1156. https://doi.org/10.1016/j.enconman.2017.06.073

    Article  CAS  Google Scholar 

  44. Voca N, Ribic B (2020) Biofuel production and utilization through smart and sustainable biowaste management. J Clean Prod 259. https://doi.org/10.1016/j.jclepro.2020.120742

  45. Abdelwahab TAM, Fodah AEM (2022) Utilization of nanoparticles for biogas production focusing on process stability and effluent quality. SN Appl Sci 4:332. https://doi.org/10.1007/s42452-022-05222-6

    Article  CAS  Google Scholar 

  46. Zaidi AA, Khan SZ, Shi Y (2021) Optimization of nickel nanoparticles concentration for biogas enhancement from green algae anaerobic digestion. Mater Today Proc 39:1025–1028. https://doi.org/10.1016/j.matpr.2020.04.762

    Article  CAS  Google Scholar 

  47. Bhatia SK, Kim J, Song H-S, Kim HJ, Jeon J-M, Sathiyanarayanan G, Yoon J-J, Park K, Kim Y-G, Yang Y-H (2017) Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01. Bioresour Technol 233:99–109. https://doi.org/10.1016/j.biortech.2017.02.061

    Article  CAS  Google Scholar 

  48. Sekoai PT, Ouma CNM, du Preez SP, Modisha P, Engelbrecht N, Bessarabov DG, Ghimire A (2019) Application of nanoparticles in biofuels: an overview. Fuel 237:380–397. https://doi.org/10.1016/j.fuel.2018.10.030

    Article  CAS  Google Scholar 

  49. Chen Y, Liu T, He H, Liang H (2018) Fe 3 O 4 /ZnMg(Al)O magnetic nanoparticles for efficient biodiesel production: magnetic nanoparticles for efficient biodiesel production. Appl Organomet Chem 32:4330. https://doi.org/10.1002/aoc.4330

    Article  CAS  Google Scholar 

  50. Tahvildari K, Anaraki YN, Fazaeli R, Mirpanji S, Delrish E (2015) The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil. J Environ Heal Sci Eng 13:73. https://doi.org/10.1186/s40201-015-0226-7

    Article  CAS  Google Scholar 

  51. Brahma S, Nath B, Basumatary B, Das B, Saikia P, Patir K, Basumatary S (2022) Biodiesel production from mixed oils: a sustainable approach towards industrial biofuel production. Chem Eng J Adv 10:100284. https://doi.org/10.1016/j.ceja.2022.100284

    Article  CAS  Google Scholar 

  52. Sajjadi B, Raman AAA, Arandiyan H (2016) A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models. Renew Sustain Energy Rev 63:62–92. https://doi.org/10.1016/j.rser.2016.05.035

    Article  CAS  Google Scholar 

  53. Cherian E, Dharmendirakumar M, Baskar G (2015) Immobilization of cellulase onto MnO2 nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Chinese J Catal 36:1223–1229. https://doi.org/10.1016/S1872-2067(15)60906-8

    Article  CAS  Google Scholar 

  54. Li S-W, He H, Zeng RJ, Sheng G-P (2017) Chitin degradation and electricity generation by Aeromonas hydrophila in microbial fuel cells. Chemosphere 168:293–299. https://doi.org/10.1016/j.chemosphere.2016.10.080

    Article  CAS  Google Scholar 

  55. Han TH, Cho MH, Lee J (2014) Indole oxidation enhances electricity production in an E. coli-catalyzed microbial fuel cell. Biotechnol Bioprocess Eng 19:126–131. https://doi.org/10.1007/s12257-013-0429-7

    Article  CAS  Google Scholar 

  56. Bhatia SK, Lee B-R, Sathiyanarayanan G, Song H-S, Kim J, Jeon J-M, Kim J-H, Park S-H, Yu J-H, Park K, Yang Y-H (2016) Medium engineering for enhanced production of undecylprodigiosin antibiotic in Streptomyces coelicolor using oil palm biomass hydrolysate as a carbon source. Bioresour Technol 217:141–149. https://doi.org/10.1016/j.biortech.2016.02.055

    Article  CAS  Google Scholar 

  57. Lee Y-Y, Kim TG, Cho K (2016) Enhancement of electricity production in a mediatorless air–cathode microbial fuel cell using Klebsiella sp. IR21. Bioprocess Biosyst Eng 39:1005–1014. https://doi.org/10.1007/s00449-016-1579-8

    Article  CAS  Google Scholar 

  58. Tahernia M, Mohammadifar M, Feng S, Choi S (2020) Biogenic palladium nanoparticles for improving bioelectricity generation in microbial fuel cells. In: 2020 IEEE 33rd international conference on micro electro mechanical systems (MEMS). pp 425–428

    Google Scholar 

Download references

Acknowledgements

Author S.J.B. is grateful to Jawaharlal Nehru University, New Delhi, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chanda, A., Borah, S.J., Dubey, K.K., Kumar, V. (2024). Need of the Hour to Manage Biological Waste and Management: An Emerging Issue. In: Gupta, A., Kumar, R., Kumar, V. (eds) Integrated Waste Management. Springer, Singapore. https://doi.org/10.1007/978-981-97-0823-9_11

Download citation

Publish with us

Policies and ethics