Skip to main content

Microbial-Meditated Remediation of Crude Oil-Contaminated Soil

  • Chapter
  • First Online:
Microbial Applications for Environmental Sustainability

Abstract

Crude oil production and its uses are considered very important for human needs. The major waste components in crude oil are petroleum hydrocarbons and other toxic substances, which affect the soil fertility, nature, and its physical and chemical properties to a considerable degree. Therefore, this complication is significant for the community and environment. By remediating the soil damaged by the oil contaminant, microbial-mediated remediation is extensively viewed as an eco-friendly and potent technology for the degradation of the contaminated substance in crude oil. Different types of bacteria, fungi, and algae are used in this bioremediation technology, and strategies are being developed to solve this problem. By improving the relationship between these microorganisms and crude oil-contaminated soil, new biotechnologies can be used to improve the organisms that degrade these toxic substances and develop their pathways. And by exploring its functional genes and creating new forms through molecular activity and microbial modification, we can develop a way to degrade this crude oil-contaminated soil. Future research should concentrate on ways to improve bioremediation technology efficiency in order to further alleviate environmental stress on land and aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adenipekun CO, Lawal R (2012) Uses of mushrooms in bioremediation: a review. Biotechnol Mol Biol Rev 7(3):62–68

    CAS  Google Scholar 

  • Adeola AO, Akingboye AS, Ore OT, Oluwajana OA, Adewole AH, Olawade DB, Ogunyele AC (2022) Crude oil exploration in Africa: socio-economic implications, environmental impacts, and mitigation strategies. Environ Syst Decis 42(1):26–50

    Article  PubMed  Google Scholar 

  • Ahmad A, Ghufran R, Al-Hosni TK (2019) Bioavailability of zinc oxide nano particle with fly ash soil for the remediation of metals by Parthenium hysterophorus. J Environ Health Sci Eng 17:1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Aksu Z, Balibek E (2007) Chromium (VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J Hazard Mater 145:210–220

    Article  CAS  PubMed  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Springer, Dordrecht

    Book  Google Scholar 

  • Azadi N, Raiesi F (2021) Biochar alleviates metal toxicity and improves microbial community functions in a soil co-contaminated with cadmium and lead. Biochar 3:485–498

    Article  CAS  Google Scholar 

  • Bhatt P, Verma A, Gangola S, Bhandari G, Chen S (2021) Microbial glycoconjugates in organic pollutant bioremediation: recent advances and applications. Microb Cell Fact 20:1–18

    Article  Google Scholar 

  • Biju LM, Krishnaswamy VG (2021) Bioremediation and phytoremediation: the remedies for xenobiotics. In: Handbook of research on microbial remediation and microbial biotechnology for sustainable soil. IGI Global, pp 38–64

    Chapter  Google Scholar 

  • Bissonnette L, St-Arnaud M, Labrecque M (2010) Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil 332:55–67

    Article  CAS  Google Scholar 

  • Bojórquez C, Voltolina D (2016) Removal of cadmium and lead by adapted strains of Pseudomonas aeruginosa and Enterobacter cloacae. Rev Int Contam Ambie 32:407–412

    Article  Google Scholar 

  • Bollag JM (1974) Microbial transformation of pesticides. Adv Appl Microbiol 18:75–130

    Article  CAS  PubMed  Google Scholar 

  • Brady D, Duncan JR (1994) Cation loss during accumulation of heavy metal cations by Saccharomyces cerevisiae. Biotechnol Lett 16:543–548

    Article  CAS  Google Scholar 

  • Brunetti G, Farrag K, Soler-Rovira P, Ferrara MN, F and Senesi, N. (2012) The effect of compost and Bacillus licheniformis on the phytoextraction of Cr, Cu, Pb and Zn by three Brassicaceae species from contaminated soils in the Apulia region, Southern Italy. Geoderma 170:322–330

    Article  CAS  Google Scholar 

  • Capeness MJ, Echavarri-Bravo V, Horsfall LE (2019) Production of biogenic nanoparticles for the reduction of 4-Nitrophenol and oxidative laccase-like reactions. Front Microbiol 10:997

    Article  PubMed  PubMed Central  Google Scholar 

  • Cappelletti M, Presentato A, Piacenza E et al (2020) Biotechnology of Rhodococcus for the production of valuable compounds. Appl Microbiol Biotechnol 104:8567–8594

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerniglia CE, Van Baalen C, Gibson DT (1980) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp., strain JCM. J Gen Microbiol 116:485–494

    CAS  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  PubMed  Google Scholar 

  • Chang SE, Stone J, Demes K, Piscitelli M (2014) Consequences of oil spills: a review and framework for informing planning. Ecol Soc 19(2):26

    Article  Google Scholar 

  • Chanmugathas P, Bollag JM (1988) A column study of the biological mobilization and speciation of cadmium in soil. Arch Environ Contam Toxicol 17:229–237

    Article  CAS  Google Scholar 

  • Chen TB, Wong JWC, Zhou HY, Wong MH (1997) Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environ Pollut 96:61–68

    Article  CAS  PubMed  Google Scholar 

  • Chen H-S, Zhang Q-M, Yang Z-J, Liu Y-S (2020) Research on treatment of oily sludge from the tank bottom by ball milling combined with ozone-catalyzed oxidation. ACS Omega 5(21):12259–12269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Gao Y, Li J, Sun C, Sarkar B, Bhatnagar A, Bolan N, Yang X, Meng J, Liu Z, Hou H, Wong JWC, Hou D, Chen W, Wang H (2022) Insights into simultaneous adsorption and oxidation of antimonite [Sb(III)] by crawfish shell-derived biochar: spectroscopic investigation and theoretical calculations. Biochar 4:37

    Article  CAS  Google Scholar 

  • Chikere CB, Okpokwasili GC, Chikere BO (2009) Bacterial diversity in a tropical crude oil-polluted soil undergoing bioremediation. Afr J Biotechnol 8:2535–2540

    CAS  Google Scholar 

  • Chong AYL, Ooi KB, Bao H, Lin B (2014) Can e-business adoption be influenced by knowledge management? An empirical analysis of Malaysian SMEs. J Knowl Manag 18(1):121–136

    Article  Google Scholar 

  • Christian V, Shrivastava R, Shukla D, Modi HA, Vyas BRM (2005) Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved. Indian J Exp Biol 45:301–312

    Google Scholar 

  • Collins PJ, Kotterman M, Field JA, Dobson A (1996) Oxidation of anthracene and benzo [a] pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62(12):4563–4567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couto SR, Sanroman MA, Hoefer D, Gubitz GM (2004) Stainless steel: a novel career for the immobilization of the white rot fungus Trametes hirsute for decolorization of textile dyes. Bioresour Technol 95:67–72

    Article  Google Scholar 

  • Daraei H, Mittal A, Noorisepehr M, Daraei F (2013) Kinetic and equilibrium studies of adsorptive removal of phenol onto eggshell waste. Environ Sci Pollut Res 20:4603–4611

    Article  CAS  Google Scholar 

  • Davies JS, Westlake DWS (1979) Crude oil utilization by fungi. Can J Microbiol 25:146–156

    Article  CAS  PubMed  Google Scholar 

  • De Llasera MPG, Olmos-Espejel JJ, Díaz-Flores G, Montaño-Montiel A (2016) Biodegradation of benzo(a)pyrene by two freshwater microalgae Selenastrum capricornutum and Scenedesmus acutus: a comparative study useful for bioremediation. Environ Sci Pollut Res 23:3365–3375

    Article  Google Scholar 

  • Dombrowski N, Donaho JA, Gutierrez T, Seitz KW, Teske AP, Baker BJ (2016) Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol 1:16057

    Article  CAS  PubMed  Google Scholar 

  • Dong ZL, Wang BS, Li J (2020) Effects of petroleum hydrocarbon contamination on soil bacterial diversity in the permafrost region of the Qinghai-Tibetan Plateau. Soil Sedim Contam 29(3):322–339

    Article  CAS  Google Scholar 

  • Dong-Sheng Q, Chang-Yuan G (2022) Control measures for automobile exhaust emissions in PM2.5 governance. Discrete dynamics in nature and society. pp 1–14

    Google Scholar 

  • Dvořák P, Nikel PI, Damborský J, de Lorenzo V (2017) Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol Adv 35:845–866

    Article  PubMed  Google Scholar 

  • Elliott DW, Lien HL, Zhang WX (2009) Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng 135:317–324

    Article  CAS  Google Scholar 

  • Erkurt EA, Ünyayar A, Kumbur H (2007) Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem 42(10):1429–1435

    Article  CAS  Google Scholar 

  • Ezeji E, Anyadoh SO, Ibekwe VI (2007) Clean up of crude oil contaminated soil Terrestrial and Aquatic. Environ Toxicol 1(2):54–59

    Google Scholar 

  • Faraco V, Pezzella C, Miele A, Giardina P, Sannia G (2009) Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation 20(2):209–220

    Article  CAS  PubMed  Google Scholar 

  • Gaitan IJ, Medina SC, González JC, Rodríguez A, Espejo ÁJ, Osma JF, Sarria V, Alméciga-Díaz CJ, Sánchez OF (2011) Evaluation of toxicity and degradation of a chlorophenol mixture by the laccase produced by Trametes pubescens. Bioresour Technol 102(3):3632–3635

    Article  CAS  PubMed  Google Scholar 

  • Gamallo M, Fernández L, Feijoo G, Moreira M (2020) Nano-based technologies for environmental soil remediation. In: Nanomaterials for sustainable energy and environmental remediation. Elsevier, Amsterdam, pp 307–331

    Chapter  Google Scholar 

  • Gan WJ, Yue HE, Zhang XF, Shan YH, Zheng LP, Lin YS (2012) Speciation analysis of heavy metals in soils polluted by electroplating and effect of washing to the removal of the pollutants. J Ecol Rural Environ 28:82–87

    CAS  Google Scholar 

  • Ghasemi Y, Rasoul-Amini S, Fotooh-Abadi E (2011) The biotransformation, biodegradation, and bioremediation of organic compounds by microalgae. J Phycol 47:969–980

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Syed H (2001) Influence of soil characteristics on bioremediation of petroleum-contaminated soil. Geological Society of America Annual Meeting, Nov. 5–8, Boston, Massachusetts, USA

    Google Scholar 

  • Gillham RW, O’Hannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Groundwater 32:958–967

    Article  CAS  Google Scholar 

  • Gong Y, Liu Y, Xiong Z, Kaback D, Zhao D (2012) Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Nanotechnology 23:294007

    Article  PubMed  Google Scholar 

  • Hammer E, Schauer F (1997) Fungal hydroxylation of dibenzofuran. Mycol Res 101:433–436

    Article  CAS  Google Scholar 

  • Hammer E, Krowas D, Schafer A, Specht M, Francke W, Schauer F (1998) Isolation and characterization of dibenzofuran-degrading yeast: identification of oxidation and ring cleavage products. Appl Environ Microbiol 64:2215–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He LM, Tebo BM (1998) Surface charge properties of and Cu(II) Adsorption by Spores of the Marine Bacillus sp. Strain SG-1. Appl Environ Microbiol 64:1123–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewelke E, Szatyłowicz J, Hewelke P, Gnatowski T, Aghalarov R (2018) The impact of diesel oil pollution on the hydrophobicity and CO2 efflux of forest soils. Water Air Soil Pollut 229(2):51

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong YW, Yuan DX, Lin QM, Yang TL (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 56:1400–1405

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Zhu S, Zhang H, Huang Y, Wang X, Wang Y, Chen D (2021) Biochar nanoparticles induced distinct biological effects on freshwater algae via oxidative stress, membrane damage, and nutrient depletion. ACS Sustain Chem Eng 9:10761–10770

    Article  CAS  Google Scholar 

  • Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q (2018) Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: a review. Sci Total Environ 628–629:1582–1599

    Article  PubMed  Google Scholar 

  • IARC (International Agency for Research on Cancer) (1983) In: IARC (ed) IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans: polynuclear aromatic compounds part I. IARC Press, Lyon

    Google Scholar 

  • Ibraheem M (2010) Biodegradability of hydrocarbons by cyanobacteria. J Phycol 46:818–824

    Article  CAS  Google Scholar 

  • Imasogie S, Odia LO (2009) Oil exploitation and conflict in The Niger-Delta region of Nigeria April 2009. J Hum Ecol (Delhi, India) 26(1):25–23

    Google Scholar 

  • Joner EJ, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353–360

    Article  CAS  Google Scholar 

  • Jovancicevic V, Bockris JO, Carbajal JL, Zelenay P, Mizuno T (1987) Abstract: adsorption and absorption of chloride ions on passive iron systems. ChemInform 18:2219–2226

    Article  Google Scholar 

  • Kapoor A, Viraraghavan T, Cullimore DR (1999) Removal of heavy metals using the fungus Aspergillus niger. Bioresour Technol 70:95–104

    Article  CAS  Google Scholar 

  • Keum YS, Li QX (2004) Fungal laccase-catalyzed degradation of hydroxy polychlorinated biphenyls. Chemosphere 56(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Khalkhal K, Asgari Lajayer B, Ghorbanpour M (2020) An overview on the effect of soil physicochemical properties on the immobilization of biogenic nanoparticles. In: Biogenic nano-particles and their use in agro-ecosystems. Springer, Singapore, pp 133–160

    Chapter  Google Scholar 

  • Khullar S, Reddy MS (2019) Cadmium and arsenic responses in the ectomycorrhizal fungus Laccaria bicolor: glutathione metabolism and its role in metal (loid) homeostasis. Environ Microbiol Rep 11:53–61

    Article  CAS  PubMed  Google Scholar 

  • Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Chandra R (2020) Ligninolytic enzymes and their mechanisms for degradation of lignocellulosic waste in the environment. Heliyon 6:e03170

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar G, Varsha T, Natesan M (2022) Chapter 18—Bacterial- and fungal-mediated biodegradation of petroleum hydrocarbons in soil. In: Development in wastewater treatment research and processes microbial degradation of xenobiotics through bacterial and fungal approach. p 407

    Google Scholar 

  • Kuppusamy S, Thavamani P, Venkateswarlu K, Lee YB, Naidu R, Megharaj M (2017) Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: technological constraints, emerging trends and future directions. Chemosphere 168:944–968

    Article  CAS  PubMed  Google Scholar 

  • Lamilla C, Schalchli H, Briceño G, Leiva B, Donoso-Piñol P, Barrientos L (2021) A pesticide biopurification system: a source of biosurfactant producing bacteria with environmental biotechnology applications. Agronomy 11:624

    Article  CAS  Google Scholar 

  • Lance WF, Michele A, Coklin N, Chris S (2023) Bioremediation and phytoremediation of oil contaminated salt marsh in South Louisiana. The Benthic Zone Newsletter Jan 4, 2023

    Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lea-Smith DJ, Biller SJ, Davey MP, Cotton CA, Sepulveda BMP, Turchyn AV (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci USA 112:13591–13596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei AP, Wong YS, Tam NFY (2002) Removal of pyrene by different microalgal species. Water Sci Technol 46:195–201

    Article  CAS  PubMed  Google Scholar 

  • Levin L, Melignani E, Ramos AM (2010) Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresour Technol 101(12):4554–4563

    Article  CAS  PubMed  Google Scholar 

  • Li R, Zhang Y, Deng H, Zhang Z, Wang JJ, Shaheen SM, Xiao R, Rinklebe J, Xi B, He X, Du J (2020) Removing tetracycline and Hg(II) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation. J Hazard Mater 384:121095

    Article  CAS  PubMed  Google Scholar 

  • Li DP, Ma J, Xu HC, Xu XY, Qiu H, Cao XD, Zhao L (2022) Recycling waste nickel-laden biochar to pseudo-capacitive material by hydrothermal treatment: roles of nickel-carbon interaction. Carbon Res 1:16

    Article  Google Scholar 

  • Liao Y, Yang J (2020) Remediation of vanadium contaminated soil by nano-hydroxyapatite. J Soils Sediments 20:1534–1544

    Article  CAS  Google Scholar 

  • Liu Y, Xu K, Cheng J (2020) Different nanomaterials for soil remediation affect avoidance response and toxicity response in earthworm (Eisenia fetida). Bull Environ Contam Toxicol 104:477–483

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR (2002) Bioremediation of metals; the application of micro-organisms that make and break minerals. Microbiol Today 29:67–69

    Google Scholar 

  • Lv Y, Huang S, Huang G, Liu Y, Yang G, Lin C, Xiao G, Wang Y, Liu M (2020) Remediation of organic arsenic contaminants with heterogeneous Fenton process mediated by SiO2-coated nano zero-valent iron. Environ Sci Pollut Res 27:12017–12029

    Article  CAS  Google Scholar 

  • Lyu H, Xia S, Tang J, Zhang Y, Gao B, Shen B (2020) Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+. J Hazard Mater 384:121357

    Article  CAS  PubMed  Google Scholar 

  • Machado S, Pacheco J, Nouws H, Albergaria JT, Delerue-Matos C (2015) Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci Total Environ 533:76–81

    Article  CAS  PubMed  Google Scholar 

  • Malidareh, H. B., Mahvi, A. H., Yunesian, M., Alimohammadi, M. and, Nazmara, S. (2014). Effect of fertilizer application on paddy soil heavy metals concentration and groundwater in North of Iran. Middle-East J Sci Res, 20, 1721–1727

    Google Scholar 

  • Malik JA (2022) Microbes and microbial biotechnology for green remediation. Elsevier, pp vii–xxiii. https://doi.org/10.1016/B978-0-323-90452-0.00052-9. ISBN 9780323904520

    Book  Google Scholar 

  • Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd-Allah EF (2018) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 9:1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Marchenko AM, Pshinko GN, Demchenko VY, Goncharuk VV (2015) Leaching heavy metal from deposits of heavy metals with bacteria oxidizing elemental sulphur. J Water Chem Technol 37:311–316

    Article  Google Scholar 

  • Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG (2003) Characterization of hydrocarbon degrading microbial populations in contaminated and pristine Alpine soils. Appl Environ Microbiol 69:3085–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marinescu M, Toti M, Tanase V, Plopeanu G, Calciu I, Marinescu M (2011) The effects of crude oil pollution on physical and chemical characteristics of soil. Res J Agric Sci 43(3):125–129

    Google Scholar 

  • Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654

    Article  CAS  Google Scholar 

  • Matsubara M, Lynch JM, De Leij FAAM (2006) A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enzym Microb Technol 39(7):1365–1372

    Article  CAS  Google Scholar 

  • Mattuschka B, Straube G (1993) Biosorption of metals by a waste biomass. J Chem Technol Biotechnol 58:57–63

    Article  CAS  Google Scholar 

  • Mcgenity TJ, Folwell BD, Mckew BA, Sanni GO (2012) Marine crude-oil biodegradation: a central role for interspecies interactions. Aquat Biosyst 8:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Mehdi HS, Giti E, Simone C (2012) Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar Pollut Bull 64(1):7–12

    Article  Google Scholar 

  • Miglani R, Parveen N, Kumar A, Ansari MA, Khanna S, Rawat G, Panda AK, Bisht SS, Upadhyay J, Ansari MN (2022) Degradation of xenobiotic pollutants: an environmentally sustainable approach. Metabolites 12(9):818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra B, Varjani S, Kumar G, Awasthi MK, Awasthi SK, Sindhu R, Binod P, Rene ER, Zhang Z (2021) Microbial approaches for remediation of pollutants: innovations, future outlook, and challenges. Energy Environ 32(6):1029–1058

    Article  CAS  Google Scholar 

  • Monu J, Manish Y, Nitin KS, Suman Yadav IS, Swati D, Arti T (2020) Microbial remediation progress and future prospects. In: Bioremediation of pollutants. Elsevier, pp 187–214. ISBN 9780128190258

    Google Scholar 

  • Mullen MD, Wolf DC, Ferris FG, Beveridge TJ, Flemming CA, Bailey GW (1989) Bacterial sorption of heavy metals. Appl Environ Microbiol 55:3143–3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muñoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61:261–267

    Article  PubMed  Google Scholar 

  • Nakamiya K, Hashimoto S, Ito H, Edmonds JS, Yasuhara A, Morita M (2005) Degradation of dioxins by cyclic ether degrading fungus, Cordyceps sinensis. FEMS Microbiol Lett 248:17–12

    Article  CAS  PubMed  Google Scholar 

  • Nelson JR, Grubesic TH, Sim L, Rose K (2018) A geospatial evaluation of oil spill impact potential on coastal tourism in the Gulf of Mexico. Comput Environ Urban Syst 68:26–36

    Article  Google Scholar 

  • Nidhin S, Aswathy U, Shantkriti S (2020) Algal bioremediation of heavy metals removal of toxic pollutants through microbiological and tertiary treatment. Elsevier, pp 279–307. ISBN 9780128210147

    Google Scholar 

  • Obayori SO, Salam LB (2010) Degradation of polycyclic aromatic hydrocarbons: role of plasmids. Sci Res Ess 5:4093–4106

    Google Scholar 

  • Odukkathil G, Vasudevan N (2016) Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation. J Environ Manag 165:72–80

    Article  CAS  Google Scholar 

  • Olson MR, Blotevogel J, Borch T, Petersen M, Royer R, Sale T (2014) Long-term potential of in situ chemical reduction for treatment of polychlorinated biphenyls in soils. Chemosphere 114:144–149

    Article  CAS  PubMed  Google Scholar 

  • Olujimi JAB, Emmanuel AA, Sogbon O (2011) Environmental implications of oil exploration and exploitation in the coastal region of Ondo State, Nigeria: a regional planning appraisal. J Geo Regional Plan 4(3):110–121

    Google Scholar 

  • Ordinioha B, Brisibe S (2013) The human health implications of crude oil spills in The Niger delta, Nigeria: an interpretation of published studies. Niger Med J 54(1):10–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Pratap T, Chaubey AK, Patel M, Mlsna TE, Pittman CU Jr, Mohan D (2022) Nanobiochar for aqueous contaminant removal. In: Mohan D, Pittman CU, Mlsna TE (eds) Sustainable biochar for water and wastewater treatment. Elsevier, Amsterdam, pp 667–704

    Chapter  Google Scholar 

  • Qin H, Ma J, Wang Q, Li J, Chi M, Zhang L, Liu H (2016) Treatment of oil shale sludge using solvent extraction and thermo-chemistry. Chin J Environ Eng 10:851–857

    CAS  Google Scholar 

  • Qiu X, Fang Z, Liang B, Gu F, Xu Z (2011) Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. J Hazard Mater 193:70–81

    Article  CAS  PubMed  Google Scholar 

  • Rahman MS, Sathasivam KV (2015) Heavy metal adsorption onto Kappaphycus sp. from aqueous solutions: the use of error functions for validation of isotherm and kinetics models. Biomed Res Int 2015:126298

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman WU, Khan MD, Khan GH (2018) Anaerobic biodegradation of benzene-laden wastewater under mesophilic environment and simultaneous recovery of methane-rich biogas. J Environ Chem Eng 6(2):2957–2964

    Article  Google Scholar 

  • Rajput VD, Minkina T, Kimber RL, Singh VK, Shende S, Behal A, Sushkova MS, Lloyd JR (2021) Insights into the biosynthesis of nanoparticles by the genus Shewanella. Appl Environ Microbiol 87:e01390–e01321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajput VD, Minkina T, Upadhyay SK, Kumari A, Ranjan A, Mandzhieva S, Sushkova S, Singh RK, Verma KK (2022) Nanotechnology in the restoration of polluted soil. Nanomaterials 12:769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanayaka S, Vithanage M, Alessi DS, Liu WJ, Jayasundera ACA, Ok YS (2020) Nanobiochar: production, properties, and multifunctional applications. Environ Sci Nano 7:3279–3302

    Article  CAS  Google Scholar 

  • Ramaswamy D, Kar DD, De S (2007) A study on recovery of oil from sludge containing oil using froth flotation. J Environ Manag 85:150–154

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Ren SY, Xu X, Hu KS, Tian WJ, Duan XG, Yi JB, Wang SB (2022) Structure-oriented conversions of plastics to carbon nanomaterials. Carbon Res 1:15

    Article  Google Scholar 

  • Rhodes CJ (2012) Feeding and healing the world: through regenerative agriculture and permaculture. Sci Prog 95(4):345–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riva S (2006) Laccases: blue enzymes for green chemistry. Trends Biotechnol 24(5):219–226

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Rehman MZ, Adrees M, Arshad M, Qayyum MF, Ali L, Hussain A, Chatha SAS, Imran M (2019) Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ Pollut 248:358–367

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, Rehman MZ, Rinklebe J, Tsang DCW, Tack FMG, Abbasi GH, Hussain A, Igalavithana AD, Lee BC, Ok YS (2021) Effects of selenium on the uptake of toxic trace elements by crop plants: a review. Crit Rev Environ Sci Technol 51(21):2531–2566

    Article  CAS  Google Scholar 

  • Roehl KE, Meggyes T, Simon F, Stewart D (2005) Long-term performance of permeable reactive barriers. Gulf Professional Publishing, Houston

    Google Scholar 

  • Romeh AA, Saber RAI (2020) Green nano-phytoremediation and solubility improving agents for the remediation of chlorfenapyr contaminated soil and water. J Environ Manag 260:110104

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2014) Enhanced bioremediation of oil spills in the sea. Curr Opin Biotechnol 27:191–194

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Sengupta S, Sen S (2019) Nanoparticles for soil remediation. In: Nanoscience and biotechnology for environmental applications. Springer, Cham, pp 249–262

    Chapter  Google Scholar 

  • Sarret G, Manceau A, Spadini L, Roux JC, Hazemann JL, Soldo Y, Eybert-Bérard, and Menthonnex, J. (1998) Structural determination of Zn and Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy. Environ Sci Technol 32:1648–1655

    Article  CAS  Google Scholar 

  • Sassykova YA, Aubakirov S, Sendilvelan ZHK, Tashmukhambetova MF, Faizullaeva K, Bhaskar AA, Batyrbayeva RG, Ryskaliyeva BB, Tyussyupova AA, Zhakupova MA, Sarybayev S (2019) The main components of vehicle exhaust gases and their effective catalytic neutralization. Orient J Chem 35(1):110–127

    Article  CAS  Google Scholar 

  • Sharma P (2021) Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: an update. Bioresour Technol 328

    Google Scholar 

  • Shi LN, Zhang X, Chen Zl (2011) Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45:886–892

    Article  CAS  PubMed  Google Scholar 

  • Shih Y-h, Tai Yt (2010) Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Chemosphere 78:1200–1206

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Bhardwaj N, Arya SK, Khatri M (2020a) Environmental impacts of oil spills and their remediation by magnetic nanomaterials. Environ Nanotechnol Monit Manag 14:100305

    Google Scholar 

  • Singh R, Behera M, Kumar S (2020b) Nano-bioremediation: an innovative remediation technology for treatment and management of contaminated sites. In: Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 165–182

    Chapter  Google Scholar 

  • Singh S, Shikha (2019) Treatment and recycling of wastewater from oil refinery/petroleum industry. In: Singh R, Singh R (eds) Advances in biological treatment of industrial waste water and their recycling for a sustainable future. Applied environmental science and engineering for a sustainable future. Springer, Singapore

    Google Scholar 

  • Sojinu SO, Ejeromedoghene O (2019) Environmental challenges associated with processing of heavy crude oils, processing of heavy crude oils—challenges and opportunities Ramasamy Marappa Gounder

    Google Scholar 

  • Subash Chandra Bose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72

    Article  CAS  Google Scholar 

  • Sullivan TS, Gadd GM (2019) Metal bioavailability and the soil microbiome. Adv Agron 155:79–120

    Article  Google Scholar 

  • Sun TY, Bornhöft NA, Hungerbühler K, Nowack B (2016) Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ Sci Technol 50:4701–4711

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Lyu H, Cheng Z, Wang Y, Tang J (2022) Insight into the mechanisms of ball-milled biochar addition on soil tetracycline degradation enhancement: physicochemical properties and microbial community structure. Chemosphere 291:132691

    Article  CAS  PubMed  Google Scholar 

  • Sundararaghavan A, Mukherjee A, Suraishkumar GK (2020) Investigating the potential use of an oleaginous bacterium, Rhodococcus opacus PD630, for nano-TiO2 remediation. Environ Sci Pollut Res 27:27394–27406

    Article  CAS  Google Scholar 

  • Takáčová A, Smolinská M, Ryba J, Mackuľak T, Jokrllová J, Hronec P, Čík G (2014) Biodegradation of Benzo[a]Pyrene through the use of algae. Cent Eur J Chem 12:1133–1143

    Google Scholar 

  • Tang X, He LY, Tao XQ, Dang Z, Guo CL, Lu GN, Yi XY (2010) Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181:1158–1162

    Article  CAS  PubMed  Google Scholar 

  • Tibbetts PJC, Buchanan IT, Gawel LG, Large R (1992) A comprehensive determination of produced water composition. In: Ray JP, Englehart FR (eds) Produced water. Plenum Press, New York

    Google Scholar 

  • Tran TD, Dao NT, Sasaki R, Tu MB, Dang GHM, Nguyen HG, Dang HM, Vo CH, Inigaki Y, van Nguyen N (2020) Accelerated remediation of organochlorine pesticide-contaminated soils with phyto-Fenton approach: a field study. Environ Geochem Health 42:3597–3608

    Article  CAS  PubMed  Google Scholar 

  • Trellu C, Mousset E, Pechaud Y, Huguenot D, van Hullebusch ED, Esposito G, Oturan MA (2016) Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. J Hazard Mater 306:149–174

    Article  CAS  PubMed  Google Scholar 

  • Trujillo-Reyes J, Peralta-Videa J, Gardea-Torresdey J (2014) Supported and unsupported nanomaterials for water and soil remediation: are they a useful solution for worldwide pollution? J Hazard Mater 280:487–503

    Article  CAS  PubMed  Google Scholar 

  • Vasudevan N, Rajaram P (2001) Bioremediation of oil sludge contaminated soil. Environ Int 26:409–411

    Article  CAS  PubMed  Google Scholar 

  • Veil J (2015) U.S. produced water volumes and management practices in 2012. Ground water protection council, Oklahoma city, OK, USA. Produced water report: regulations, current practices, and research needs. 2019

    Google Scholar 

  • Vishnu KM, Murugesan S (2020a) Biosynthesis and characterization of silver nanoparticles from marine macroscopic red seaweed Halymenia porphyroides Boergesen (Crypton). J Nanosci Technol 6(2):886–890

    Article  Google Scholar 

  • Vishnu KM, Murugesan S (2020b) Biosynthesis and characterization of silver nanoparticles from marine macroscopic brown seaweed Colpomenia sinuosa (Mertens ex Roth) Derbes and Solier. J Adv Chem Sci 6(1):663–666

    Article  Google Scholar 

  • Wang Y, Liu Y, Zhan W, Zheng K, Lian M, Zhang C, Ruan X, Li T (2020) Long-term stabilization of Cd in agricultural soil using mercapto-functionalized nano-silica (MPTS/nano-silica): a three-year field study. Ecotoxicol Environ Saf 197:110600

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Wang JJ, Gaston LA, Li J, Fultz LM, De Laune RD, Dodla SK (2020a) Remediation of crude oil-contaminated coastal marsh soil: integrated effect of biochar, rhamnolipid biosurfactant and nitrogen application. J Hazard Mater 396:122595

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Wang JJ, Meng Y, Li J, Gaston LA, Fultz LM, DeLaune RD (2020b) Potential use of biochar and rhamnolipid biosurfactant for remediation of crude oil-contaminated coastal wetland soil: ecotoxicity assessment. Chemosphere 253:126617

    Article  CAS  PubMed  Google Scholar 

  • Wolicka D, Suszek A, Borkowski A, Bielecka A (2009) Application of aerobic microorganisms in bioremediation in situ of soil contaminated by petroleum products. Bioresour Technol 100:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Wozniak CA, McClung G, Gagliardi J, Segal M, Matthews K (2012) Regulation of genetically engineered microorganisms under FIFRA, FFDCA and TSCA. In: Regulation of agricultural biotechnology: the United States and Canada. Springer, Dordrecht, pp 57–94

    Chapter  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647

    Google Scholar 

  • Xie Y, Cheng W, Tsang PE, Fang Z (2016) Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres. J Environ Manag 166:478–483

    Article  CAS  Google Scholar 

  • Xiuqi C, Ying X, Janelle L (2013) The effects of micro-algae characteristics on the bioremediation rate of Deepwater Horizon crude oil. J Emerg Investig 17:1–7

    Google Scholar 

  • Xu Y, Zhou NY (2017) Microbial remediation of aromatics-contaminated soil. Front Environ Sci Eng 11:1

    CAS  Google Scholar 

  • Yu J, Li R, Zhang X, Du Y, Ma R, Zhao X, Zuo S, Dong K, Wang R, Zhang Y, Gu Y, Sun J (2023) Bioremediation of petroleum hydrocarbon contaminated soil by microorganisms immobilized on sludge modified by non-ionic surfactant. Environ Sci Pollut Res 30:28010–28022

    Google Scholar 

  • Zhang Y, Zhao G, Xuan Y, Gan L, Pan M (2021) Enhanced photocatalytic performance for phenol degradation using ZnO modified with nano-biochar derived from cellulose nanocrystals. Cellulose 28:991–1009

    Article  CAS  Google Scholar 

  • Zhang X, Wells M, Niazi N, Bolan N, Shaheeng S, Hou D, Gao B, Wang H, Rinklebe J, Wang Z (2022) Nanobiochar-rhizosphere interactions: implications for the remediation of heavy-metal contaminated soils. Environ Pollut 299:118810

    Article  CAS  PubMed  Google Scholar 

  • Zhao YC, Yi XY, Zhang M, Liu L, Ma WJ (2010) Fundamental study of degradation of dichlorodiphenyltrichloroethane in soil by laccase from white rot fungi. Int J Environ Sci Technol 7(2):359–366

    Article  CAS  Google Scholar 

  • Zhu X, Venosa AD, Makram TS, Lee K (2004) Guidelines for the bioremediation of oil-contaminated salt marshes. EPA/600/R-04/074. US Environmental Protection Agency, Cincinnati, OH

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Natarajan, S., Subbiah, M., Manam, V.K., Mohammad Said Al-Tawaha, A.R., Al-Tawaha, A.R., Adel Qotb, M. (2024). Microbial-Meditated Remediation of Crude Oil-Contaminated Soil. In: Karnwal, A., Mohammad Said Al-Tawaha, A.R. (eds) Microbial Applications for Environmental Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-97-0676-1_4

Download citation

Publish with us

Policies and ethics