Skip to main content

Molecular Organization of Gel Fibrils as Revealed by VCD

  • Chapter
  • First Online:
Multi-dimensional Vibrational Circular Dichroism

Abstract

This chapter is concerned with VCD application to gels. When a chiral low molecular weight gelator (LMWG) forms a gel from an organic solvent, it often leads to the appearance of helically wound fibrils. S- or R-12-hydroxystearic acid (denoted as S- or R-12-HOA), for example, forms a transparent gel from benzene. Helical fibrils (e.g., 100–200 nm in pitch length) are observed by electron microscopy. When VCD spectra are measured on the gels, enormously large VCD signals are observed. The enhancement is rationalized in terms of the mechanism that gelator molecules are linked stereoregularly under the uniform conformation. The conformation of a gelator molecule is deduced by analyzing VCD spectra with the help of theoretical simulation. It presents an example of VCD application to supramolecular chirality. VCD studies are further extended to gels formed by LMWGs with perfluoroalkyl chains. Attention is focused on how the helicity of a fibril is related to the molecular chirality of a perfluoroalkyl chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Fages (ed.), Low Molecular Mass Gelators, Design, Self-assembly, Function (Springer, 2005)

    Google Scholar 

  2. F.G. Weiss, P. Terech (eds.), Molecular Gels: Materials with Self-assembled Fibrillar Networks (Springer, 2006)

    Google Scholar 

  3. L.A. Estroff, A.D. Hamilton, Water gelation by small organic molecules. Chem. Rev. 104, 1201 (2004); A. Aggeli, I.A. Nyrkova, M. Bell, R. Harding, L. Carrick, T.C.B. McLeish, A.N. Semenov, N. Boden, Hierarchical self-assembly of chiral rod-like molecules as a model for peptide b-sheet tapes, ribbons, fibrils, and fibers. Proc. Natl. Acad. Sci. U.S.A. 98, 11857–11862 (2001)

    Google Scholar 

  4. H. Sato, K. Hori, T. Sakurai, A. Yamagishi, Long distance chiral transfer in a gel: experimental and ab initio analyses of vibrational circular dichroism spectra of R- and S-12 hydroxyoctadecanoic acid gels. Chem. Phys. Lett. 467, 140–143 (2008)

    Article  CAS  Google Scholar 

  5. H. Sato, A new horizon for vibrational circular dichroism spectroscopy: a challenge for supramolecular chirality. Phys. Chem. Chem. Phys. 22, 7671–7679 (2020)

    Article  CAS  PubMed  Google Scholar 

  6. H. Sato, T. Yajima, A. Yamagishi, Chiroptical studies on supramolecular chirality of molecular aggregates. Chirality 27, 659–666 (2015)

    Google Scholar 

  7. T. Tachibana, T. Mori, K. Hori, New type of twisted mesophase in jellies and solid films of chiral 12-hydroxyoctadecanoic acid. Nature 278, 578–579 (1979)

    Article  CAS  Google Scholar 

  8. P. Terech, V. Rodriguez, J.D. Barnes, G.B. McKenna, Organogels and aerogels of racemic and chiral 12-hydroxyoctadecanoic acid. Langmuir 10, 3406–3418 (1994)

    Article  CAS  Google Scholar 

  9. T. Sakurai, Y. Masuda, H. Sato, A. Yamagishi, H. Kawaji, T. Atake, K. Hori, A comparative study on chiral and racemic 12-hydorxyoctadecanoic acids in the solutions and aggregation states: does the racemic form really form a gel? Bull. Chem. Soc. Jpn. 83, 145–150 (2010)

    Article  CAS  Google Scholar 

  10. H. Sato, T. Sakurai, A. Yamagishi, Comparison of vibrational circular dichroism between the langmuir-blodgett films and gels of 12-hydroxyoctadecanoic acid. Chem. Lett. 40, 25–27 (2011)

    Article  Google Scholar 

  11. S. Dieterich, S. Prévost, C. Dargel, T. Sottmann, F. Giesselmann, Synergistic structures in lyotropic lamellar gels. Soft Matter 16, 10268–10279 (2020)

    Article  CAS  PubMed  Google Scholar 

  12. S. Dieterich, T. Sottmann, F. Giesselmann, Gelation of lyotropic liquid-crystal phases-the interplay between liquid crystalline order and physical gel formation. Langmuir 35, 16793–16802 (2019)

    Article  CAS  PubMed  Google Scholar 

  13. M. Laupheimer, N. Preisig, C. Stubenrauch, The molecular organogel n-decane/12-hydroxyoctadecanoic acid: sol–gel transition, rheology, and microstructure. Colloids Surf. A: Physicochem. Eng. Aspect 469, 3150325 (2015)

    Article  Google Scholar 

  14. K. Aramaki, S. Koitani, E. Takimoto, M. Kondob, C. Stubenrauch, Hydrogelation with a water-insoluble organogelator—surfactant mediated gelation (SMG). Soft Matter 15, 8896–8904 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. M.A. Rogers, S. Abraham, F. Bodondics, R.G. Weiss, Influence of the hydroxyl position in racemic hydroxyoctadecanoic acids on the crystallization kinetics and activation energies of gels and dispersions in mineral oil. Cryst. Growth Des. 12, 5497–5504 (2012)

    Article  CAS  Google Scholar 

  16. D.A.S. Grahame, C. Olauson, R.S.H. Lam, T. Pedersen, F. Borondics, S. Abraham, R.G. Weissc, M.A. Rogers, Influence of chirality on the modes of self-assembly of 12-hydroxystearic acid in molecular gels of mineral oil. Soft Matter 7, 7359–7365 (2011)

    Article  CAS  Google Scholar 

  17. Y. Lan, M.G. Corradini, R.G. Weiss, S.R. Raghavan, M.A. Rogers, To gel or not to gel: correlating molecular gelation with solvent parameters. Chem. Soc. Rev. 44, 6035–6058 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. K. Hanabusa, M. Yamada, M. Kimura, H. Shirai, Prominent gelation and chiral aggregation of alkylamides derived from trans-l,2-diaminocyclohe. Angew. Chem. Int. Ed. 35, 1949 (1996)

    Google Scholar 

  19. H. Sato, T. Nakae, K. Morimoto, K. Tamura, Critical effects of alkyl chain length on fibril structures in benzene-trans(RR)- or (SS)-N, N′-Alkanoyl-1, 2-diaminocyclohexane gels. Org. Biomol. Chem. 10, 1581–1586 (2012)

    Article  CAS  PubMed  Google Scholar 

  20. H. Sato, E. Nogami, T. Yajima, A. Yamagishi, Terminal effects on gelation by low molecular weight chiral gelators. RSC Adv. 4, 1659–1665 (2014)

    Article  CAS  Google Scholar 

  21. K. Monde, N. Miura, M. Hashimoto, T. Taniguchi, T. Inabe, Conformational analysis of chiral helical perfluoroalkyl chains by VCD. J. Am. Chem. Soc. 128, 6000–6001 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. H. Sato, T. Yajima, A. Yamagishi, Molecular origin for helical winding of fibrils formed by perfluorinated gelators. Chem. Commun. 47, 3736–3738 (2011)

    Article  CAS  Google Scholar 

  23. K. Kohno, K. Morimoto, N. Manabe, T. Yajima, A. Yamagishi, H. Sato, Promotion effects of optical antipodes on the formation of helical fibrils: chiral perfluorinated gelators. Chem. Commun. 48, 3860–3862 (2012)

    Article  CAS  Google Scholar 

  24. H. Sato, T. Yajima, A. Yamagishi, An intermediate state in gelation as revealed by vibrational circular dichroism spectroscopy. RSC Adv. 4, 25867–25870 (2014)

    Article  CAS  Google Scholar 

  25. T. Yajima, E. Tabuchi, E. Nogami, A. Yamagishi, H. Sato, Perfluorinated gelators for solidifying fluorous solvents: effects of chain length and molecular chirality. RSC Adv. 5, 80542–80547 (2015)

    Article  CAS  Google Scholar 

  26. H. Sato, T. Yajima, A. Yamagishi, Helical inversion of gel fibrils by elongation of perfluoroalkyl chains as studied by vibrational circular dichroism. Chirality 28, 361–364 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. A. Yamagishi, Y. Umemura, K. Tamura, T. Yajima, H. Sato, Langmuir-blodgett films of chiral perfluorinated gelators: effects of chirality and chain length on two-dimensional behavior. Bull. Chem. Soc. Jpn 94, 377–381 (2021)

    Article  CAS  Google Scholar 

  28. H. Torii, H. Sato, Intermediate length-scale chirality related to the vibrational circular dichroism intensity enhancement upon fibril formation in a gelation process. Phys. Chem. Chem. Phys. 20, 14992–14996 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. T. Sasaki, A. Egami, T. Yajima, H. Uekusa, H. Sato, Unusual molecular and supramolecular structures of chiral low molecular weight organogelators with long perfluoroalkyl chains. Cryst. Growth Des. 18, 4200–4205 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisako Sato .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato, H., Yoshida, J., Yamagishi, A. (2024). Molecular Organization of Gel Fibrils as Revealed by VCD. In: Multi-dimensional Vibrational Circular Dichroism. Springer, Singapore. https://doi.org/10.1007/978-981-97-0391-3_4

Download citation

Publish with us

Policies and ethics