Skip to main content

Development and Management of Arbuscular Mycorrhizal Fungi Inocula for Smallholder Farmers: Challenges and Opportunities

  • Chapter
  • First Online:
Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Inoculum Production and Application

Abstract

To a certain extent, most of the terrestrial plants in their natural habitats have been known to exist primarily under the influence of a special group of soil microorganisms called arbuscular mycorrhizal fungi (AMF). Existence of AM fungi in the soil was discovered about 100 years ago although full scientific attention grew gradually in the past 45 years. The aim of this review paper is to assess scientific literature relevant to development and management of AMF inoculum for smallholder farming: explore isolation of AMF spores from the soil, establishment of AMF cultures, AMF identification, mass production of AMF, as well as beneficial effects of AMF to host plants. Association of plant roots and AMF leads to formation of arbuscular mycorrhizal symbiosis whereby the fungi provide essential nutrients to the plants, thus resulting in enhanced plant growth, host plant protection, and enhancement of soil quality. The AMF create a filamentous network in the soil with plant roots which in turn increases bi-directional nutrient movement whereby beneficial nutrients (mainly nitrogen and phosphorus) and water move to the host plant, whereas the fungal network receives plant photosynthates. This filamentous network created by AMF in the soil occurs in most land plants such as cereals, horticultural plants, vegetables, and most major crops. Several factors ranging from host crop dependency to mycorrhizal colonization, inorganic and organic fertilization, tillage system, to AM fungi inoculum’s potential have shown to have a significant effect on host plant response to mycorrhizae. The cultivation of AMF strains and subsequent maintenance of the resulting AM fungal inocula require methodologies which are somehow different from those employed in other microbial inoculum production. Currently, there has been tremendous interest in AM fungi propagation for agriculture because of their vital role in provision of soil nutrients, enhancement of plant health, and soil aggregate stability. In this chapter, we discussed suitable methodologies involved in the production of AMF inoculum for improving the profitability, productivity, and sustainability of smallholder farmers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. FAO. FAOSTAT. Rome: FAO Publications; 2013.

    Google Scholar 

  2. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D. Food security: the challenge of feeding 9 billion people. Science. 2010;327:812–8.

    Article  CAS  PubMed  Google Scholar 

  3. Ceballos I, Ruiz M, Fernández C, Peña R, Rodríguez A, Sanders IR. The in vitro mass-produced model mycorrhizal fungus, Rhizophagus irregularis, significantly increases yields of the globally important food security crop cassava. PLoS One. 2013;8(8):e70633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Njeru EM, Avio L, Bocci G, Sbrana C, Turrini A, Bàrberi P, Giovannetti M, Oehl F. Contrasting effects of cover crops on ‘hot spot’ arbuscular mycorrhizal fungal communities in organic tomato. Biol Fertil Soils. 2014;51(2):151–66.

    Article  Google Scholar 

  5. Njeru EM, Avio L, Sbrana C, Turrini A, Bocci G, Bàrberi P, Giovannetti M. First evidence for a major cover crop effect on arbuscular mycorrhizal fungi and organic maize growth. Agron Sustain Dev. 2013;34(4):841–8.

    Article  Google Scholar 

  6. Nyamwange MME, Njeru EM, Mucheru-Muna M, Ngetich F. Soil management practices affect arbuscular mycorrhizal fungi propagules, root colonization and growth of rainfed maize. AIMS Agriculture and Food. 2018;3(2):120–34.

    Article  Google Scholar 

  7. Bedini S, Avio L, Argese E, Giovannetti E. Effects of long-term land use on arbuscular mycorrhizal fungi and glomalin related soil protein. Agric Ecosyst Environ. 2007;120:463.

    Article  CAS  Google Scholar 

  8. Mohandas S. Arbuscular mycorrhizal fungi benefit mango (Mangifera indica L.) plant growth in the field. Sci Hortic. 2012;143:43–8.

    Article  Google Scholar 

  9. Silveira AP. Micorrizas. In: Cardoso EJBN, Tsai SM, Neves MCP, editors. Microbiologia do solo. Campinas: SBCS; 1992. p. 257–82.

    Google Scholar 

  10. De Santana AS, Cavalcante UMT, Sampaio EVDSB, Maia LC. Production, storage and costs of inoculum of arbuscular mycorrhizal fungi (AMF). Rev Bras Bot. 2014;37(2):159–65.

    Article  Google Scholar 

  11. Camargo-Ricalde SL. Dispersal, distribution and establishment of arbuscular mycorrhizal fungi: a review. Bot Sci. 2002;71:33–4.

    Article  Google Scholar 

  12. Coelho IR, Pedone-Bonfim MV, Silva FS, Maia LC. Optimization of the production of mycorrhizal inoculum on substrate with organic fertilizer. Braz J Microbiol. 2014;45:1173–8.

    Article  CAS  PubMed  Google Scholar 

  13. Habte M, Osorio NW. Arbuscular mycorrhizas: producing and applying arbuscular mycorrhizal inoculum. Honolulu, HI: University of Hawaii; 2001.

    Google Scholar 

  14. Zobel M, Öpik M. Plant and arbuscular mycorrhizal fungal (AMF) communities–which drives which? J Veg Sci. 2014;25(5):1133–40.

    Article  Google Scholar 

  15. Ijdo M, Cranenbrouck S, Declerck S. Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza. 2011;21:1–16.

    Article  CAS  PubMed  Google Scholar 

  16. Jayaratne AHR, Siriwardene D. Arbuscular mycorrhizal inoculum production for commercial use. Trop Agric Res Ext. 2000;3:37–140.

    Google Scholar 

  17. Silva FSB, Yano-Melo AM, Brandão JAC, Maia LC. Sporulation of arbuscular mycorrhizal fungi using Tris-HCl buffer in addition to nutrient solutions. Braz J Microbiol. 2005;36:327–32.

    Article  Google Scholar 

  18. Silva FSB, Yano-Melo AM, Maia LC. Production and infectivity of inoculum of arbuscular mycorrhizal fungi multiplied in a substrate supplemented with Tris-HCl buffer. Braz J Microbiol. 2007;38:752–5.

    Article  Google Scholar 

  19. INVAM. Mean infection percentage (MIP) method. 2010.

    Google Scholar 

  20. Corkidi L, Allen EB, Merhaut D, Allen MF, Downer J, Bohn J, Evans M. Assessing the infectivity of commercial mycorrhizal inoculants in plant nursery conditions. J Environ Hortic. 2004;22:149–54.

    Article  Google Scholar 

  21. Wang B, Qiu Y-L. Phylogenetic distribution and evolution of mycorrhizae in land plants. Mycorrhiza. 2006;16:299–363.

    Article  CAS  PubMed  Google Scholar 

  22. Schlemper TR, Stürmer SL. On farm production of arbuscular mycorrhizal fungi inoculum using lignocellulosic agrowastes. Mycorrhiza. 2014;24(8):571–80.

    Article  CAS  PubMed  Google Scholar 

  23. Dalpé Y, Monreal M. Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Crop Manag. 2004;3(1):1–11.

    Article  Google Scholar 

  24. Sylvia DM. Vesicular-arbuscular mycorrhizal fungi. In: Mickelson SH, Bigham JM, editors. Methods of soil analysis, part 2. Microbiological and biochemical properties. SSA book series, vol. 5. Madison, WI: Soil Science Society of America; 1994. p. 351–78.

    Google Scholar 

  25. Jarstfer AG, Farmer-Koppenol P, Sylvia DM. Tissue magnesium and calcium affect arbuscular mycorrhiza development and fungal reproduction. Mycorrhiza. 1998;7:237–42.

    Article  CAS  PubMed  Google Scholar 

  26. Paiva LM, Silva MA, Silva PC, Maia LC. Glomus clarume G. etunicatum: cultivoem solo eaeroponia. Rev Bras Bot. 2003;26:257–62.

    Article  Google Scholar 

  27. Sylvia DM, Jarstfer AG. Sheared—root inocula of vesicular— arbuscular mycorrhizal fungi. Appl Environ Microbiol. 1992;58:229–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sieverding E. Vesicular-arbuscular mycorrhizal management in tropical agrosystems. Eschborn: Deutsche Gesellschaft fu¨rTechnische Zusammenarbeit (GTZ); 1991.

    Google Scholar 

  29. Hung LL, Sylvia DM. Production of vesicular—arbuscular mycorrhizal fungus inoculum in aeroponic culture. Appl Environ Microbiol. 1988;54:353–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Long LK, Yao Q, Huang YH, Yang RH, Guo J, Zhu HH. Effects of arbuscular mycorrhizal fungi on zinnia and the different colonization between Gigaspora and glomus. World J Microbiol Biotechnol. 2010;26:1527–31.

    Article  Google Scholar 

  31. Feldmann F, Hutter I, Schneider C. Best production practice of arbuscular mycorrhizal inoculum. In: Varma A, Kharkwal AC, editors. Symbiotic fungi: principles and practice. Cham: Springer; 2009. p. 319–36.

    Chapter  Google Scholar 

  32. Jarstfer AG, Sylvia DM. Inoculum production and inoculation strategies for vesicular arbuscular mycorrhizal fungi. In: Metting FB, editor. Soil microbial ecology: applications in agricultural and environmental management. New York: CRC Press; 1992. p. 349–77.

    Google Scholar 

  33. Lima WL. Fungosmicorrı’zicosarbusculares: bioquı’mica e morfologia da interac¸a˜o com a’cidoshu’micos e suamultiplicac¸a˜oemaeroponia. Rio de Janeiro: Dissertac¸a˜o de Mestrado, Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro; 2004.

    Google Scholar 

  34. Jansa J, Mozafar A, Anken T, Ruh R, Sanders I, Frossard E. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza. 2002;12(5):225–34.

    Article  CAS  PubMed  Google Scholar 

  35. Selvakumar G, Shagol CC, Kang Y, Chung BN, Han SG, Sa TM. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host. J Appl Microbiol. 2018;124(6):1556–65.

    Article  CAS  PubMed  Google Scholar 

  36. Morton JB. Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon. 1988;32:267–324.

    Google Scholar 

  37. Walker C. Systematics and taxonomy of the arbuscular endomycorrhizal fungi (Glomales)—a possible way forward. Agronomie. 1992;12:887–97.

    Article  Google Scholar 

  38. Talukdar NC, Germida JJ. Occurrence and isolation of vesicular-arbuscular mycorrhizae in cropped field soils of Saskatchewan, Canada. Can J Microbiol. 1993;39:567–75.

    Article  Google Scholar 

  39. Sanders IR, Alt M, Groppe K, Boller T, Wiemken A. Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol. 1995;130:419–27.

    Article  CAS  Google Scholar 

  40. Sadhana B. Arbuscular mycorrhizal fungi (AMF) as a biofertilizer-a review. Int J Curr Microbiol App Sci. 2014;3(4):384–400.

    Google Scholar 

  41. Eriksen M, Bjureke KE, Dhillion SS. Mycorrhiza. 2002;12(3):117–23.

    Article  PubMed  Google Scholar 

  42. Chaurasia B, Khare PK. Hordeum vulgare: a suitable host for mass production of arbuscular mycorrhizal fungi from natural soil. J Appl Ecol Environ Res. 2005;4(1):45–53.

    Article  Google Scholar 

  43. Wang FY, Shi ZY. Biodiversity of arbuscular mycorrhizal fungi in China: a review. Adv Environ Biol. 2008;2(1):31–9.

    Google Scholar 

  44. Brundrett MC, Abbott LK. Mycorrhizal fungus propagules in the Jarrh forest. I. Spatial variability in inoculum levels. New Phytol. 1995;131:461–9.

    Article  PubMed  Google Scholar 

  45. Sreenivasa MN, Bagyaraj DJ. Chloris gayana (Rhodes grass), a better host for the mass production of Glomus fasciculatum. Plant Soils. 1988;106:289–90.

    Article  Google Scholar 

  46. Hakoomat A, Muhammad AK, Shakeel AR. Interactive effect seed inoculation and phosphorus application on growth and yield of chickpea (Cicer arietinum L.). Int J Agric Biol. 2004;6:110–2.

    Google Scholar 

  47. Johnson NC, Pfleger FL, Crookston RK, Simmons SR, Copeland PJ. Arbuscular mycorrhizas respond to corn and Soyabean cropping history. New Phytol. 1995;117:657–63.

    Article  Google Scholar 

  48. De Souza RG, Goto BT, da Silva DKA, da Silva FSB, Sampaio EV, Maia LC. The role of arbuscular mycorrhizal fungi and cattle manure in the establishment of Tocoyena selloana Schum. In mined dune areas. Eur J Soil Biol. 2010;46(3–4):237–42.

    Article  Google Scholar 

  49. Mukherjee PK, Rai RK. Effect of arbuscular mycorrhizae and phosphate solubilizing bacteria on growth, yield and phosphorus uptake in wheat (Triticum aestivum). Indian J Agron. 2000;45(3):602–7.

    Google Scholar 

  50. Rajendran K, Jayasree R. Effect of biofertilizers on quality seedling production of Acacia nilotica. JNTFP. 2007;14:5–11.

    Google Scholar 

  51. Ashraf Zahid M, Muhammad Iqbal SH, Ali A, Hussain S. Efficacy of microbial bioagents for the control of collar rot disease in chick pea. Pak J Bot. 2007;39(7):2667–72.

    Google Scholar 

  52. Khan IA, Ayub N, Mirza SN, Nizami SM, Azam M. Synergistic effect of dual inoculation (vesicular arbuscular mycorrhizae) on the growth and nutrients uptake of Medicago sativa. Pak J Bot. 2008;40(2):939–45.

    Google Scholar 

  53. Akhtar MS, Siddiqui ZA. Effects of phosphate solubilizing microorganisms and rhizobium species on the growth, nodulation, yield and root-rot disease complex of Chick pea under field condition. Afr J Biotechnol. 2009;8(15):3489–96.

    Google Scholar 

  54. Bhat MI, Rashid A, Faisul-Ur-Rasool, Mahdi SS, Haq SA, Raies A, Bhat. Effect of rhizobium and vesicular arbuscular mycorrhizae fungi on green gram (Vigna radiata L. Wilczek) under temperate conditions. Res J Agric Sci. 2010;1(2):113–8.

    Google Scholar 

  55. Baum C, El-Tohamy W, Gruda N. Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic. 2015;187:131–41.

    Article  Google Scholar 

  56. Benhiba L, Fouad MO, Essahibi A, Ghoulam C, Qaddoury A. Arbuscular mycorrhizal symbiosis enhanced growth and antioxidant metabolism in date palm subjected to long-term drought. Trees. 2015;29:1725–33.

    Article  CAS  Google Scholar 

  57. Chitarra W, Pagliarani C, Maserti B, Lumini E, Siciliano I, Cascone P, Schubert A, Gambino G, Balestrini R, Guerrieri E. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 2016;171:1009–23.

    PubMed  PubMed Central  Google Scholar 

  58. Begum N, Ahanger MA, Su Y, Lei Y, Mustafa NSA, Ahmad P, Zhang L. Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plan Theory. 2019;8(12):579.

    CAS  Google Scholar 

  59. Amiri R, Nikbakht A, Etemadi N, Sabzalian MR. Nutritional status, essential oil changes and water-use efficiency of rose geranium in response to arbuscular mycorrhizal fungi and water deficiency stress. Symbiosis. 2017;73:15–25.

    Article  CAS  Google Scholar 

  60. Essahibi A, Benhiba L, Babram MA, Ghoulam C, Qaddoury A. Influence of arbuscular mycorrhizal fungi on the functional mechanisms associated with drought tolerance in carob (Ceratonia siliqua L.). Trees. 2018;32:87–97.

    Article  Google Scholar 

  61. Fouad MO, Essahibi A, Benhiba L, Qaddoury A. Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Span J Agric Res. 2014;12:763–71.

    Article  Google Scholar 

  62. Quiroga G, Erice G, Aroca R, Chaumont F, Ruiz-Lozano JM. Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front Plant Sci. 2017;8:1–15.

    Article  Google Scholar 

  63. Setter TL, Flannigan BA. Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J Exp Bot. 2001;52:1401–8.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang Z, Mallik A, Zhang J, Huang Y, Zhou L. Effects of arbuscular mycorrhizal fungi on inoculated seedling growth and rhizosphere soil aggregates. Soil Tillage Res. 2019a;194:104340.

    Article  Google Scholar 

  65. Zhang Z, Zhang J, Xu G, Zhou L, Li Y. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress. New For. 2019b;50:593–604.

    Article  Google Scholar 

  66. Ahanger MA, Hashem A, Abd Allah EF, Ahmad P. Arbuscular mycorrhiza in crop improvement under environmental stress. In: Ahmad P, Rasool S, editors. Emerging technologies and management of crop stress tolerance. Cambridge, MA: Academic; 2014.

    Google Scholar 

  67. Abdel-Salam E, Alatar A, El-Sheikh MA. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J Biol Sci. 2018;25:1772–80.

    Article  PubMed  Google Scholar 

  68. Elsen A, Beeterens R, Swennen R, De Waele D. Effects of an arbuscular mycorrhizal fungus and two plant-parasitic nematodes on Musa genotypes differing in root morphology. Biol Fertil Soils. 2003;38:367–76.

    Article  Google Scholar 

  69. Ahanger MA, Tittal M, Mir RA, Agarwal R. Alleviation of water and osmotic stress-induced changes in nitrogen metabolizing enzymes in Triticum aestivum L. cultivars by potassium. Protoplasma. 2017;254:1953–63.

    Article  CAS  PubMed  Google Scholar 

  70. Hazrati S, Tahmasebi-Sarvestani Z, Modarres-Sanavy SAM, Mokhtassi-Bidgoli A, Nicola S. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiol Biochem. 2016;106:141–8.

    Article  CAS  PubMed  Google Scholar 

  71. Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature. 1999;401:914–7.

    Article  CAS  Google Scholar 

  72. Zhang YJ, Xie ZK, Wang YJ, Su PX, An LP, Gao H. Effect of water stress on leaf photosynthesis, chlorophyll content, and growth of oriental lily. Russ J Plant Physiol. 2011;58:844–50.

    Article  CAS  Google Scholar 

  73. Fatma M, Asgher M, Masood A, Khan NA. Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ Exp Bot. 2014;107:55–63.

    Article  CAS  Google Scholar 

  74. Dalal VK, Tripathy BC. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant Cell Environ. 2012;35:1685–703.

    Article  CAS  PubMed  Google Scholar 

  75. Zhou Q, Ravnskov S, Jiang D, Wollenweber B. Changes in carbon and nitrogen allocation, growth and grain yield induced by arbuscular mycorrhizal fungi in wheat (Triticum aestivum L.) subjected to a period of water deficit. Plant Growth Regul. 2015;75:751–60.

    Article  CAS  Google Scholar 

  76. Mo Y, Wang Y, Yang R, Zheng J, Liu C, Li H, Ma J, Zhang Y, Wei C, Zhang X. Regulation of plant growth, photosynthesis, antioxidation and osmosis by an arbuscular mycorrhizal fungus in watermelon seedlings under well-watered and drought conditions. Front Plant Sci. 2016;7:1–15.

    Article  Google Scholar 

  77. Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR. On the relationship between non-photochemical quenching and photoprotection of photosystem II. Bioenergetics. 2012;1817:760–9.

    Article  CAS  Google Scholar 

  78. Müller P, Li XP, Niyogi KK. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 2001;125:1558–66.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Porcar-Castell A, Tyystjärvi E, Atherton J, Van Der Tol C, Flexas J, Pfündel EE, Moreno J, Frankenberg C, Berry JA. Linking chlorophyll, a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J Exp Bot. 2014;65:4065–95.

    Article  CAS  PubMed  Google Scholar 

  80. Ismail IM, Basahi JM, Hassan IA. Gas exchange and chlorophyll fluorescence of pea (Pisum sativum L.) plants in response to ambient ozone at a rural site in Egypt. Sci Total Environ. 2014;497–498:585–93.

    Article  PubMed  Google Scholar 

  81. Ahanger MA, Agarwal RM. Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma. 2017;254:1471–86.

    Article  CAS  PubMed  Google Scholar 

  82. Figueiredo MVB, Burity HA, Martínez CR, Chanway CP. Drought stress response on some key enzymes of cowpea (Vigna unguiculata L. Walp.) nodule metabolism. World J Microbiol Biotechnol. 2007;23:187–93.

    Article  CAS  Google Scholar 

  83. Ahanger MA, Alyemeni MN, Wijaya L, Alamri SA, Alam P, Ashraf M, Ahmad P. Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS One. 2018;13:e0202175.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Grümberg BC, Urcelay C, Shroeder MA, Vargas-Gil S, Luna CM. The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biol Fertil Soils. 2015;51:1–10.

    Article  Google Scholar 

  85. Parvin S, Van Geel M, Yeasmin T, Verbruggen E, Honnay O. Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza. 2020;30:431–44.

    Article  PubMed  Google Scholar 

  86. Kheyri Z, Moghaddam M, Farhadi N. Inoculation efficiency of different mycorrhizal species on growth, nutrient uptake, and antioxidant capacity of Calendula officinalis L.: a comparative study. J Soil Sci Plant Nutr. 2022;22:1–13.

    Article  Google Scholar 

  87. Chandrasekaran M. A meta-analytical approach on arbuscular mycorrhizal fungi inoculation efficiency on plant growth and nutrient uptake. Agriculture. 2020;10(9):370.

    Article  CAS  Google Scholar 

  88. Säle V, Sieverding E, Oehl F. Growth responses of three European weeds on different AMF species during early development. Plan Theory. 2022;11(15):2020.

    Google Scholar 

  89. Ortas I, Sari N, Akpinar C, Yetisir H. Selection of arbuscular mycorrhizal fungi species for tomato seedling growth, mycorrhizal dependency and nutrient uptake. Eur J Hortic Sci. 2013;78:209–18.

    Google Scholar 

  90. Tran BT, Watts-Williams SJ, Cavagnaro TR. Impact of an arbuscular mycorrhizal fungus on the growth and nutrition of fifteen crop and pasture plant species. Funct Plant Biol. 2019;46(8):732–42.

    Article  PubMed  Google Scholar 

  91. Bi Y, Zhang Y, Zou H. Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas. Int J Coal Sci Technol. 2018;5:47–53.

    Article  CAS  Google Scholar 

  92. Kim SJ, Eo JK, Lee EH, Park H, Eom AH. Effects of arbuscular mycorrhizal fungi and soil conditions on crop plant growth. Microbiology. 2017;45(1):20–4.

    Google Scholar 

  93. Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Ahammed GJ. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol. 2017;8:2516.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Boyer LR, Brain P, Xu XM, Jeffries P. Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza. 2015;25:215–27.

    Article  CAS  PubMed  Google Scholar 

  95. Köhl L, Lukasiewicz CE, Van der Heijden MG. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils. Plant Cell Environ. 2016;39(1):136–46.

    Article  PubMed  Google Scholar 

  96. Shuab R, Lone R, Naidu J, Sharma V, Imtiyaz S, Koul KK. Benefits of inoculation of arbuscular mycorrhizal fungi on growth and development of onion (Allium cepa) plant. Am Eurasian J Agric Environ Sci. 2014;14(6):527–35.

    Google Scholar 

  97. Baslam M, Garmendia I, Goicoechea N. Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem. 2011;59(10):5504–15.

    Article  CAS  PubMed  Google Scholar 

  98. Wilkes TI, Warner DJ, Edmonds-Brown V, Davies KG, Denholm I. The tripartite Rhizobacteria-AM fungal-host plant relationship in winter wheat: impact of multi-species inoculation, tillage regime and naturally occurring Rhizobacteria species. Plan Theory. 2021;10(7):1357.

    CAS  Google Scholar 

  99. Deressa TG, Schenk MK. Contribution of roots and hyphae to phosphorus uptake of mycorrhizal onion (Allium cepa L.)—a mechanistic modelling approach. J Plant Nutr Soil Sci. 2008;171:810–20.

    Article  CAS  Google Scholar 

  100. Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, Wang X, Lin, and He, C. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hortic. 2013;160:222–9.

    Article  CAS  Google Scholar 

  101. Hu J, Chan PT, Wu F, Wu S, Zang J, Lin X, Wong MH. Arbuscular mycorrhizal fungi induce differential Cd and P acquisition by Alfred stonecrop (Sedum alfredii Hance) and upland kangkong (Ipomoea aquatica Forsk.) in an intercropping system. Appl Soil Ecol. 2013;63:29–35.

    Article  Google Scholar 

  102. Al-Karaki GN. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic. 2006;109:1–7.

    Article  Google Scholar 

  103. Marulanda A, Azcón R, Ruiz-Lozano JM. Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa L. plants under drought stress. Physiol Plant. 2003;119:526–33.

    Article  CAS  Google Scholar 

  104. Bagyaraj DJ, Sreeramulu KR. Pre-inoculation with VA mycorrhiza improves growth and yield of chilli transplanted in the field and saves phosphatic fertilizer. Plant Soil. 1982;69:375–81.

    Article  CAS  Google Scholar 

  105. Watts-Williams SJ, Turney TW, Patti AF, Cavagnaro TR. Uptake of zinc and phosphorus by plants is affected by zinc fertiliser material and arbuscular mycorrhizas. Plant Soils. 2014;376:165–75.

    Article  CAS  Google Scholar 

  106. Affokpon A, Coyne DL, Lawouin L, Tossou C, Agbèdè RD, Coosemans J. Effectiveness of native west African arbuscular mycorrhizal fungi in protecting vegetable crops against root-knot nematodes. Biol Fertil Soils. 2011;47:207–17.

    Article  Google Scholar 

  107. Smith FA, Smith SE. What is the significance of the arbsucular mycorrhizal colonisation of many economically important crop plants? Plant Soil. 2011;348:63–79.

    Article  CAS  Google Scholar 

  108. Oruru MB, Njeru EM. Upscaling arbuscular mycorrhizal symbiosis and related agroecosystems services in smallholder farming systems. BioMed Res Int. 2016;2016:4376240.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Charron G, Furlan V, Bernier-Cardou M, Doyon G. Response of onion plants to arbuscular mycorrhizae: effects of nitrogen fertilization on biomass and bulb firmness. Mycorrhiza. 2001;11:145–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this review paper.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mang’erere Nyamwange, M., Njeru, E.M. (2024). Development and Management of Arbuscular Mycorrhizal Fungi Inocula for Smallholder Farmers: Challenges and Opportunities. In: Parihar, M., Rakshit, A., Adholeya, A., Chen, Y. (eds) Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Inoculum Production and Application. Springer, Singapore. https://doi.org/10.1007/978-981-97-0296-1_8

Download citation

Publish with us

Policies and ethics