Skip to main content

Role of Carbon Nanomaterials in Energy Generation, Storage, and Conversion

  • Chapter
  • First Online:
Carbon-Based Nanomaterials

Part of the book series: Smart Nanomaterials Technology ((SNT))

  • 46 Accesses

Abstract

Due to the world's rapidly increasing population and technological advancements, energy is needed. The world’s energy supply is anticipated to double by 2050. Nanotechnology has opened up new possibilities in materials science and engineering, specifically in the manufacture of new materials for efficient energy conversion and storage. Carbon nanomaterials (CBNMs) possess distinctive size and surface-dependent features, such as electrical, morphological, mechanical, and optical properties, that are advantageous for improving energy conversion and storage performance compared to traditional materials. Substantial progress has been made in creating high-performance energy conversion and storage devices such as solar cells, fuel cells, batteries, and supercapacitors. This book chapter focuses on the latest developments and improvements made to the effectiveness of electrode materials used in renewable energy storage and conversion systems by utilizing graphene, carbon nanotubes (CNTs), fullerenes, and nanohybrid fillers. These materials are exceptional candidates for solar cells because of their superior capacity for photon absorption, photovoltaic characteristics, producing photocarriers, and separating charge carriers to create heterojunction. The synthetic method, pore size and distribution, and specific surface area of these materials all impact the capacitance of supercapacitor and battery materials. Additionally, these nanomaterials’ high surface area and electronic conductivity enhance the rate of electrode reactions in fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Titirici M-M, White RJ, Brun N, Budarin VL, Su DS, Del Monte F, Clark JH, MacLachlan MJ (2015) Sustainable carbon materials. Chem Soc Rev 44(1):250–290

    Article  CAS  PubMed  Google Scholar 

  2. Notarianni M, Liu J, Vernon K, Motta N (2016) Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein J Nanotechnol 7(1):149–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Su DS, Centi G (2013) A perspective on carbon materials for future energy application. J Energy Chem 22(2):151–173

    Article  CAS  Google Scholar 

  4. Hu C, Qu J, Xiao Y, Zhao S, Chen H, Dai L (2019) Carbon nanomaterials for energy and biorelated catalysis: recent advances and looking forward. ACS Cent Sci 5(3):389–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Duan Y, Weng M, Zhang W, Qian Y, Luo Z, Chen L (2021) Multi-functional carbon nanotube paper for solar water evaporation combined with electricity generation and storage. Energy Convers Manage 241:114306

    Article  CAS  Google Scholar 

  6. Rondeau-Gagné S, Morin J-F (2014) Preparation of carbon nanomaterials from molecular precursors. Chem Soc Rev 43(1):85–98

    Article  PubMed  Google Scholar 

  7. Ni J, Li Y (2016) Carbon nanomaterials in different dimensions for electrochemical energy storage. Adv Energy Mater 6(17):1600278

    Article  Google Scholar 

  8. Li Y, Meng L, Yang Y, Xu G, Hong Z, Chen Q, You J, Li G, Yang Y, Li Y (2016) High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun 7(1):10214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luo Q, Ma H, Hou Q, Li Y, Ren J, Dai X, Yao Z, Zhou Y, Xiang L, Du H (2018) All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater 28(11):1706777

    Article  Google Scholar 

  10. De Nicola F, Salvato M, Cirillo C, Crivellari M, Boscardin M, Scarselli M, Nanni F, Cacciotti I, De Crescenzi M, Castrucci P (2016) Record efficiency of air-stable multi-walled carbon nanotube/silicon solar cells. Carbon 101:226–234

    Article  Google Scholar 

  11. Fu X, Xu L, Li J, Sun X, Peng H (2018) Flexible solar cells based on carbon nanomaterials. Carbon 139:1063–1073

    Article  CAS  Google Scholar 

  12. Mabena LF, Makgopa K, Tanko-Djoubi AS, Modibane KD, Hato MJ (2021) Nanostructured carbon-based materials for fuel cell applications. In: Carbon related materials: commemoration for Nobel Laureate Professor Suzuki special symposium at IUMRS-ICAM2017. Springer, pp 357–390

    Google Scholar 

  13. Li Y, Xu G, Cui C, Li Y (2018) Flexible and semitransparent organic solar cells. Adv Energy Mater 8(7):1701791

    Article  Google Scholar 

  14. Zhao C, Wang J, Jiao J, Huang L, Tang J (2020) Recent advances of polymer acceptors for high-performance organic solar cells. J Mater Chem C 8(1):28–43

    Article  CAS  Google Scholar 

  15. Wang K, Li Y, Li Y (2020) Challenges to the stability of active layer materials in organic solar cells. Macromol Rapid Commun 41(4):1900437

    Article  CAS  Google Scholar 

  16. Abdi-Jalebi M, Ibrahim Dar M, Senanayak SP, Sadhanala A, Andaji-Garmaroudi Z, Pazos-Outón LM, Richter JM, Pearson AJ, Sirringhaus H, Grätzel M (2019) Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices. Sci Adv 5(2):eaav2012

    Google Scholar 

  17. Lee C, Lee J, Lee S, Lee W, You H, Woo HY, Kim BJ (2020) Importance of device structure and interlayer design in storage stability of naphthalene diimide-based all-polymer solar cells. J Mater Chem A 8(7):3735–3745

    Article  CAS  Google Scholar 

  18. Ramos JC, Flores JR, Turlakov G, Moggio I, Arias E, Rodríguez G (2020) Self-assembly of a poly (phenyleneethynylene) on multiwall carbon nanotubes: Correlation of structural and optoelectronic properties towards solar cells application. J Mol Struct 1222:128845

    Article  Google Scholar 

  19. Subramanyam B, Mahakul PC, Sa K, Raiguru J, Mahanandia P (2020) Investigation of improvement in stability and power conversion efficiency of organic solar cells fabricated by incorporating carbon nanostructures in device architecture. JPhys Mater 3(4):045004

    Article  CAS  Google Scholar 

  20. Park J-J, Heo Y-J, Yun J-M, Kim Y, Yoon SC, Lee S-H, Kim D-Y (2020) Orthogonal printable reduced graphene oxide 2D materials as hole transport layers for high-performance inverted polymer solar cells: Sheet size effect on photovoltaic properties. ACS Appl Mater Interfaces 12(38):42811–42820

    Article  CAS  PubMed  Google Scholar 

  21. Bella F, Lamberti A, Bianco S, Tresso E, Gerbaldi C, Pirri CF (2016) Floating, flexible polymeric dye‐sensitized solar‐cell architecture: the way of near‐future photovoltaics. Adv Mater Technol 1(2)

    Google Scholar 

  22. Ye M, Wen X, Wang M, Iocozzia J, Zhang N, Lin C, Lin Z (2015) Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today 18(3):155–162

    Article  CAS  Google Scholar 

  23. Yu F, Shi Y, Yao W, Han S, Ma J (2019) A new breakthrough for graphene/carbon nanotubes as counter electrodes of dye-sensitized solar cells with up to a 10.69% power conversion efficiency. J Power Sources 412:366–373

    Article  CAS  Google Scholar 

  24. Wahyuono RA, Jia G, Plentz J, Dellith A, Dellith J, Herrmann-Westendorf F, Seyring M, Presselt M, Andrä G, Rettenmayr M (2019) Self-assembled graphene/MWCNT bilayers as platinum-free counter electrode in dye-sensitized solar cells. ChemPhysChem 20(24):3336–3345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harnchana V, Chaiyachad S, Pimanpang S, Saiyasombat C, Srepusharawoot P, Amornkitbamrung V (2019) Hierarchical Fe3O4-reduced graphene oxide nanocomposite grown on NaCl crystals for triiodide reduction in dye-sensitized solar cells. Sci Rep 9(1):1494

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mehmood U, Asghar H, Babar F, Younas M (2020) Effect of graphene contents in polyaniline/graphene composites counter electrode material on the photovoltaic performance of dye-sensitized solar cells (DSSCSs). Sol Energy 196:132–136

    Article  CAS  Google Scholar 

  27. Kilic B (2019) Produce of carbon nanotube/ZnO nanowires hybrid photoelectrode for efficient dye-sensitized solar cells. J Mater Sci Mater Electron 30:3482–3487

    Article  CAS  Google Scholar 

  28. Meng F, Gao L, Yan Y, Cao J, Wang N, Wang T, Ma T (2019) Ultra-low-cost coal-based carbon electrodes with seamless interfacial contact for effective sandwich-structured perovskite solar cells. Carbon 145:290–296

    Article  CAS  Google Scholar 

  29. Elumalai NK, Mahmud MA, Wang D, Uddin A (2016) Perovskite solar cells: progress and advancements. Energies 9(11):861

    Article  Google Scholar 

  30. Wang H, Li H, Cai W, Zhang P, Cao S, Chen Z, Zang Z (2020) Challenges and strategies relating to device function layers and their integration toward high-performance inorganic perovskite solar cells. Nanoscale 12(27):14369–14404

    Article  CAS  PubMed  Google Scholar 

  31. Ferguson V, Silva SRP, Zhang W (2019) Carbon materials in perovskite solar cells: prospects and future challenges. Energy Environ Mater 2(2):107–118

    Article  CAS  Google Scholar 

  32. Wang S, Jiang P, Shen W, Mei A, Xiong S, Jiang X, Rong Y, Tang Y, Hu Y, Han H (2019) A low-temperature carbon electrode with good perovskite compatibility and high flexibility in carbon based perovskite solar cells. Chem Commun 55(19):2765–2768

    Article  CAS  Google Scholar 

  33. Wang Y, Zhao H, Mei Y, Liu H, Wang S, Li X (2018) Carbon nanotube bridging method for hole transport layer-free paintable carbon-based perovskite solar cells. ACS Appl Mater Interfaces 11(1):916–923

    Article  CAS  PubMed  Google Scholar 

  34. Hu X, Hou P, Liu C, Cheng H (2019) Carbon nanotube/silicon heterojunctions for photovoltaic applications. Nano Mater Sci 1(3):156–172

    Article  Google Scholar 

  35. Chu Q-Q, Ding B, Peng J, Shen H, Li X, Liu Y, Li C-X, Li C-J, Yang G-J, White TP (2019) Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. J Mater Sci Technol 35(6):987–993

    Article  CAS  Google Scholar 

  36. Zhou L, Zuo Y, Mallick TK, Sundaram S (2019) Enhanced efficiency of carbon-based mesoscopic perovskite solar cells through a tungsten oxide nanoparticle additive in the carbon electrode. Sci Rep 9(1):1–8

    Google Scholar 

  37. Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X (2021) Solar cell efficiency tables (version 57). Prog Photovolt 29(1):3–15

    Article  Google Scholar 

  38. Liu Y, Lv P, Zhou W, Hong J (2020) Built-in electric field hindering photogenerated carrier recombination in polar bilayer SnO/BiOX (X= Cl, Br, I) for water splitting. J Phys Chem C 124(18):9696–9702

    Article  CAS  Google Scholar 

  39. Deshmukh MA, Park S-J, Hedau BS, Ha T-J (2021) Recent progress in solar cells based on carbon nanomaterials. Sol Energy 220:953–990

    Article  CAS  Google Scholar 

  40. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258(5087):1474–1476

    Article  CAS  PubMed  Google Scholar 

  41. Li X, Lv Z, Zhu H (2015) Carbon/silicon heterojunction solar cells: state of the art and prospects. Adv Mater 27(42):6549–6574

    Article  CAS  PubMed  Google Scholar 

  42. Ohashi N, Miyadera T, Taima T, Yoshida Y (2019) Evaluation of exciton diffusion length in highly oriented fullerene films of fullerene/p-Si (100) hybrid solar cells. Jpn J Appl Phys 58(12):121004

    Article  CAS  Google Scholar 

  43. Aissa B, Memon NK, Ali A, Khraisheh MK (2015) Recent progress in the growth and applications of graphene as a smart material: a review. Front Mater Sci 2:58

    Google Scholar 

  44. Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X, Wu D (2010) Graphene-on-silicon Schottky junction solar cells. Adv Mater 22(25):2743–2748

    Article  CAS  PubMed  Google Scholar 

  45. Dey A, Ghosh P, Bowen J, Braithwaite NSJ, Krishnamurthy S (2020) Engineering work function of graphene oxide from p to n type using a low power atmospheric pressure plasma jet. PCCP 22(15):7685–7698

    Article  CAS  PubMed  Google Scholar 

  46. Feng T, Xie D, Lin Y, Zang Y, Ren T, Song R, Zhao H, Tian H, Li X, Zhu H (2011) Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. Appl Phys Lett 99(23):233505

    Article  Google Scholar 

  47. Zhong Y, Xiao Y, Chen Q, Zhu H (2018) Heterojunction solar cells based on graphene woven fabrics and silicon. J Materiomics 4(2):135–138

    Article  Google Scholar 

  48. Tune DD, Mallik N, Fornasier H, Flavel BS (2020) Breakthrough carbon nanotube–silicon heterojunction solar cells. Adv Energy Mater 10(1):1903261

    Article  CAS  Google Scholar 

  49. Jia Y, Wei J, Wang K, Cao A, Shu Q, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B (2008) Nanotube–silicon heterojunction solar cells. Adv Mater 20(23):4594–4598

    Article  CAS  Google Scholar 

  50. Chen J, Tune DD, Ge K, Li H, Flavel BS (2020) Front and back-junction carbon nanotube-silicon solar cells with an industrial architecture. Adv Funct Mater 30(17):2000484

    Article  CAS  Google Scholar 

  51. Li H, Shi W, Huang W, Yao E-P, Han J, Chen Z, Liu S, Shen Y, Wang M, Yang Y (2017) Carbon quantum dots/TiOx electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%. Nano Lett 17(4):2328–2335

    Article  PubMed  Google Scholar 

  52. Li W, Dong H, Guo X, Li N, Li J, Niu G, Wang L (2014) Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. J Mater Chem A 2(47):20105–20111

    Article  CAS  Google Scholar 

  53. Wei Z, Chen H, Yan K, Zheng X, Yang S (2015) Hysteresis-free multi-walled carbon nanotube-based perovskite solar cells with a high fill factor. J Mater Chem A 3(48):24226–24231

    Article  CAS  Google Scholar 

  54. Cheng N, Liu P, Qi F, Xiao Y, Yu W, Yu Z, Liu W, Guo S-S, Zhao X-Z (2016) Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells. J Power Sour 332:24–29

    Article  CAS  Google Scholar 

  55. Yang MK, Lee J-K (2020) CNT/AgNW multilayer electrodes on flexible organic solar cells. Electron Mater Lett 16:573–578

    Article  CAS  Google Scholar 

  56. Ali A, Kazici M, Bozar S, Keskin B, Kaleli M, Shah SM, Gunes S (2018) Laminated carbon nanotubes for the facile fabrication of cost-effective polymer solar cells. ACS Appl Energy Mater 1(3):1226–1232

    Article  CAS  Google Scholar 

  57. Zhang Y, He X, Babu D, Li W, Gu X, Shan C, Kyaw AKK, Choy WC (2021) Efficient semi-transparent organic solar cells with high color rendering index enabled by self-assembled and knitted AgNPs/MWCNTs transparent top electrode via solution process. Adv Opt Mater 9(8):2002108

    Article  CAS  Google Scholar 

  58. Hashemi D, Ma X, Ansari R, Kim J, Kieffer J (2019) Design principles for the energy level tuning in donor/acceptor conjugated polymers. PCCP 21(2):789–799

    Article  CAS  PubMed  Google Scholar 

  59. Wang N, Zheng R, Chi T, Jiang T, Ding Z, Li X, Liu S, Zhang L, San H (2022) Betavoltaic-powered electrochemical cells using TiO2 nanotube arrays incorporated with carbon nanotubes. Compos B Eng 239:109952

    Article  CAS  Google Scholar 

  60. Li Y, Wang H, Feng Q, Zhou G, Wang Z-S (2013) Reduced graphene oxide–TaON composite as a high-performance counter electrode for Co (bpy) 33+/2+-mediated dye-sensitized solar cells. ACS Appl Mater Interfaces 5(16):8217–8224

    Article  CAS  PubMed  Google Scholar 

  61. Dou Y, Li G, Song J, Gao X (2012) Nickel phosphide-embedded graphene as counter electrode for dye-sensitized solar cells. PCCP 14(4):1339–1342

    Article  CAS  PubMed  Google Scholar 

  62. Hsu C-H, Lai C-C, Chen L-C, Chan P-S (2014) Enhanced performance of dye-sensitized solar cells with graphene/ZnO nanoparticles bilayer structure. J Nanomater 2014:4–4

    Article  Google Scholar 

  63. Yang B, Zuo X, Chen P, Zhou L, Yang X, Zhang H, Li G, Wu M, Ma Y, Jin S (2015) Nanocomposite of tin sulfide nanoparticles with reduced graphene oxide in high-efficiency dye-sensitized solar cells. ACS Appl Mater Interfaces 7(1):137–143

    Article  CAS  PubMed  Google Scholar 

  64. Xie R, Sugime H, Noda S (2021) High-performance solution-based silicon heterojunction solar cells using carbon nanotube with polymeric acid doping. Carbon 175:519–524

    Article  CAS  Google Scholar 

  65. Kadam KD, Rehman MA, Kim H, Rehman S, Khan MA, Patil H, Aziz J, Park S, Abdul Basit M, Khan K (2022) Enhanced and passivated Co-doping effect of organic molecule and bromine on graphene/HfO2/Silicon Metal–Insulator–Semiconductor (MIS) Schottky junction solar cells. ACS Appl Energy Mater 5(9):10509–10517

    Article  CAS  Google Scholar 

  66. Yan J, Zhang C, Li H, Yang X, Wan L, Li F, Qiu K, Guo J, Duan W, Lambertz A (2021) Stable organic passivated carbon nanotube-silicon solar cells with an efficiency of 22%. Adv Sci 8(20):2102027

    Article  CAS  Google Scholar 

  67. Gao Q, Yan J, Wan L, Zhang C, Wen Z, Zhou X, Li H, Li F, Chen J, Guo J (2022) High-efficiency graphene-oxide/silicon solar cells with an organic-passivated interface. Adv Mater Interfaces 9(24):2201221

    Article  CAS  Google Scholar 

  68. Li H, Zhang Y, Wan Q, Li Y, Yang N (2018) Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels. Carbon 131:111–119

    Article  CAS  Google Scholar 

  69. Wilberforce T, Alaswad A, Palumbo A, Dassisti M, Olabi A-G (2016) Advances in stationary and portable fuel cell applications. Int J Hydrogen Energy 41(37):16509–16522

    Article  CAS  Google Scholar 

  70. Bahru R, Shaari N, Mohamed MA (2020) Allotrope carbon materials in thermal interface materials and fuel cell applications: a review. Int J Energy Res 44(4):2471–2498

    Article  Google Scholar 

  71. Seselj N, Engelbrekt C, Zhang J (2015) Graphene-supported platinum catalysts for fuel cells. Sci Bull 60(9):864–876

    Article  Google Scholar 

  72. Dai L (2017) Carbon-based catalysts for metal-free electrocatalysis. Curr Opin Electrochem 4(1):18–25

    Article  CAS  Google Scholar 

  73. Lázaro M, Calvillo L, Celorrio V, Pardo J, Perathoner S, Moliner R (2011) Study and application of carbon black Vulcan XC-72R in polymeric electrolyte fuel cells. Carbon black Prod Prop Uses 41

    Google Scholar 

  74. Wan K, Li Y, Wang Y, Wei G (2021) Recent advance in the fabrication of 2D and 3D metal carbides-based nanomaterials for energy and environmental applications. Nanomaterials 11(1):246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang H, Tan Y, Luo XD, Sun CY, Chen N (2019) Polarization effects of a rayon and polyacrylonitrile based graphite felt for iron-chromium redox flow batteries. ChemElectroChem 6(12):3175–3188

    Article  CAS  Google Scholar 

  76. Yuan F, Ryu H (2004) The synthesis, characterization, and performance of carbon nanotubes and carbon nanofibres with controlled size and morphology as a catalyst support material for a polymer electrolyte membrane fuel cell. Nanotechnology 15(10):S596

    Article  CAS  Google Scholar 

  77. Wang X-Z, Fu R, Zheng J-S, Ma J-X (2011b) Platinum nanoparticles supported on carbon nanofibers as anode electrocatalysts for proton exchange membrane fuel cells. Acta Phys Chim Sinica 27(8):1875–1880

    Google Scholar 

  78. Li W, Waje M, Chen Z, Larsen P, Yan Y (2010) Platinum nanopaticles supported on stacked-cup carbon nanofibers as electrocatalysts for proton exchange membrane fuel cell. Carbon 48(4):995–1003

    Article  CAS  Google Scholar 

  79. Soundararajan D, Park J, Kim K, Ko J (2012) Pt–Ni alloy nanoparticles supported on CNF as catalyst for direct ethanol fuel cells. Curr Appl Phys 12(3):854–859

    Article  Google Scholar 

  80. Page A, Ding F, Irle S, Morokuma K (2015) Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review. Rep Prog Phys 78(3):036501

    Article  CAS  PubMed  Google Scholar 

  81. Zhao H, Liu X, Cao Z, Zhan Y, Shi X, Yang Y, Zhou J, Xu J (2016) Adsorption behavior and mechanism of chloramphenicols, sulfonamides, and non-antibiotic pharmaceuticals on multi-walled carbon nanotubes. J Hazard Mater 310:235–245

    Article  CAS  PubMed  Google Scholar 

  82. Bhuvanendran N, Ravichandran S, Zhang W, Ma Q, Xu Q, Khotseng L, Su H (2020) Highly efficient methanol oxidation on durable PtxIr/MWCNT catalysts for direct methanol fuel cell applications. Int J Hydrogen Energy 45(11):6447–6460

    Article  CAS  Google Scholar 

  83. Sun Y, Liu D, Liu W, Liu H, Zhao J, Chen P, Wang Q, Wang X, Zou Y (2021) Fabrication of porous polyaniline/MWCNTs coated Co9S8 composite for electrochemical hydrogen storage application. J Phys Chem Solids 157:110235

    Article  CAS  Google Scholar 

  84. Doğan M, Selek A, Turhan O, Kızılduman BK, Bicil Z (2021) Different functional groups functionalized hexagonal boron nitride (h-BN) nanoparticles and multi-walled carbon nanotubes (MWCNT) for hydrogen storage. Fuel 303:121335

    Article  Google Scholar 

  85. Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z (2019) Carbon-based metal-free ORR electrocatalysts for fuel cells: past, present, and future. Adv Mater 31(13):1804799

    Article  Google Scholar 

  86. Shao Y, Jiang Z, Zhang Q, Guan J (2019) Progress in nonmetal-doped graphene electrocatalysts for the oxygen reduction reaction. Chemsuschem 12(10):2133–2146

    Article  CAS  PubMed  Google Scholar 

  87. Perez-Page M, Sahoo M, Holmes SM (2019) Single layer 2D crystals for electrochemical applications of ion exchange membranes and hydrogen evolution catalysts. Adv Mater Interfaces 6(7):1801838

    Article  CAS  Google Scholar 

  88. Singh RS, Gautam A, Rai V (2019) Graphene-based bipolar plates for polymer electrolyte membrane fuel cells. Front Mater Sci 13:217–241

    Article  Google Scholar 

  89. Farooqui UR, Ahmad AL, Hamid N (2018) Graphene oxide: A promising membrane material for fuel cells. Renew Sustain Energy Rev 82:714–733

    Article  CAS  Google Scholar 

  90. Arukula R, Vinothkannan M, Kim AR, Yoo DJ (2019) Cumulative effect of bimetallic alloy, conductive polymer and graphene toward electrooxidation of methanol: An efficient anode catalyst for direct methanol fuel cells. J Alloys Compd 771:477–488

    Article  CAS  Google Scholar 

  91. Qiu X, Yan X, Cen K, Sun D, Xu L, Tang Y (2018) Achieving highly electrocatalytic performance by constructing holey reduced graphene oxide hollow nanospheres sandwiched by interior and exterior platinum nanoparticles. ACS Appl Energy Mater 1(5):2341–2349

    Article  CAS  Google Scholar 

  92. Yang H, Li S, Feng F, Ou S, Li F, Yang M, Qian K, Jin J, Ma J (2019) Palladium nanoparticles with surface enrichment of palladium oxide species immobilized on the aniline-functionalized graphene as an advanced electrocatalyst of ethanol oxidation. ACS Sustain Chem Eng 7(17):14621–14628

    Article  CAS  Google Scholar 

  93. Samad S, Loh KS, Wong WY, Lee TK, Sunarso J, Chong ST, Daud WRW (2018) Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int J Hydrogen Energy 43(16):7823–7854

    Article  CAS  Google Scholar 

  94. Prithi J, Rajalakshmi N, Rao GR (2018) Nitrogen doped mesoporous carbon supported Pt electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. Int J Hydrogen Energy 43(9):4716–4725

    Article  CAS  Google Scholar 

  95. Zhuang S, Nunna BB, Mandal D, Lee ES (2018) A review of nitrogen-doped graphene catalysts for proton exchange membrane fuel cells-synthesis, characterization, and improvement. Nano-Struct Nano-Objects 15:140–152

    Article  CAS  Google Scholar 

  96. Promanan T, Sarakonsri T (2017) Synthesis and characterization of palladium-based nano-catalyst on n-doped graphene for direct ethanol fuel cellS. Rev Adv Mater Sci 52

    Google Scholar 

  97. Chiang Y-C, Hsieh M-K, Hsu H-H (2014) The effect of carbon supports on the performance of platinum/carbon nanotubes for proton exchange membrane fuel cells. Thin Solid Films 570:221–229

    Article  CAS  Google Scholar 

  98. Kim O-H, Cho Y-H, Chung DY, Kim MJ, Yoo JM, Park JE, Choe H, Sung Y-E (2015) Facile and gram-scale synthesis of metal-free catalysts: toward realistic applications for fuel cells. Sci Rep 5(1):1–8

    Google Scholar 

  99. To JW, Ng JWD, Siahrostami S, Koh AL, Lee Y, Chen Z, Fong KD, Chen S, He J, Bae W-G (2017) High-performance oxygen reduction and evolution carbon catalysis: From mechanistic studies to device integration. Nano Res 10:1163–1177

    Article  CAS  Google Scholar 

  100. Klingele M, Pham C, Vuyyuru KR, Britton B, Holdcroft S, Fischer A, Thiele S (2017) Sulfur doped reduced graphene oxide as metal-free catalyst for the oxygen reduction reaction in anion and proton exchange fuel cells. Electrochem Commun 77:71–75

    Article  CAS  Google Scholar 

  101. Bruno MM, Viva FA, Petruccelli MA, Corti HR (2015) Platinum supported on mesoporous carbon as cathode catalyst for direct methanol fuel cells. J Power Sour 278:458–463

    Article  CAS  Google Scholar 

  102. Deng H, Zhang Y, Zheng X, Li Y, Zhang X, Liu X (2015) A CNT (carbon nanotube) paper as cathode gas diffusion electrode for water management of passive μ-DMFC (micro-direct methanol fuel cell) with highly concentrated methanol. Energy 82:236–241

    Article  CAS  Google Scholar 

  103. Kanninen P, Borghei M, Sorsa O, Pohjalainen E, Kauppinen EI, Ruiz V, Kallio T (2014) Highly efficient cathode catalyst layer based on nitrogen-doped carbon nanotubes for the alkaline direct methanol fuel cell. Appl Catal B 156:341–349

    Article  Google Scholar 

  104. Askari MB, Salarizadeh P, Seifi M, Rozati SM (2019) Ni/NiO coated on multi-walled carbon nanotubes as a promising electrode for methanol electro-oxidation reaction in direct methanol fuel cell. Solid State Sci 97:106012

    Article  CAS  Google Scholar 

  105. Higgins DC, Chen Z (2010) Nitrogen doped carbon nanotube thin films as efficient oxygen reduction catalyst for alkaline anion exchange membrane fuel cell. ECS Trans 28(23):63

    Article  CAS  Google Scholar 

  106. Li J, Zhang Y, Zhang X, Huang J, Han J, Zhang Z, Han X, Xu P, Song B (2017) S, N dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts. ACS Appl Mater Interfaces 9(1):398–405

    Article  CAS  PubMed  Google Scholar 

  107. Sa YJ, Park C, Jeong HY, Park SH, Lee Z, Kim KT, Park GG, Joo SH (2014) Carbon nanotubes/heteroatom-doped carbon core–sheath nanostructures as highly active, metal-free oxygen reduction electrocatalysts for alkaline fuel cells. Angew Chem 126(16):4186–4190

    Article  Google Scholar 

  108. Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531

    Article  CAS  PubMed  Google Scholar 

  109. Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna P-L, Simon P (2010) Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 5(9):651–654

    Article  CAS  PubMed  Google Scholar 

  110. Zhao X, Chen H, Kong F, Zhang Y, Wang S, Liu S, Lucia LA, Fatehi P, Pang H (2019) Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review. Chem Eng J 364:226–243

    Article  CAS  Google Scholar 

  111. Wang G, Oswald S, Löffler M, Müllen K, Feng X (2019) Beyond activated carbon: graphite-cathode-derived li-ion pseudocapacitors with high energy and high power densities. Adv Mater 31(14):1807712

    Article  Google Scholar 

  112. Jiang Y, Liu J (2019) Definitions of pseudocapacitive materials: a brief review. Energy Environ Mater 2(1):30–37

    Article  Google Scholar 

  113. Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: Materials and devices. J Energy Storage 21:801–825

    Article  CAS  Google Scholar 

  114. Abbas Q, Raza R, Shabbir I, Olabi A (2019) Heteroatom doped high porosity carbon nanomaterials as electrodes for energy storage in electrochemical capacitors: A review. J Sci Adv Mater Dev 4(3):341–352

    Google Scholar 

  115. Wen F, Hao C, Xiang J, Wang L, Hou H, Su Z, Hu W, Liu Z (2014) Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter. Carbon 75:236–243

    Article  CAS  Google Scholar 

  116. Xie P, Yuan W, Liu X, Peng Y, Yin Y, Li Y, Wu Z (2021) Advanced carbon nanomaterials for state-of-the-art flexible supercapacitors. Energy Stor Mater 36:56–76

    Google Scholar 

  117. Wu Q, Yang L, Wang X, Hu Z (2017) From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc Chem Res 50(2):435–444

    Article  CAS  PubMed  Google Scholar 

  118. Shao Y, El-Kady MF, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner RB (2018) Chem Rev 118:9233–9280

    Google Scholar 

  119. Fleming E, Du F, Ou E, Dai L, Shi L (2019) Thermal conductivity of carbon nanotubes grown by catalyst-free chemical vapor deposition in nanopores. Carbon 145:195–200

    Article  CAS  Google Scholar 

  120. Liu P, Ru Q, Zheng P, Shi Z, Liu Y, Su C, Hou X, Su S, Ling FC-C (2019) One-step synthesis of Zn2GeO4/CNT-O hybrid with superior cycle stability for supercapacitor electrodes. Chem Eng J 374:29–38

    Article  CAS  Google Scholar 

  121. Cherusseri J, Kar KK (2016) Ultra-flexible fibrous supercapacitors with carbon nanotube/polypyrrole brush-like electrodes. J Mater Chem A 4(25):9910–9922

    Article  CAS  Google Scholar 

  122. Wu P, Cheng S, Yang L, Lin Z, Gui X, Ou X, Zhou J, Yao M, Wang M, Zhu Y (2016) Synthesis and characterization of self-standing and highly flexible δ-MnO2@ CNTs/CNTs composite films for direct use of supercapacitor electrodes. ACS Appl Mater Interfaces 8(36):23721–23728

    Article  CAS  PubMed  Google Scholar 

  123. Xu C, Dong L (2016) Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. In: Electrochemical society meeting abstracts 230, vol 7. The Electrochemical Society, Inc., pp 1017–1017

    Google Scholar 

  124. Wang K, Zhao P, Zhou X, Wu H, Wei Z (2011) Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. J Mater Chem 21(41):16373–16378

    Article  CAS  Google Scholar 

  125. Qureshi SS, Nimauddin S, Mazari SA, Saeed S, Mubarak N, Khan SU, Saleh TA (2021) Ultrasonic-assisted synthesis of polythiophene-carbon nanotubes composites as supercapacitors. J Mater Sci Mater Electron 32(12):16203–16214

    Article  CAS  Google Scholar 

  126. Yue L, Zhang S, Zhao H, Wang M, Mi J, Feng Y, Wang D (2018) Microwave-assisted one-pot synthesis of Fe2O3/CNTs composite as supercapacitor electrode materials. J Alloys Compd 765:1263–1266

    Article  CAS  Google Scholar 

  127. Paul R, Etacheri V, Pol VG, Hu J, Fisher TS (2016) Highly porous three-dimensional carbon nanotube foam as a freestanding anode for a lithium-ion battery. RSC Adv 6(83):79734–79744

    Article  CAS  Google Scholar 

  128. Niu Z, Zhou W, Chen X, Chen J, Xie S (2015) Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv Mater 27(39):6002–6008

    Article  CAS  PubMed  Google Scholar 

  129. Dang A, Sun Y, Fang C, Li T, Liu X, Xia Y, Ye F, Zada A, Khan M (2022) Rational design of Ti3C2/carbon nanotubes/MnCo2S4 electrodes for symmetric supercapacitors with high energy storage. Appl Surf Sci 581:152432

    Article  CAS  Google Scholar 

  130. Li K, Teng H, Sun Q, Li Y, Wu X, Dai X, Wang Y, Wang S, Zhang Y, Yao K (2022) Engineering active sites on nitrogen-doped carbon nanotubes/cobaltosic oxide heterostructure embedded in biotemplate for high-performance supercapacitors. J Energy Storage 53:105094

    Article  Google Scholar 

  131. Olatomiwa AL, Adam T, Gopinath SC, Kolawole SY, Olayinka OH, Hashim U (2022) Graphene synthesis, fabrication, characterization based on bottom-up and top-down approaches: An overview. J Semicond 43(6):061101

    Article  Google Scholar 

  132. Lemine AS, Zagho MM, Altahtamouni T, Bensalah N (2018) Graphene a promising electrode material for supercapacitors—A review. Int J Energy Res 42(14):4284–4300

    Article  CAS  Google Scholar 

  133. Abeykoon A, De Silva R, Nayanajith L, Kottegoda I (2022) A review on appropriate graphene synthesis methods for diverse applications. Sri Lankan J Phys 23(2)

    Google Scholar 

  134. Yang W, Ni M, Ren X, Tian Y, Li N, Su Y, Zhang X (2015) Graphene in supercapacitor applications. Curr Opin Colloid Interface Sci 20(5–6):416–428

    Article  CAS  Google Scholar 

  135. Ares P, Novoselov KS (2022) Recent advances in graphene and other 2D materials. Nano Mater Sci 4(1):3–9

    Article  CAS  Google Scholar 

  136. Xiong C, Li B, Duan C, Dai L, Nie S, Qin C, Xu Y, Ni Y (2021) Carbonized wood cell chamber-reduced graphene oxide@ PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications. Chem Eng J 418:129518

    Article  CAS  Google Scholar 

  137. Kumar R, Sahoo S, Tan WK, Kawamura G, Matsuda A, Kar KK (2021) Microwave-assisted thin reduced graphene oxide-cobalt oxide nanoparticles as hybrids for electrode materials in supercapacitor. J Energy Storage 40:102724

    Article  Google Scholar 

  138. Xu M, Wang A, Xiang Y, Niu J (2021) Biomass-based porous carbon/graphene self-assembled composite aerogels for high-rate performance supercapacitor. J Clean Prod 315:128110

    Article  CAS  Google Scholar 

  139. Hashemi SA, Mousavi SM, Naderi HR, Bahrani S, Arjmand M, Hagfeldt A, Chiang W-H, Ramakrishna S (2021) Reinforced polypyrrole with 2D graphene flakes decorated with interconnected nickel-tungsten metal oxide complex toward superiorly stable supercapacitor. Chem Eng J 418:129396

    Article  Google Scholar 

  140. Li C, Shi G (2012) Three-dimensional graphene architectures. Nanoscale 4(18):5549–5563

    Article  CAS  PubMed  Google Scholar 

  141. Jiang X, Gao R, Liu G, Luo H, Zhao X, Jiang L (2022) Construction of graphene-based “In-Paper” 3D interdigital microelectrodes for high performance metal-free flexible supercapacitors. Small Methods 6(5):2101454

    Article  CAS  Google Scholar 

  142. Cheng C, Zou Y, Xu F, Xiang C, Sui Q, Zhang J, Sun L, Chen Z (2022) Ultrathin graphene@ NiCo2S4@ Ni-Mo layered double hydroxide with a 3D hierarchical flowers structure as a high performance positive electrode for hybrid supercapacitor. J Energy Storage 52:105049

    Article  Google Scholar 

  143. Baskar AV, Ruban AM, Davidraj JM, Singh G, AaH A-M, Lee JM, Yi J, Vinu A (2021) Single-step synthesis of 2D mesoporous C60/carbon hybrids for supercapacitor and Li-ion battery applications. Bull Chem Soc Jpn 94(1):133–140

    Article  CAS  Google Scholar 

  144. Jiang B, Zhang G, Tang Q, Meng F, Zhou D, Zhao W, Jiang W, Ji Q (2022) Tailoring co-doping of cobalt and nitrogen in a fullerene-based carbon composite and its effect on the supercapacitive performance. Adv Mater 3(3):1539–1546

    Article  CAS  Google Scholar 

  145. Li Y, Kang Z, Yan X, Cao S, Li M, Guo Y, Huan Y, Wen X, Zhang Y (2018) A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor. Nanoscale 10(19):9360–9368

    Article  CAS  PubMed  Google Scholar 

  146. Ye Z, Zhang T, He W, Jin H, Liu C, Yang Z, Ren J (2018) Methotrexate-loaded extracellular vesicles functionalized with therapeutic and targeted peptides for the treatment of glioblastoma multiforme. ACS Appl Mater Interfaces 10(15):12341–12350

    Article  CAS  PubMed  Google Scholar 

  147. Feng X, Chen W, Yan L (2015) Reduced graphene oxide hydrogel film with a continuous ion transport network for supercapacitors. Nanoscale 7(8):3712–3718

    Article  CAS  PubMed  Google Scholar 

  148. Lv H, Yuan Y, Xu Q, Liu H, Wang Y-G, Xia Y (2018) Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor. J Power Sources 398:167–174

    Article  CAS  Google Scholar 

  149. Pham DT, Lee TH, Luong DH, Yao F, Ghosh A, Le VT, Kim TH, Li B, Chang J, Lee YH (2015) Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. ACS Nano 9(2):2018–2027

    Article  CAS  PubMed  Google Scholar 

  150. Zheng Y, Tian Y, Sarwar S, Luo J, Zhang X (2020) Carbon nanotubes decorated NiSe2 nanosheets for high-performance supercapacitors. J Power Sour 452:227793

    Article  CAS  Google Scholar 

  151. Tao H-C, Zhu S-C, Yang X-L, Zhang L-L, Ni S-B (2016) Systematic investigation of reduced graphene oxide foams for high-performance supercapacitors. Electrochim Acta 190:168–177

    Article  CAS  Google Scholar 

  152. Zhou S, Zeng S, Zhang S, Qiao J, Di J, Chen M, Liu N, Li Q (2017) Hierarchical carbon nanotube hybrid films for high-performance all-solid-state supercapacitors. RSC Adv 7(82):52010–52016

    Article  CAS  Google Scholar 

  153. Pourreza K, Adeh NB, Mohammadi N (2020) In-situ grown of polyaniline on defective mesoporous carbon as a high performance supercapacitor electrode material. J Energy Storage 30:101429

    Article  Google Scholar 

  154. Zheng C, Zhou X, Cao H, Wang G, Liu Z (2014) Edge-enriched porous graphene nanoribbons for high energy density supercapacitors. J Mater Chem A 2(20):7484–7490

    Article  CAS  Google Scholar 

  155. Yang J, Guo J, Guo X, Chen L (2019) In-situ growth carbon nanotubes deriving from a new metal-organic framework for high-performance all-solid-state supercapacitors. Mater Lett 236:739–742

    Article  CAS  Google Scholar 

  156. Zhu F, Liu W, Liu Y, Shi W (2020) Construction of porous interface on CNTs@ NiCo-LDH core-shell nanotube arrays for supercapacitor applications. Chem Eng J 383:123150

    Article  CAS  Google Scholar 

  157. Wan L, Du C, Yang S (2017) Synthesis of graphene oxide/polybenzoxazine-based nitrogen-containing porous carbon nanocomposite for enhanced supercapacitor properties. Electrochim Acta 251:12–24

    Article  CAS  Google Scholar 

  158. Tseng L-H, Hsiao C-H, Nguyen DD, Hsieh P-Y, Lee C-Y, Tai N-H (2018) Activated carbon sandwiched manganese dioxide/graphene ternary composites for supercapacitor electrodes. Electrochim Acta 266:284–292

    Article  CAS  Google Scholar 

  159. Schmidt O, Hawkes A, Gambhir A, Staffell I (2017) The future cost of electrical energy storage based on experience rates. Nat Energy 2(8):1–8

    Article  Google Scholar 

  160. Liu Z, Huang Y, Huang Y, Yang Q, Li X, Huang Z, Zhi C (2020) Voltage issue of aqueous rechargeable metal-ion batteries. Chem Soc Rev 49(1):180–232

    Article  CAS  PubMed  Google Scholar 

  161. Liang Y, Dong H, Aurbach D, Yao Y (2020) Current status and future directions of multivalent metal-ion batteries. Nat Energy 5(9):646–656

    Article  CAS  Google Scholar 

  162. Gu X, Lai C (2018) Recent development of metal compound applications in lithium–sulphur batteries. J Mater Res 33(1):16–31

    Article  CAS  Google Scholar 

  163. Che H, Chen S, Xie Y, Wang H, Amine K, Liao X-Z, Ma Z-F (2017) Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ Sci 10(5):1075–1101

    Article  CAS  Google Scholar 

  164. Yang S, Cheng Y, Xiao X, Pang H (2020) Development and application of carbon fiber in batteries. Chem Eng J 384:123294

    Article  CAS  Google Scholar 

  165. Chen S, Kuang Q, Fan HJ (2020) Dual-Carbon batteries: materials and mechanism. Small 16(40):2002803

    Article  CAS  Google Scholar 

  166. Han J, Wei W, Zhang C, Tao Y, Lv W, Ling G, Kang F, Yang Q-H (2018) Engineering graphenes from the nano-to the macroscale for electrochemical energy storage. Electrochem Energy Rev 1:139–168

    Article  CAS  Google Scholar 

  167. Hou R, Liu B, Sun Y, Liu L, Meng J, Levi MD, Ji H, Yan X (2020) Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy 72:104728

    Article  CAS  Google Scholar 

  168. Thompson M, Xia Q, Hu Z, Zhao XS (2021) A review on biomass-derived hard carbon materials for sodium-ion batteries. Adv Mater 2(18):5881–5905

    Article  CAS  Google Scholar 

  169. Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10(10):725–763

    Article  CAS  Google Scholar 

  170. McCullough F, Levine C, Snelgrove R (1989) Secondary battery.

    Google Scholar 

  171. Zhu C-y, Ye Y-w, Guo X, Cheng F (2022) Design and synthesis of carbon-based nanomaterials for electrochemical energy storage. New Carbon Mater 37(1):59–92

    Article  CAS  Google Scholar 

  172. Wu Q, Yang L, Wang X, Hu Z (2020) Carbon-based nanocages: a new platform for advanced energy storage and conversion. Adv Mater 32(27):1904177

    Article  CAS  Google Scholar 

  173. Zhang Y, Yan D, Liu Z, Ye Y, Cheng F, Li H, Lu A-H (2021) A SnO x quantum dots embedded carbon nanocage network with ultrahigh Li storage capacity. ACS Nano 15(4):7021–7031

    Article  CAS  PubMed  Google Scholar 

  174. Cao B, Liu Z, Xu C, Huang J, Fang H, Chen Y (2019) High-rate-induced capacity evolution of mesoporous C@ SnO2@ C hollow nanospheres for ultra-long cycle lithium-ion batteries. J Power Sour 414:233–241

    Article  CAS  Google Scholar 

  175. Chae S, Choi SH, Kim N, Sung J, Cho J (2020) Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew Chem Int Ed 59(1):110–135

    Article  CAS  Google Scholar 

  176. Mi H, Yang X, Li Y, Zhang P, Sun L (2018) A self-sacrifice template strategy to fabricate yolk-shell structured silicon@ void@ carbon composites for high-performance lithium-ion batteries. Chem Eng J 351:103–109

    Article  CAS  Google Scholar 

  177. Zhao F, Li X, He J, Wang K, Huang C (2021) Preparation of hierarchical graphdiyne hollow nanospheres as anode for lithium-ion batteries. Chem Eng J 413:127486

    Article  CAS  Google Scholar 

  178. Zhai T, Yao J (2012) One-dimensional nanostructures: principles and applications. Wiley & Sons

    Book  Google Scholar 

  179. Deng M, Qi J, Li X, Xiao Y, Yang L, Yu X, Wang H, Yuan B, Gao Q (2018) MoC/C nanowires as high-rate and long cyclic life anode for lithium ion batteries. Electrochim Acta 277:205–210

    Article  CAS  Google Scholar 

  180. Liu D-S, Liu D-H, Hou B-H, Wang Y-Y, Guo J-Z, Ning Q-L, Wu X-L (2018) 1D porous MnO@ N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta 264:292–300

    Article  CAS  Google Scholar 

  181. Chen H, Liu R, Wu Y, Cao J, Chen J, Hou Y, Guo Y, Khatoon R, Chen L, Zhang Q (2021) Interface coupling 2D/2D SnSe2/graphene heterostructure as long-cycle anode for all-climate lithium-ion battery. Chem Eng J 407:126973

    Article  CAS  Google Scholar 

  182. Mu T, Zuo P, Lou S, Pan Q, Li Q, Du C, Gao Y, Cheng X, Ma Y, Yin G (2018) A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for lithium ion batteries. Chem Eng J 341:37–46

    Article  CAS  Google Scholar 

  183. Sun P, Wang K, Zhu H (2016) Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv Mater 28(12):2287–2310

    Article  CAS  PubMed  Google Scholar 

  184. Ma G, Huang K, Ma J-S, Ju Z, Xing Z, Zhuang Q-c (2017) Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries. J Mater Chem A 5(17):7854–7861

    Article  CAS  Google Scholar 

  185. Fu K, Yao Y, Dai J, Hu L (2017) Progress in 3D printing of carbon materials for energy-related applications. Adv Mater 29(9):1603486

    Article  Google Scholar 

  186. Zheng J, Wu Y, Sun Y, Rong J, Li H, Niu L (2021) Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nano-Micro Lett 13:1–37

    Article  CAS  Google Scholar 

  187. Wang P, Zhu K, Ye K, Gong Z, Liu R, Cheng K, Wang G, Yan J, Cao D (2020) Three-dimensional biomass derived hard carbon with reconstructed surface as a free-standing anode for sodium-ion batteries. J Colloid Interface Sci 561:203–210

    Article  CAS  PubMed  Google Scholar 

  188. Cheng F, Wang S, Lu A-H, Li W-C (2013) Immobilization of nanosized LiFePO4 spheres by 3D coralloid carbon structure with large pore volume and thin walls for high power lithium-ion batteries. J Power Sour 229:249–257

    Article  CAS  Google Scholar 

  189. Ke G, Chen H, He J, Wu X, Gao Y, Li Y, Mi H, Zhang Q, He C, Ren X (2021) Ultrathin MoS2 anchored on 3D carbon skeleton containing SnS quantum dots as a high-performance anode for advanced lithium ion batteries. Chem Eng J 403:126251

    Article  CAS  Google Scholar 

  190. Han C, Xu L, Li H, Shi R, Zhang T, Li J, Wong C-P, Kang F, Lin Z, Li B (2018) Biopolymer-assisted synthesis of 3D interconnected Fe3O4@ carbon core@ shell as anode for asymmetric lithium ion capacitors. Carbon 140:296–305

    Article  CAS  Google Scholar 

  191. Wang X, Tang Y, Shi P, Fan J, Xu Q, Min Y (2018) Self-evaporating from inside to outside to construct cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers for high-performance lithium ion batteries. Chem Eng J 334:1642–1649

    Article  CAS  Google Scholar 

  192. Mondal AK, Kretschmer K, Zhao Y, Liu H, Wang C, Sun B, Wang G (2017) Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitors and lithium ion batteries. Chem Eur J 23(15):3683–3690

    Article  CAS  PubMed  Google Scholar 

  193. Hu X, Li Y, Zeng G, Jia J, Zhan H, Wen Z (2018) Three-dimensional network architecture with hybrid nanocarbon composites supporting few-layer MoS2 for lithium and sodium storage. ACS Nano 12(2):1592–1602

    Article  CAS  PubMed  Google Scholar 

  194. Yao S, Cui J, Huang J, Huang JQ, Chong WG, Qin L, Mai YW, Kim JK (2018) Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries. Adv Energy Mater 8(7):1702267

    Article  Google Scholar 

  195. Yang J, Zhou X, Wu D, Zhao X, Zhou Z (2017) S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv Mater 29(6):1604108

    Article  Google Scholar 

  196. Tan Z, Ni K, Chen G, Zeng W, Tao Z, Ikram M, Zhang Q, Wang H, Sun L, Zhu X (2017) Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv Mater 29(8):1603414

    Article  Google Scholar 

  197. Zhao X, Kim M, Liu Y, Ahn H-J, Kim K-W, Cho K-K, Ahn J-H (2018) Root-like porous carbon nanofibers with high sulfur loading enabling superior areal capacity of lithium sulfur batteries. Carbon 128:138–146

    Article  CAS  Google Scholar 

  198. Hao R, Lan H, Kuang C, Wang H, Guo L (2018) Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 128:224–230

    Article  CAS  Google Scholar 

  199. Park S-K, Park J-S, Kang YC (2018) Selenium-infiltrated metal–organic framework-derived porous carbon nanofibers comprising interconnected bimodal pores for Li–Se batteries with high capacity and rate performance. J Mater Chem A 6(3):1028–1036

    Article  CAS  Google Scholar 

  200. Zhang J, Shi Y, Ding Y, Peng L, Zhang W, Yu G (2017) A Conductive molecular framework derived Li2S/N, P-Codoped carbon cathode for advanced lithium-sulfur batteries. Adv Energy Mater 7(14):1602876

    Article  Google Scholar 

  201. Zhong Y, Xia X, Deng S, Zhan J, Fang R, Xia Y, Wang X, Zhang Q, Tu J (2018) Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium–sulfur batteries. Adv Energy Mater 8(1):1701110

    Article  Google Scholar 

  202. Li W, Fang R, Xia Y, Zhang W, Wang X, Xia X, Tu J (2019) Multiscale porous carbon nanomaterials for applications in advanced rechargeable batteries. Batter Supercaps 2(1):9–36

    Article  CAS  Google Scholar 

  203. Shinde SS, Lee C-H, Sami A, Kim D-H, Lee S-U, Lee J-H (2017) Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. ACS Nano 11(1):347–357

    Article  CAS  PubMed  Google Scholar 

  204. Miron C, Mele P, Kaneko S, Endo T. Carbon-related materials

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gul Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, N.A., Rahman, G. (2024). Role of Carbon Nanomaterials in Energy Generation, Storage, and Conversion. In: Bachheti, A.(., Bachheti, R.K., Husen, A. (eds) Carbon-Based Nanomaterials. Smart Nanomaterials Technology. Springer, Singapore. https://doi.org/10.1007/978-981-97-0240-4_17

Download citation

Publish with us

Policies and ethics