Skip to main content

Edge Computing Based Computation Offloading

  • Chapter
  • First Online:
5G Edge Computing
  • 52 Accesses

Abstract

Edge computing shows great potential in enhancing the energy efficiency of mobile users by transferring computation tasks to edge servers that are physically proximal and more resourceful. However, when numerous mobile users vie for limited wireless and computing resources, the energy consumption and task completion time can be significantly affected. To ensure that the Quality of Service (QoS) requirements are met, it is necessary to jointly make task offloading decisions and optimize resource allocations. In this chapter, we introduce both deterministic QoS guarantee and statistical QoS guarantee for computation offloading. We provide general models for energy consumption and delay in both computation and communication processes. To provide the deterministic QoS guarantee, we propose a distributed algorithm based on game theory. For tasks requiring statistical QoS guarantee, we propose a distributed algorithm that utilizes convex optimization theory and Gibbs sampling method. The numerical results confirm that the proposed algorithm offers asymptotically optimal performance and can considerably enhance the QoS of mobile users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. L. D. Neto, S. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar, and S. Secci, “ULOOF: A user level online offloading framework for mobile edge computing,” IEEE Trans. Mobile Comput., vol. 17, no. 11, pp. 2660–2674, 2018.

    Article  Google Scholar 

  2. J. Ren, H. Guo, C. Xu, and Y. Zhang, “Serving at the edge: A scalable IoT architecture based on transparent computing,” IEEE Netw., vol. 31, no. 5, pp. 96–105, 2017.

    Article  Google Scholar 

  3. X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for mobile-edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

    Article  Google Scholar 

  4. Q. Du and X. Zhang, “Statistical QoS provisionings for wireless unicast/multicast of multi-layer video streams,” IEEE J. Select. Areas Commun., vol. 28, no. 3, pp. 420–433, 2010.

    Article  Google Scholar 

  5. W. Yuan and K. Nahrstedt, “Energy-efficient CPU scheduling for multimedia applications,” ACM Trans. Comput. Syst., vol. 24, no. 3, pp. 292–331, 2006.

    Article  Google Scholar 

  6. N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption in mobile phones: a measurement study and implications for network applications,” in Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference. ACM, 2009, pp. 280–293.

    Google Scholar 

  7. X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation offloading for mobile-edge cloud computing,” IEEE/ACM Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

    Article  Google Scholar 

  8. D. Monderer and L. S. Shapley, “Potential games,” Games and Economic Behavior, vol. 14, no. 1, pp. 124–143, 1996.

    Article  MathSciNet  Google Scholar 

  9. C. Xiong, G. Y. Li, Y. Liu, Y. Chen, and S. Xu, “Energy-efficient design for downlink OFDMA with delay-sensitive traffic,” IEEE Trans. Wirel. Commun., vol. 12, no. 6, pp. 3085–3095, 2013.

    Article  Google Scholar 

  10. W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-optimal mobile cloud computing under stochastic wireless channel,” IEEE Trans. Wirel. Commun., vol. 12, no. 9, pp. 4569–4581, 2013.

    Article  Google Scholar 

  11. P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and A. Mahajan, “Mixed-integer nonlinear optimization,” Acta Numer., vol. 22, pp. 1–131, 2013.

    Article  MathSciNet  Google Scholar 

  12. R. Kannan and C. L. Monma, “On the computational complexity of integer programming problems,” in Optimization and Operations Research. Springer, 1978.

    Google Scholar 

  13. J. Xu, L. Chen, and P. Zhou, “Joint service caching and task offloading for mobile edge computing in dense networks,” in proc. IEEE INFOCOM, 2018, pp. 207–215.

    Google Scholar 

  14. T. X. Tran and D. Pompili, “Joint task offloading and resource allocation for multi-server mobile-edge computing networks,” IEEE Trans. Veh. Technol., vol. 68, no. 1, pp. 856–868, 2019.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, X., Xu, M., Li, Q., Li, Y., Zhou, A., Wang, S. (2024). Edge Computing Based Computation Offloading. In: 5G Edge Computing. Springer, Singapore. https://doi.org/10.1007/978-981-97-0213-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0213-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0212-1

  • Online ISBN: 978-981-97-0213-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics