Skip to main content

Coffee (Coffea spp.)

  • Chapter
  • First Online:
Soil Health Management for Plantation Crops

Abstract

Coffee farming regions on the globe along the equatorial zone between the Tropic of Cancer and the Tropic of Capricorn are generally called as the “Bean Belt.” Coffee plant prospers well in volcanic, red-lateritic, alluvial and colluvial soils. Acidic soil reaction, high organic matter content, and better potassium status are the general characteristics of coffee soils. The productivity potential of coffee plantations depends on the timely cultural operations and soil health. Soil erosion, soil acidity, and low nutrient availability are some of the major constraints. Soil conservation measures such as contour planting, opening of cradle pits, scuffling, mulching, and terracing in steep slopes to avoid erosion are important cultural practices. Timely application of liming materials and fertilizers in two to three splits based on the soil test is required for nutrient management under sustainable coffee production. Nitrogen is essential for coffee plants in all seasons, and it has to be provided three to four times a year. The phosphorus requirement is higher for the coffee plants at the time of blossom season. Similarly, the potassium requirement is higher at the time of post-monsoon season. Coffee in India has been cultivated under the canopy of two-tier different shade trees. Leaf litter from different shade trees, periodical pruning practices for coffee plants add considerable amount of biomass to the coffee soil. This type of coffee cultivation practice will help to improve organic carbon status in the coffee soil. Hence, technological options to improve soil health including farm biomass recycling, application of biofertilizers, cover cropping, integrated nutrient management, agro-forestry systems for higher carbon sequestration, and opportunities for organic farming are attractive options for sustainable coffee farming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

$:

Dollar

%:

Percent

@ :

At the rate

<:

Lesser than

>:

Greater than

° N :

Degree North

° S :

Degree South

A.M.:

Ante Meridiem

AFS:

Agroforestry system

Al3+:

Exchangeable aluminum

Ara :

Arabica coffee

AWC:

Available water content

B:

Boron

C:

Carbon

Ca:

Calcium

CaCO3:

Calcium carbonate

CaO:

Calcium oxide

CaOH:

Calcium hydroxide

CEC:

Cat-ion exchange capacity

cm:

Centi meter

cmol(+):

Centi mole

CO2:

Carbon dioxide

Cu:

Copper

DRIS :

Diagnosis and recommendation integrated system

et al.:

And others

Fe:

Iron

FUE:

Fertilizer use efficiency

g:

Gram

K:

Potassium

K2O:

Available potassium

kg / acre / yr.:

Kilogram per acre per year

kg / ha:

Kilogram per hectare

kg / plant:

Kilogram per plant

kg:

Kilogram

m:

Meter

m3/ha:

Cubic meter per hectare

Mg m−3:

Mega gram per meter cube

Mg:

Magnesium

MgCO3:

Magnesium Carbonate

mm m−1:

Millimeter per meter

mm:

Millimeter

mmhos cm−1 :

Millimohos per centimeter

Mn:

Manganese

Mo:

Molybdenum

MOP:

Muriate of potash

N:

Nitrogen

N:

North

NAR:

Net assimilation rate

NBSSLUP:

National Bureau of Soil Survey and Land Use Planning

NER:

North Eastern Coffee Growing Region of India

NTA:

Nontraditional Coffee Growing Area of India

°C:

Degree celsius

Oct – Dec :

October to December

P:

Phosphorus

P2O5:

Available phosphorus

pH:

Soil reaction/soil acidity

ppm:

Parts per million

RDF:

Recommended dose of fertilizer

Rob:

Robusta coffee

S:

South

S:

Sulfur

SOM:

Soil organic matter

SOP:

Sulphate of potash

SSP:

Single super phosphate

tonne / ha:

Tonnes per hectare

tons / ha:

Tonnes per hectare

US:

United States

VAM:

Vesicular arbuscular mycorhiza

Zn:

Zinc

ZnSO4:

Zinc sulphate

References

  • Abawari RA, Assefa F, Muleta D (2021) Effect of phosphate solubilizing bio-inoculants and vermicompost application on mineral uptake and growth of coffee (Coffea arbica L.) seedlings under greenhouse condition SINET. Ethiop J Sci 44(2):135–150. https://doi.10.4314/sinet.v44i2.1

    Article  Google Scholar 

  • Altieri MA, Koohafkan P (2008) Enduring farms: climate change, smallholders and traditional farming communities, vol 6. Third World Network (TWN), Penang, Malaysia, p 63

    Google Scholar 

  • Alwar Anand RP, Krishnamurthy Rao W (1992) Sulphur requirement of Arabica cultivars. J Coffee Res 22(2):123–125

    Google Scholar 

  • Amaral JFTD, Martinez HEP, Laviola BG, Filho EIF, Cruz CD (2011) Nutrients use efficiency by coffee cultivars. Cienc Rural, Santa Maria 41(4):621–629

    Article  Google Scholar 

  • Ananthanarayana R, Ravi MV (1997) Nature of soil acidity of coffee growing soils of Karnataka. J Ind Soc Soil Sci 45(2):384–385

    CAS  Google Scholar 

  • Ananthanarayana R, Ravindra MR (1998) Technical bulletin on soil acidity and liming in Karnataka. Department of Soil Science and Agricultural Chemistry, Agriculture College, GKVK, Bengaluru, India, p 112

    Google Scholar 

  • Anil Kumar KS (2002) Characterization, classification and suitability evaluation of coffee growing soils of Karnataka, Ph.D., thesis submitted to Department of Soil Science and Agricultural Chemistry, UAS, Bangalore, India

    Google Scholar 

  • Anil Kumar KS, Krishnan P, Natarajan A, Nair KM (2010) Integration of physiological and phenological attributes of coffee species with land and climate to maximize coffee production in Karnataka. Bio Technol Indian J (BTAIJ) 4(2):62–70

    Google Scholar 

  • Areqi MC, Amina OT, Benkirane R, Douira A (2014) Effect of a composite endo mycorrhizal inoculum on the growth of Coffea Arabica seedlings. Int J Plant Animal Environ Sci 4(1):185–194

    Google Scholar 

  • Arias RM, Heredia-Abarca G, Sosa VJ, Fuentes-Ramıirez LE (2012) Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agrofor Syst 85:179–193. https://doi.10.1007/s10457-011-9414-3

    Article  Google Scholar 

  • Avelino J, Cristancho M, Georgiou S, Imbach P, Aguilar BG, Morales C (2015) The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Secur 7(2):303–321. https://doi.org/10.1007/s12571-015-0446-9

    Article  Google Scholar 

  • Awatarmani NA, Satynarayana MS (1973) Effect of rain on coffee blossom. Indian Coffee 37:1–2

    Google Scholar 

  • Azizuddin, Krishnamurthy Rao W (1984) Field and nursery experiments with Azotobacter in Coffee. Proceedings of 6th Symposium of Plantation Crops, Rubber Research Institute of India, Kottayam, 16–20 December 1984 pp 289–295

    Google Scholar 

  • Bacon CM, Menendez VE, Gliessman SR, Goodman D, Fox JA (2008) Confronting the coffee crisis: fair trade, sustainable livelihoods and ecosystems in Mexico and Central America. Glob Environ Polit 8(3):159–161. https://doi.org/10.1162/glep.2008.8.3.159

    Article  Google Scholar 

  • Bainard LD, Klironomos JN, Gordon AM (2011) Arbuscular mycorrhizal fungi in tree-based intercropping systems: a review of their abundance and diversity. Pedobiologia 54(2):57–61. https://doi.org/10.1016/j.pedobi.2010.11.001

    Article  Google Scholar 

  • Balota EL, Chaves JCD (2010) Enzymatic activity and mineralization of carbon and nitrogen in soil cultivated with coffee and green manures. R Bras Ci Solo 34(5):1573–1583

    Article  Google Scholar 

  • Bambang RW, Novia L, Cahya S (2020) The effects of livestock’s manure utilization as fertilizer on coffee plant’s growth. Adv Food Sci, Sustain Agric Agroind Eng 3(2):53–67

    Google Scholar 

  • Basanna HR (2015) Emergence of sun coffee in the Western Ghats. Indian Coffee LXXXIX(7):6–7

    Google Scholar 

  • Blore TWD (1966) Further studies of water use by irrigated and unirrigated Arabica coffee in Kenya. J Agric Sci (Cambridge) 67:145–154

    Article  Google Scholar 

  • Bucagu C, Vanlauwe B, Giller KE (2013) Managing Tephrosia mulch and fertilizer to enhance coffee productivity on smallholder farms in the Eastern African highlands. European J Agron 48:19–29. https://doi.org/10.1016/j.eja.2013.02.005

    Article  Google Scholar 

  • Bunn C, Läderach P, Jimenez JGP, Montagnon C, Schilling T (2015) Multiclass classification of agroecological zones for arabica coffee: an improved understanding of the impacts of climate change. PLoS One 10:e0140490. https://doi.org/10.1371/journal.pone.0140490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caires EF, Guimaraes AM (2018) A novel phosphogypsum application recommendation method under continuous no-till management in Brazil. Agron Jl 110:1–9. https://doi.org/10.2134/agronj2017.11.0642

    Article  CAS  Google Scholar 

  • Caldwell AC, Silva LCF, da Silva CC, Ouverney CC (2015) Prokaryotic diversity in the rhizosphere of organic, intensive, and transitional coffee farms in Brazil. PLoS One 10:e0106355. https://doi.org/10.1371/journal.pone.0106355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carducci CE, Oliveira GC, Curi N, Rossoni DF, Costa AL, Heck RJ (2014a) Spatial variability of pores in oxidic latosol under a conservation management system with different gypsum doses. Ciência e Agrotecnologia 38:445–460. https://doi.org/10.1590/S1413-70542014000500004

    Article  Google Scholar 

  • Carducci CE, Oliveira GC, de Lima JM, Rossoni DF, Costa AL, Oliveira LM (2014b) Spatial distribution of coffee roots and pores of two latosols under conservationist management. Revista Brasileira de Engenharia Agrícola e Ambiental 18:270–278. https://doi.org/10.1590/S1415-43662014000300005

    Article  Google Scholar 

  • Carducci CE, Oliveira GC, Curi N, Heck RJ, Rossoni DF, de Carvalho TS, Costa AL (2015) Gypsum effects on the spatial distribution of coffee roots and the pores system in oxidic Brazilian Latosol. Soil Tillage Res 145:171–180. https://doi.org/10.1016/j.still.2014.09.015

    Article  Google Scholar 

  • Carvajal J (1985) Potassium nutrition of coffee. In: Robert DM (ed) Potassium in agriculture. American Society of Agronomy, Madison, Wisconsin, USA, pp 955–979

    Google Scholar 

  • Castnao FJO, Robledo AJ (1978) Effecto del deficit de humedad en el suelosobre La temperature delsuelo y de lanhojas en plantas de Coffeacanephora y C. Arabica. Cenicafe 29:121–134

    Google Scholar 

  • CCRI (2000) Package of practices for organic coffee. Published by Director of Research, Central Coffee Research Institute, Coffee Board, Karnataka, India, p 13

    Google Scholar 

  • CCRI (2001) Guidelines for production of organic coffee in India. Published by Director of Research, Central Coffee Research Institute, Coffee Board, Karnataka, India, p 2

    Google Scholar 

  • CCRI (2014) Coffee guide. Published by Director of Research, Central Coffee Research Institute, Coffee Board, Karnataka, India

    Google Scholar 

  • CCRI (2015) Annual reports for the year 2014–15 Coffee Board Research Department published by Coffee Board, Karnataka, India pp 48–49

    Google Scholar 

  • CCRI (2022) Soil testing report of Central Coffee Research Institute, Coffee Board, Karnataka, India pp 1–2

    Google Scholar 

  • Chandrappa K (2005) Nutrient recycling and carbon sequestration in selected coffee growing soils. Ph.D. Thesis submitted to University of Agricultural Sciences, Bangalore, Karnataka, India

    Google Scholar 

  • Chattopadhyay N, Swain S, Hore JK (2006) Response of coffee seedlings to nitrogen fixing biofertilizers. Agric Sci Digest 26:103–106

    Google Scholar 

  • Chemura A (2014) The growth response of coffee (Coffea arabica L.) plants to organic manure, inorganic fertilizers and integrated soil fertility management under different irrigation water supply levels. Int J Recycl Org Waste Agric 3:59. https://doi.org/10.1007/s40093-014-0059

    Article  Google Scholar 

  • Chengappa PG, Devika CM (2016) Climate variability concerns for the future of coffee in India: an exploratory study. Intl J Environ Agric Biotechnol 1(4):819–826

    Google Scholar 

  • Chengappa PG, Devika CM, Rudragouda CS (2017) Climate variability and mitigation: perceptions and strategies adopted by traditional coffee growers in India. Clim Dev 9:593–604. https://doi.org/10.1080/17565529.2017.1318740

    Article  Google Scholar 

  • Craparo ACW, van Asten P, Laderach P, Jassogne L, Grab S (2015) Coffea arabica yields decline in Tanzania due to climate change: global implications. Agric Forest Meteor 207:1–10. https://doi.org/10.1016/j.agrformet.2015.03.005

    Article  Google Scholar 

  • Cristancho MA, Rozo Y, Escobar C, Rivillas CA, Gaitan AL (2012) Outbreak of coffee leaf rust (Hemileia vastatrix) in Colombia. New Dis Rep 25(19) Retrieved 29 May 2015

    Google Scholar 

  • da Silva EA, Benevenute PAN, de Oliveira GC, Zinn Y, Silva BM, de Melo LBB, Reis THP, de Oliveira CHC, Guimarães PTG, Carducci CE (2020) Soils under plastic and grass cover: effects on soil aggregation and nutrient cycling in Brazilian coffee growing. Agri Res Tech 24(2):74–82. https://doi.org/10.19080/ARTOAJ.2020.25.556265

    Article  Google Scholar 

  • DaMatta FM, Ramalho JDC (2006) Impacts of drought and temperature stress on coffee physiology and production: a review. Brazilian J Plant Physiol 18(1):55–81. https://doi.org/10.1590/S1677-04202006000100006

    Article  CAS  Google Scholar 

  • De Beenhouwer M, Aerts R, Honnay O (2013) A global meta-analysis of the biodiversity and ecosystem service benefifits of coffee and cacao agroforestry. Agric Ecosyst Environ 175:1–7. https://doi.org/10.1016/j.agee.2013.05.003

    Article  Google Scholar 

  • De Beenhouwer M, Van Geel M, Ceulemans T, Muleta D, Lievens B, Honnay O (2015) Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffea arabica) in Ethiopia across a management intensity gradient. Soil Biol Biochem 91:133–139. https://doi.org/10.1016/j.soilbio.2015.08.037

    Article  CAS  Google Scholar 

  • Dębska B, Długosz J, Długosz AP, Szott MB (2016) The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration-results from a field-scale study. J Soils Sediments 16:2335–2343. https://doi.org/10.1007/s11368-016-1430-5

    Article  CAS  Google Scholar 

  • Descroix F, Snoeck J (2004) Environmental factors suitable for coffee cultivation, Book Coffee: Growing, processing sustainable production (ed:.Jean Nicolas Wintgens). GmbH &Co. KGaA, Weinheim, p 164–177

    Google Scholar 

  • Dhruvakumar K, Rao W (1982) Distribution of manganese status in soils cropped to coffee of Koppa zone in Karnataka State. In: KVA B, Iyer RD, Das PK, Sethuraj MR, Ranganathan V, KKN N, Chacko MJ (eds) Proceedings Fifth Annual Symposium on Plantation Crops (PLACROSYM -V). Indian Society of Plantation Crops, Kasaragod, pp 375–378

    Google Scholar 

  • Fatunbi AO, Ncube L (2009) Activities of effective microorganisms (EM) on the nutrient dynamics of different organic materials applied to soil. Am Eurasian J Agron 2(1):26–35

    Google Scholar 

  • Favarin JL, Almeida REM, Salustio PEB, Pedrosa AW (2013) New concept in soil preparation for coffee plantations. Visão Agrícola 3(12):20–22

    Google Scholar 

  • Forestier J (1968) Potassium and the Robusta coffee tree. Fertilite 30:3–63

    Google Scholar 

  • Fuentes-Ramírez LE, Cristales BR, Hernández TA, Salgado JT, Wang ET, Romero ME (2001) Novel nitrogen-fifixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffffee plants. Int J Syst Evol Microbiol 51:1305–1314. https://10.1099/00207713-51-4-1305

    Article  PubMed  Google Scholar 

  • Gomes LC, Bianchi FJJA, Cardoso IM, Fernandes RBA, Filho EIF, Schulte RPO (2020) Agroforestry systems can mitigate the impacts of climate change on coffffee production: a spatially explicit assessment in Brazil. Agric Ecosyst Environ 294:106858. https://doi.org/10.1016/j.agee.2020.106858

    Article  Google Scholar 

  • Gopal NH (1974) Some physiological factors to be considered for stabilization of Arabica coffee production in South India. Indian Coffee XXXVIII (7):168–175

    Google Scholar 

  • Gowda BSP, Rangasetty HT, Chokkanna NG (1965) A note on soil conservation in coffee plantations. Indian Coffee XXIX(9):9–11

    Google Scholar 

  • Guillemot J, Le Maire G, Munishamappa M, Charbonnier F, Vaast P (2018) Native coffee agroforestry in the Western Ghats of India maintains higher carbon storage and tree diversity compared to exotic agroforestry. Agric Ecosyst Environ 265:461–469. https://doi.org/10.1016/j.agee.2018.06.002

    Article  Google Scholar 

  • Guimaraes PTG, Reis THP (2010) Nutrição e Adubação do Cafeeiro. In: Reis PR, Cunha RL (eds) Café Arábica: do plantio à colheita. Epamig SM, Belo Horizonte, pp 343–414

    Google Scholar 

  • Guimaraes PTG, Dias KG, Oliveira CHC (2018) Uso de Braquiária nas entrelinhas do cafeeiro. Circular Técnica Epamig 2018

    Google Scholar 

  • Hakim A, AL-Areqi NA, Chliyeh M, Sghir F, Touhami AO, Benkirane RR, Douira A (2013) Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Coffea arabica in the Republic of Yemen. J Appl Biosci 64:4888–4901

    Article  Google Scholar 

  • Harelimana A, Goff GL, Rukazambuga DTN, Hance T (2018) Coffee production systems: evaluation of intercropping system in coffee plantations in Rwanda. J Agric Sci 10(9):17–28. https://doi.org/10.5539/jas.v10n9p17

    Article  Google Scholar 

  • Jassogne L, Nibasumba A, Wairegi L, Baret PV, Deraeck J, Mukasa D, Wanyama I, Bongers IG, van Asten PJA (2013) Coffee/banana intercropping as an opportunity for smallholder coffee farmers in Uganda, Rwanda and Burundi. In: Blomme G, van Asten PJA, Vanlauwe B (eds) Banana Systems in the Humid Highlands of Sub-Saharan Africa. CABI, pp 144–149. https://doi.org/10.1080/14735903.2012.714576

    Chapter  Google Scholar 

  • Jayarama J, Krishnappa Naik CS, Shankar BN, Thimma Reddy H (1993) Correlation between soil fertility parameters and coffee yield in small coffee holdings of Chikamagalur zone. J Coffee Res 23(1):25–31

    Google Scholar 

  • Jiang Z, Lou Y, Liu X, Sun W, Wang H, Liang J, Guo J, Li N, Yang Q (2023) Combined application of coffee husk compost and inorganic fertilizer to improve the soil ecological environment and photosynthetic characteristics of arabica coffee. Agronomy 13(1212):2–19. https://doi.org/10.3390/agronomy13051212

    Article  CAS  Google Scholar 

  • Keshavaiah KVY, Raghuramalu VB, Suresh Kumar, George Daniel (1998) Influence of cover cropping on weed smothering in young coffee plantations. Paper presented in thirteen plantation crop symposium, Coimbatore December 16–18

    Google Scholar 

  • Kharche VK (1996) Developing soil site suitability criteria for some tropical plantation crops. Ph.D. Thesis, Panjabrao Deshmukh Krishividyapeeth, Akola, p 218

    Google Scholar 

  • Kharche VK, Sehegal JL, Challa O (1999) Evaluation of land resources for coffee plantations- a case study from Karnataka. J Ind Soc Soil Sci 47(4):754–760

    Google Scholar 

  • Kharche VK, Sehgal J, Challa O (2000) Characterization of coffee growing soils in karnataka. Agropedology 10:59–66

    Google Scholar 

  • Kimew BS (1974) Response to soil applied NPK compound fertilizers in coffee small holdings. Kenya Coffee 39:222–228

    Google Scholar 

  • Korikanthimath VS, Gayathri AG, Gowda SJA, Hegde R, Hosmani MM (2000) Vesicular arbuscular mycorrhizae and phosphate solubilizers in robusta coffee and cardamom mixed cropping systems. Karnataka J Agric Sci 13(2):489–499

    Google Scholar 

  • Krishnamurthy Rao W (1991) Relationship of application of fertilizer in-puts in coffee plantations. Planters Cronicle 86:649–651

    Google Scholar 

  • Krishnamurthy Rao W, Anand Alwar RP (1984) Sulphur status of soils cropped to coffee. J Coffee Res 14(2):57–60

    Google Scholar 

  • Krishnan P, Venugopal KR, Sehagal J (1996) Soils of Kerala for optimizing land use, NBSS Publ. 48b, Nagapur, p 54

    Google Scholar 

  • Krishnappa Naik CS, Haricharan BR, Jayarama, Surendra Swamy HB (1988) Coffee soils of Chikamagalur district. Indian Coffee 32(10): 297–298

    Google Scholar 

  • Kulandaivelu V (2016) Impact of organic and conventional systems of coffee farming on soil properties and culturable microbial diversity. Scientifica:1–9. https://doi.org/10.1155/2016/3604026

  • Landon JR (1984) Booker tropical soil manual. Longman Inc., New York, p 441

    Google Scholar 

  • Leandro P, de Sousa G-FO, Mondego JMC (2022) The rhizosphere microbiomes of five species of coffee trees. Microbiol Spec 10(2):e00444–e00522. https://doi.org/10.1128/spectrum.00444-22

    Article  CAS  Google Scholar 

  • Li R, Cheng J, Liu X, Wang Z, Li H, Guo J, Wang H, Nm C, Zhao L (2023) Optimizing drip fertigation at different periods to improve yield, volatile compounds and cup quality of Arabica coffee. Front Plant Sci 14:1148616. https://10.3389/fpls.2023.1148616

    Article  PubMed  PubMed Central  Google Scholar 

  • Liliana LC, Ramon ZR, Bernardo MA, Pablo PR, Danis M, Verdecia A, Luis G, Hernandez M (2021) Biodiversity of am fungi in coffee cultivated on eroded soil. Agronomy 11(567):2–10. https://doi.org/10.3390/agronomy11030567

    Article  CAS  Google Scholar 

  • Lin YM, Liu JW, Xiang P, Lin P, Ding ZH, Sternberg LDSL (2007) Tannins and nitrogen dynamics in mangrove leaves at different age and decay stages (Jiulong River Estuary, China). Hydrobiol 583:285–295

    Article  CAS  Google Scholar 

  • Mahdhi M, Tounekti T, Al-Turki TA, Khemira H (2017) Composition of the root mycorrhizal community associated with Coffea arabica in Fifa mountains (Jazan region, Saudi Arabia). J Basic Microbiol 57:691–698. https://doi.org/10.1002/jobm.201700075

    Article  CAS  PubMed  Google Scholar 

  • Mariani S, Sabrina T, Mukhlis M (2020) Phosphate solubilizing microbes and coffee skin compost to increase robusta coffee plant growth in Andisol of Mount Sinabung Area. Bulgarian J Agr Sci 26(4):766–771

    Google Scholar 

  • Mohan Kumar BM (1996) Tree crops in our agroforestry practices (article in Malayalam). KALPADHENU Jan-Mar 19(3):6–7

    Google Scholar 

  • Motta ACV, Nick JA, Yorinori GT, Monte SB (2006) Horizontal and vertical distribution in soil fertility and roots in a coffee (Coffea arabica L.) Catuaí cultivar. Acta Scientiarum Agron 28:455–463

    CAS  Google Scholar 

  • Muleta D, Assefa F, Börjesson E, Granhall U (2013) Phosphatesolubilising rhizobacteria associated with Coffea arabica L. in natural coffffee forests of southwestern Ethiopia. J Saudi Soc Agric Sci 12:73–84. https://doi.org/10.1016/j.jssas.2012.07.002

    Article  Google Scholar 

  • Muller LE (1966) Coffee nutrition. In: Childers NF (ed) Nutrition of fruit crops. Horticultural Publications, New Jersey, USA

    Google Scholar 

  • Nadaf SA, Bora AR (2021) Nutrients status in arabica coffee (Coffea arabica L) soils of non-traditional area (NTA). Int J Plant Soil Sci 33(13):17–22. https://doi.org/10.9734/ijpss/2021/v33i1330490

    Article  CAS  Google Scholar 

  • Nadaf SA, Bora AR, Sunil Babu D (2019) Soil health management strategies for coffee estates of non - traditional areas. Indian Coffee LXXXIII(9):4–7

    Google Scholar 

  • Nadaf SA, Chandrashekar N, Bora AR, Hariyappa N, Chandrappa K (2021) Secondary and micronutrients status in coffee (Coffea arabica L.) soils under different land use (mixed and mono shade) system of Andhra Pradesh and Odisha. Front Crop Improv 9:220–225

    Google Scholar 

  • Nagaraja JS (2003) Development of diagnosis and recommendation integrated system (DRIS) norms for Arabica Coffee. Ph.D. Thesis submitted to University of Agricultural Sciences, Dharwad, Karnataka, India

    Google Scholar 

  • Nair KM, Anil Kumar KS, Srinivas S, Nagaraj JS, Violet D’Souza M, Raghuramulu Y, Hegde R, Singh SK (2017) Soil quality monitoring sites for traditional coffee-growing areas of India. National Bureau of Soil Survey and Land Use Planning, Nagpur, India

    Google Scholar 

  • Nascimento LG, de Assis GA, Fernandes MIS, Pires PS, Carvalho FJ, de Araújo NO (2020) Mulching in coffee growing: effects on productivity, maturation, grain shape and beverage quality. Res Soc Dev 9(9):e765997727. https://doi.org/10.33448/rsd-v9i9.7727

    Article  Google Scholar 

  • Natarajan A, Reddy PSA, Sehagal J, Velayutham M (1997) Soils of Tamil Nadu for land use planning, vol 46b. NBSS Publ, p 88

    Google Scholar 

  • NBSS LUP (2017) Soil quality monitoring sites for traditional coffee-growing areas of India. NBSS Publ.No.1095, ICAR-National Bureau of soil survey and land use planning (NBSS LUP). Nagpur, India, p 5

    Google Scholar 

  • Neto JF, Severiano EC, Costa KAP, Junior WSG, Goncalves WG, Andrarde R (2015) Biological soil loosening by grasses from genus Brachiaria in crop-livestock integration. Acta Sci Agron 37(3):375–383. https://doi.org/10.4025/actasciagron.v37i3.19392

    Article  Google Scholar 

  • Nzeyimana I, Hartemink AE, Graaff J (2013) Coffee farming and soil management in Rwanda. Outlook on Agric 42(1):47–52. https://doi.org/10.5367/oa.2013.0118

    Article  Google Scholar 

  • Nzeyimana I, Hartemink AE, Ritsema C, Mbonigaba JJM, Geissen V (2020) Mulching effects on soil nutrient levels and yield in coffee farming systems in Rwanda. Soil Use Manag 36:58–70. https://doi.org/10.1111/sum.12534

    Article  Google Scholar 

  • Ovalle-Rivera O, Laderach P, Bunn C, Obersteiner M, Schroth G (2015) Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS One 10(4):e0124155. https://doi.org/10.1371/journal.pone.0124155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pangle LA, Gregg JW, McDonnell JJ (2014) Rainfall seasonality and an ecohydrological feedback offset the potential impact of climate warming on evapotranspiration and groundwater recharge. Water Resour Res 50:1308–1321

    Article  Google Scholar 

  • Patil PL, Dasog GS (1999) Genesis and classification of ferruginous soil in Western Ghats and coastal regions of North Karnataka. Agropedol 9:1–15

    Google Scholar 

  • Patterson E, Sim A (2013) Soil-specific response functions of organic matter mineralization to the availability of labile carbon. Glob Chang Biol 19:1562–1571

    Article  Google Scholar 

  • Paudel N, Kang WH (2018) Establishment of algae as bio-fertilizer for coffee plant. Int J Sci Rep 4(6):153–157. https://doi.org/10.18203/issn.2454-156.IntJSciRep20182204

    Article  Google Scholar 

  • Pillai KM (1984) A text book of plantation crops. Vikas Publishing House, New Delhi, p 168

    Google Scholar 

  • Prastowo E, Mukaromah L (2020) Short-term microclimate variation and leaf litter derived soil organic carbon formation under different coffee and cocoa cropping systems. Pelita Perkebunan 36(3):212–225. https://doi.org/10.22302/iccri.jur.pelitaperkebunan.v36i3.416

    Article  Google Scholar 

  • Prates P Jr, Moreira BC, Da Silva M, De CS, Veloso TGR, Stürmer SL (2019) Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS One 14:e0209093. https://doi.org/10.1371/journal.pone.0209093

    Article  CAS  Google Scholar 

  • Premkumari MS, Balasubramanian A (1993) Effect of combined application of VAM and Azospirillum on growth and nutrient uptake by coffee seedlings. Indian Coffee 57:5–11

    Google Scholar 

  • Pumarino L, Sileshi WG, Gripenberg S, Kaartinen R, Barrios E, Muchane MN, Midega C, Jonsson M (2015) Effects of agroforestry on pest, disease and weed control: a meta-analysis. Basic and Applied Ecol 16(7):573–582. https://doi.org/10.1016/j.baae.2015.08.006

    Article  Google Scholar 

  • Radhakrishnan S, Raju R, Krishnamurthy Rao W (1993) Distribution, stability and trend of rainfall in south Indian coffee tracts. Indian Coffee LVII(6):5–11

    Google Scholar 

  • Raju T (1978) Influence of continuous use of inorganic fertilizers on nutrient status of oxisols cropped to coffee (Coffea arabica). In: Nelliat EV, Ranganathan V, Vishveshwara S, Potti SN, Krishnamurthy Rao W, Zachariah PK (eds) In proc first National Symp Plantation Crops (PLACROSYM I). Indian Society for Plantation Crops, pp 29–38

    Google Scholar 

  • Raju T (1985) Influence of major nutrients on availability of minor nutrients. Proceedings of second workshop on coffee, CCRI, Chikkmagaluru u Dist, Karnataka, J Coffee Res 15:21

    Google Scholar 

  • Raju T, Deshpande PB (1985) Influence of long term application of NPK to coffee on some micronutrient contents. J Coffee Res 15(3&4):103–112

    CAS  Google Scholar 

  • Raju T, Deshpande PB (1986) Lime - zinc interactions in coffee seedlings. J Coffee Res 16(3&4):79–88

    CAS  Google Scholar 

  • Raju T, Deshpande PB (1987) Copper–Zinc interactions in coffee seedlings. J Coffee Res 17(1):50–58

    Google Scholar 

  • Raju T, Krishnamurthy Rao W (1978) Studies on liming Oxisols cropped to coffee. II effect of liming to varying pH levels on chemical characteristics of soil. J Coffee Res 8(1):20–25

    CAS  Google Scholar 

  • Raju T, Thomas MR, Ganesh KA (1982) Yield pattern of Robusta in relation to soil fertility and fertilizing practices in Wayanad district of Kerala. Indian Coffee 46(8):192–196

    Google Scholar 

  • Ramos BZ, Toledo JPVF, Lima JM, Serafim ME, Bastos ARR, Guimaraes PTG, Coscinoe AR (2013) Gypsum doses in coffee trees: influence on calcium, magnesium, potassium and pH contents in the solution of a dystrophic red latosol. R Bras Ci Solo 37:1018–1026

    Article  CAS  Google Scholar 

  • Rangeshewaran RW, Krishnamurthy Rao W, Ramaiah PK (1990) Vasicular arbuscualr mycorrhiza in coffee. J Coffee Res 20(1):55–68

    Google Scholar 

  • Ribeiro AC, Guimarães PTG, Alvarez VVH (1999) Recomendações para o uso de corretivos e fertilizantes em Minas Gerais -5ª Aproximação. SBCS, Viçosa, p 359

    Google Scholar 

  • Robinson JBD, Hosegood PA (1963) Effect of organic mulch on fertility of a latosolic coffee soil in Kenya. Exp Agric 1:67–80

    Article  Google Scholar 

  • Rosolem CA, Calonego JC, Foloni JSS (2003) Lixiviação de potássio da palha de coberturas de solo em função da quantidade de chuva recebida. Rev Bras Cienc Solo 27:355–362

    Article  CAS  Google Scholar 

  • Salakinakop SR, Shivaprasad P, Raghuramulu Y, Paneer Selvam P (2003) Bio-nutrition for improving the vigour of coffee seedlings 6th international PGPR workshop, Calicut, India, pp 224–228

    Google Scholar 

  • Salakinakop SR, Shivaprasad P, Raghuramulu Y (2004) Relative performance of decomposing micro-organisms for composting of coffee farm wastes. ASIC 2004:130. (PA 210)

    Google Scholar 

  • Salakinakop SR, Shivaprasad P, Raghuramulu Y (2005) Manurial value and economics of composting of coffee (Coffea canephora L.) wastes. Indian J Agric Sci 75(12):814–816

    Google Scholar 

  • Salamanca JA, Timothy AD, Horwath WR (2017) Nitrogen use efficiency of coffee at the vegetative stage as influenced by fertilizer application method. Front Plant Sci 8:223. https://10.3389/fpls.2017.00223

    Google Scholar 

  • Schroeder PE, Winjum JK (1995) Assessing Brazil’s carbon budget: II. Biotic fluxes and net carbon balance. For Ecol Manag 75(1–3):87–99

    Article  Google Scholar 

  • Serafim ME, Oliveira GC, Oliveira AS, Lima JM, Guimaraes PTG, Costa JC (2011) Intensive coffee cultivation management in the physiographic region of the upper San Francisco river, MG: a case study. Biosci J 27(6):964–977

    Google Scholar 

  • Serafim ME, Oliveira GC, Curi N, Lima JM, Guimarães PTG, Lima CMP (2013) Use potential and limitations of latosols and cambisols under a conservation coffee plantation system. Biosci J 29:1640–1652

    Google Scholar 

  • Shivaprasad P, Salakinakop SR, Pannerselvam P, Raghuramulu Y, Naidu R, Anwarulla RK (2003) Composting of coffee pulp. J Coffee Res 31(2):153–160

    Google Scholar 

  • Shivaprasad P, Biradar IB, Salakinakop SR, Raghuramulu Y, D’souza MV, Hariyappa N, Hareesh SB, Murthy MA, Jayarama (2005) Influence of soil cultivation methods in young coffee on soil moisture, weed suppression and organic matter. J Coffee Res 33(1 & 2):1–14

    Google Scholar 

  • Shivaprasad P, Salakinakop SR, Muralidhara HR, Raghuramulu Y, D’souza MV, Hariyappa N, Hareesh SB, Pradeep R, Anantha Murthy M, Manjunathswamy BK, Dharmapala BS, Jayarama (2007) Effect of cultivation practices and green manure crops on soil moisture conservation and growth of coffee. Indian J Soil Conserv 35(3):242–245

    Google Scholar 

  • Shivaprasad P, Nagaraj JS, Nadaf SA, D’Souza MV (2017) Buildup of soil phosphorus in coffee plantations of Karnataka over three decades. J Plant Crops 45(1):66–71

    Google Scholar 

  • Shivaprasad P, Hariyappa N, Chandrashekar N, Manonmani GK, Hareesh SB, Nadaf SA, Jagadeesan M, Venkatesh DH, Sujatha K (2018) Studies on soil fertility status of coffee growing regions in Wayanad district J Plantn. Crops 46(3):180–189. https://doi.org/10.25081/jpc.2018.v46.i3.2087

    Article  Google Scholar 

  • Shivaprasad P, Hariyappa N, Hareesh SB, Chandrashekar N, Prafulla Kumari D, Pati R, Nadaf SA, D’souza MV, Suryaprakash Rao N, Veeraswamy S, Ramesh K (2020) Studies on coffee soil nutrient status in Karnataka, Kerala and Tamil Nadu state. Int J Agric Sci 12(24):10491–10496

    CAS  Google Scholar 

  • Siles P, Harmand J, Vaast P (2010) Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agrofor Syst 78(3):269–286. https://doi.org/10.1007/s10457-009-9241-y

    Article  Google Scholar 

  • Silva EA (2017) Propriedades físicohídricas do solo e desenvolvimento radicular do cafeeiro [dissertation]. Lavras: Universidade Federal de Lavras, p 111

    Google Scholar 

  • Silva CA, Guimaraes PTG (2016) Coffee: vectors for increasing the productivity. In: Casarin V (ed) Agronomic information number 155. IPNI, Piracicaba, pp 13–16

    Google Scholar 

  • Silva EA, Oliveira GC, Carducci CE, Silva BM, Oliveira LM, Costa JC (2013) Increasing doses of agricultural gypsum, aggregate stability and organic carbon in Cerrado latosol under coffee crop. Amazonian J 56:25–32

    Google Scholar 

  • Silva EA, Oliveira GC, Silva BM, Carducci CE, Avanzi JC, Serafirm ME (2014) Aggregate stability by the high energy moisture characteristic method in an oxisol under differentiated management. R Bras C Solo 38:1633–1642

    Article  Google Scholar 

  • Silva EA, Oliveira GC, Carducci CE, Lima JM, Melo LBB, Benevenute PAN (2016a) Stability of soil aggregates in latosols and cambisols via standard method and sonification. African J Agric Res 11:3894–3903

    Article  Google Scholar 

  • Silva EA, Oliveira GC, Carducci CE, Silva BM, Serafim ME (2016b) Aggregates morphometry of a Inceptisol under conservationist system. Semina: Ciencias Agrarias 37(3):1165–1176. https://doi.org/10.5433/1679-0359.2016v37n3p1165

    Article  CAS  Google Scholar 

  • Silva EA, Silva SHG, Oliveira GC, Carducci CE (2016c) Root spatial distribution in coffee plants of different ages under conservation management system. African J Agric Res 11:4970–4978. https://10.5897/AJAR2016.11356

    Article  Google Scholar 

  • Silva BM, Geraldo CO, Milson ES, Carla EC, Erika A da Silva, Samara MB, Laura BB de Melo, Walbert JRS, Thiago HPR, Cesar HCO, Paulo TG Guimaraes (2019a) Book chapter coffee - production and research soil management and water-use efficiency in Brazilian coffee, pp 1–20. https://doi.org/10.5772/intechopen.89558

  • Silva BM, Oliveira GC, Serafim ME, Silva EA, Guimarães PTG, Melo LBB, Norton LD, Curi N (2019b) Soil moisture associated with least limiting water range, leaf water potential, initial growth and yield of coffee as affected by soil management system. Soil Tillage Res 189:36–43. https://doi.org/10.1016/j.still.2018.12.016

    Article  Google Scholar 

  • Singh TP, Varalakshmi V, Ahluwalia SK (2000) Carbon sequestration through farm forestry: case from India. Indian Forester 126:1257–1264

    Google Scholar 

  • Souza HN, Cardoso IM, Fernandes JM, Garcia FCP, Bonfim VR, Santos AC, Carvalho AF, Mendonca ES (2010) Selection of native trees for intercropping with coffee in the Atlantic rainforest biome. Agrofor Syst 80(1):1–16. https://doi.org/10.1007/s10457-010-9340-9

    Article  Google Scholar 

  • Souza LA, Silva EA, Oliveira GC, Barbosa SM, Silva BM (2018) Qualitative and quantitative analysis of soil aggregates under plastic mulching associated with the application of chemical and organomineral fertilizers in coffee area. Sci Agrár 19(2):142–153

    Google Scholar 

  • Sudha M, Balakrishna G (2004) Effect of native vesicular arbuscular mycorrhizal (VAM) fungi on the growth of coffee seedlings in the nursery. ASIC 20:130

    Google Scholar 

  • Swarupa Glory S, Basavaraj Naik T, Reddy AGS, Raju T (1997) Effect of biofertilizers on germination of coffee seed. Indian Coffee 61(3):3–5

    Google Scholar 

  • Sys C, Van Ranst E, Debaveye J (1991) Land evaluation parts I, II & III. Re-edited volumes of publication no. 7 of the General Administration of Cooperation Development, Brussels, Belgium, pp 273–274

    Google Scholar 

  • Sys C, Van Ranst E, Debaveye J, Beernaert F (1993) Land evaluation Part III Crop requirements. Agri. Publ., No.7, Brussels, Belgium

    Google Scholar 

  • Unruh JD, Houghton RA, Lefebvre PA (1993) Carbon storage in agroforestry: an estimate for sub-Saharan. Africa Clim Res 3:39–52

    Article  Google Scholar 

  • Vaast P, Raghuramulu Y (2012) Coffee quality in coffee agro-forestry systems of Kodagu, Western Ghats of India. Indian Coffee: The Coffee Mag 76:4–7

    Google Scholar 

  • Vaast P, Van Kanten R, Siles P, Dzib B, Franck N, Harmand JM (2005) Shade: a key factor for coffee sustainability and quality. In: Colloque Scientifique International Sur Le Café (Nairobi: Association for Science and Information on Coffee (ASIC)). Available online at: https://agritrop.cirad.fr/529372/

  • Vaast P, Bertrand B, Perriot JJ, Guyot B, Génard M (2006) Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions. J Sci Food Agr 86:197–204. https://10.1002/jsfa.2338

    Article  CAS  Google Scholar 

  • van Asten PJA, Wairegi LWI, Mukasa D, Uringi NO (2011) Agronomic and economic benefits of coffee–banana intercropping in Uganda’s smallholder farming systems. Agric Syst 104(4):326–334. https://doi.org/10.1016/j.agsy.2010.12.004

    Article  Google Scholar 

  • van Asten PJA, Ochola D, Wairegi L, Nibasumba A, Jassogne L, Mukasa D (2015) Coffee-banana intercropping: implementation guidance for policymakers and investors. In practice brief | climate-smart agriculture, p 10

    Google Scholar 

  • van der Meulen ES, Nol L, Cammeraat LH (2006) Effects of irrigation and plastic mulch on soil properties on semiarid abandoned fields. Soil Sci Soc Am J 70(3):930–939. https://doi.org/10.2136/sssaj2005.0167

    Article  CAS  Google Scholar 

  • Van Elzakker B (2001) Organic coffee. In: Basker PS (ed) Coffee futures: a source book of some critical issues confronting the coffee industry. CABI-FEDERACAFE Commodities Press. CABI Bioscience, Egham, UK, pp 74–81

    Google Scholar 

  • Venkataramaiah G, Hand MB, Singh D (1974) Accumulation of copper in coffee soils. J Coffee Res 4(1):14–15

    CAS  Google Scholar 

  • Venkataramanan D, Govindappa DA (1987) Shade requirement and productivity of coffee. J Coffee Res 17(2):16–39

    Google Scholar 

  • Venkatasubaiah P, Safeeulla KM (1984) Rhizosphere and rhizoplane micro flora of coffee seedlings. J Coffee Res 14(1):14–18

    Google Scholar 

  • Vijay Singh K, Sharmila C, Janardan L, Dhurvaprasad G (2018) Isolation and characterization of phosphate solubilizing bacteria from rhizosphere of coffee plant and evaluating their effects on growth and development of coffee seedlings. BioTechnol Indian J 14(5):1–10

    Google Scholar 

  • Wallis JAN (1963) Water use by irrigated Arabica coffee in Kenya. J Agric Res 60:381–388

    Google Scholar 

  • Wang Z, Bao X, Li X, Jin X, Zhao J, Sun J, Christie P, Li L (2015) Intercropping maintains soil fertility in terms of chemical properties and enzyme activities on a timescale of one decade. Plant Soil 391(12):265–282. https://doi.org/10.1007/s11104-015-2428-2

    Article  CAS  Google Scholar 

  • Wellman FL (1961) Coffee-botany, Cultivation and utilization. Interscience Publishers Inc, New York, p 438

    Google Scholar 

  • Wilson KC (1985) Climate and soil. In: Clifford MN, Wilson KC (eds) . The AVC Publishing Co., INC., West Port, Connecticut, US

    Chapter  Google Scholar 

  • Winston E, Marsh JOLT, Lempke H, Chapman K (2005) Plant nutrition and fertiliser management, Arabica coffee manual for Lao-PDR, Edward Winston (ed) National Library, Bangkok cataloguing-in-publication. https://www.fao.org/3/ae939e/ae939e06.htm

  • Yamel DCPR, Rosa MA, Rosario MO, Dora TA, Gabriela H, Yakelin RY (2019) Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants. Agrofores Systems 93(3):961–972. https://doi.org/10.1007/s10457-018-0190-1

    Article  Google Scholar 

  • Young A (1975) Tropical soils and soil survey. Cambridge University Press, Cambridge, p 382

    Google Scholar 

  • Zuviria MD, Valenzuela CR (1994) Mapping Land suitability for coffee with ILWIS. ITC J 3:301–307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadaf, S.A. et al. (2024). Coffee (Coffea spp.). In: Thomas, G.V., Krishnakumar, V. (eds) Soil Health Management for Plantation Crops. Springer, Singapore. https://doi.org/10.1007/978-981-97-0092-9_9

Download citation

Publish with us

Policies and ethics