Skip to main content

Plantation Crops and Soil Health Management: An Overview

  • Chapter
  • First Online:
Soil Health Management for Plantation Crops

Abstract

Plantation crops are perennials, cultivated in a contiguous area in agroecosystems mostly confined to tropical belt, and comprise estate crops which include tea, coffee, and rubber and small holders’ plantation crops, viz., coconut, oil palm, arecanut, cashew, cocoa, and spices. The cultivation of these crops in ecologically vulnerable regions including coastal belts and hilly areas and in locations endowed with high rainfall and high humidity makes the maintenance of soil health a serious challenge. The agroecosystems of plantation crops are confronted with several constraints including multi-nutrient deficiencies, nutrient imbalances, decline in SOM and biological attributes affecting the soil health, and climatic aberrations, which influence the sustainability of production systems. Research programs undertaken in different countries resulted in the development of technologies to improve soil health and to achieve sustainability in production systems of plantation crops. This chapter covers a brief introduction to plantation crops, their production systems, and the strategies for soil health management such as diversification of nutrient sources including inorganic, organic, and bio-fertilizers; conservation agriculture practices; efficient biomass resource recycling practices; agroforestry/cropping/integrated farming systems; and microbiome approaches to achieve sustainable production. Efforts to augment agroecosystem properties through various nature-based technologies would enhance carbon sequestration and soil health in general, finally contributing to sustainability and resilience of this group of crops under adverse weather and edaphic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMF:

Arbuscular mycorrhizal fungi

CEC:

Cation exchange capacity

CSA:

Climate-smart agriculture

DRIS:

Diagnosis and recommendation integrated system

FYM:

Farm yard manure

GHG:

Greenhouse gases

GIS:

Geographical information system

HDMSCS:

High-density multispecies cropping system

INM:

Integrated nutrient management

MBC:

Microbial biomass carbon

MRT:

Mean residence time

PGPR:

Plant growth promoting rhizobacteria

PSB:

Phosphorus solubilizing bacteria

RS:

Remote sensing

SOC:

Soil organic carbon

SOM:

Soil organic matter

References

  • Abou Rajab Y, Leuschner C, Barus H (2016) Cacao cultivation under diverse shade tree cover allows high carbon storage and sequestration without yield losses. PLoS One 11(2):1–22. https://doi.org/10.1371/journal.pone.0149949

    Article  CAS  Google Scholar 

  • Agamuthu P, Broughton WJ (1985) Nutrient cycling within the developing oil palm legume ecosystem. Agric Ecosyst Environ 13:111–123. https://doi.org/10.1016/0167-8809(85)90054-4

    Article  CAS  Google Scholar 

  • Altieri MA, Nicholls CI (2004) An agroecological basis for designing diversified cropping systems in the tropics. J Crop Improv 11:81–103. https://doi.org/10.1300/J411v11n01_05

    Article  Google Scholar 

  • Amponsah-Doku B, Daymond A, Robinson S, Atuah L, Sizmur T (2021) Improving soil health and closing the yield gap of cocoa production in Ghana—a review. Sci Afr:e01075. https://doi.org/10.1016/j.sciaf.2021.e01075

  • Anandaraj M (2015) Status of plantation crops sector in India. J Plantn Crops 43:1–8

    Google Scholar 

  • Arianie L (2010) Potential of lignin, lignin sulfonate and lignin acetate from palm empty bunch as an additive substance in urea fertilizer as an effort to reduce the solubility of urea nitrogen. In: Advanced materials research, vol 93. Trans Tech Publications Ltd., pp 409–412. https://doi.org/10.4028/www.scientific.net/AMR.93-94.409

    Chapter  Google Scholar 

  • Arif I, Batool M, Schenk PM (2020) Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends Biotechnol 38:1385–1396. https://doi.org/10.1016/j.tibtech.2020.04.015

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Zulkifl R, Sanusi R, Tohiran KA, Terhem R, Moslim R, Norhisham AR, Adham Ashton-But AA, Azhar B (2018) Alley-cropping system can boost arthropod biodiversity and ecosystem functions in oil palm plantations. Agric Ecosyst Environ 260:19–26

    Article  Google Scholar 

  • Bach EM, Ramirez KS, Fraser TD, Wall DH (2020) Soil biodiversity integrates solutions for a sustainable future. Sustainability 12(7):2662. https://doi.org/10.3390/su12072662

    Article  Google Scholar 

  • Balasimha D, Naresh Kumar S (2013) Net primary productivity, carbon sequestration and carbon stocks in areca-cocoa mixed crop system. J Plantn Crops 41(1):8–13

    Google Scholar 

  • Barrios E, Valencia V, Jonsson M, Brauman A, Hairiah K, Mortimer PE, Okubo S (2018) Contribution of trees to the conservation of biodiversity and ecosystem services in agricultural landscapes. Int J Biodivers Sci Ecosyst Serv Manag 14:1–16. https://doi.org/10.1080/21513732.2017.1399167

    Article  Google Scholar 

  • Bavappa KVA, Kailasam C, Khader KBA, Biddappa CC, Khan HH, Kasturi Bai KV, Ramadasan A, Sundararaju P, Bopaiah BM, Thomas GV, Misra LP, Balasimha D, Bhat NT, Bhat KS (1986) Coconut and arecanut based high density multispecies cropping systems. J Plantn Crops 14:74–87

    Google Scholar 

  • Bedi R, Scully C (2014) Tropical oral health. In: Farrar J, Hotez PJ, Junghanss T, Kang G, Laloo D, White NJ (eds) Manson’s tropical infectious diseases, 23rd edn. Elsevier, pp 1073–1083. https://doi.org/10.1016/B978-0-7020-5101-2.00090-X

    Chapter  Google Scholar 

  • Beillouin D, Corbeels M, Demenois J, Berre D, Boyer A, Fallot A, Feder F, Cardinael R (2023) A global meta-analysis of soil organic carbon in the Anthropocene. Nat Commun 14:3700. https://doi.org/10.1038/s41467-023-39338-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhagwat SA, Willis KJ, Birks HJB, Whittaker RJ (2008) Agroforestry: a refuge for biodiversity? Trends Ecol Evol 23:261–267. https://doi.org/10.1016/j.tree.2008.01.005

    Article  PubMed  Google Scholar 

  • Bhagya HP, Maheswarappa HP, Surekha, Bhat R (2017) Carbon sequestration potential in coconut-based cropping systems. Indian J Hort 74(1):1–5. https://doi.org/10.5958/0974-0112.2017.00004.4

    Article  Google Scholar 

  • Biddappa CC, Upadhyay AK, Hegde MR, Palaniswami C (1996) Organic matter recycling in plantation crops. J Plantn Crops 24:71–85

    Google Scholar 

  • Blagodatsky S, Xu J, Cadisch G (2016) Carbon balance of rubber (Hevea brasiliensis) plantations: a review of uncertainties at plot, landscape and production level. Agric Ecosyst Environ 221:8–19. https://doi.org/10.1016/j.agee.2016.01.025

    Article  Google Scholar 

  • Bopaiah BM, Shetty HS (1991a) Soil microflora and biological activities in the rhizosphere and root region of coconut based multistoried cropping and monocropping systems. Soil Biol Biochem 23:89–94. https://doi.org/10.1016/0038-0717(91)90167-I

    Article  CAS  Google Scholar 

  • Bopaiah BM, Shetty HS (1991b) Microbiology and fertility in coconut-based mixed farming and coconut monocropping systems. Trop Agric (Trinidad) 68(2):135–138

    Google Scholar 

  • Buyer JS, Baligar VC, He Z, ArĂ©valo-Gardini E (2017) Soil microbial communities under cacao agroforestry and cover crop systems in Peru. Appl Soil Ecol 120:273–280. https://doi.org/10.1016/j.apsoil.2017.09.009

    Article  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499. https://doi.org/10.1007/s00374-012-0691-4

    Article  Google Scholar 

  • Chattopadhyay N, Hore JK, Bhattacharjya A (2015) Prospect of organic cashew production in India. Acta Hort 1080:337–341. https://doi.org/10.17660/ActaHortic2015.1080.45

    Article  Google Scholar 

  • Chaudhuri PS, Pal TK, Bhattacharjee G, Dey SK (2003) Rubber leaf litters (Hevea brasiliensis var. RRM 600) as vermiculture substrate for epigeic earthworm, Perionyx excavatus, Eudrilus eugeniae and Eisenia fetida. Pedobiologia 47:796–800. https://doi.org/10.1078/0031-4056-00261

    Article  Google Scholar 

  • Chen C, Liu W, Jiang X, Wu J (2017) Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon: implications for land use. Geoderma 299:13–24. https://doi.org/10.1016/j.geoderma.2017.03.021

    Article  CAS  Google Scholar 

  • Chen C, Chen HYH, Chen X, Huang Z (2019) Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun 10:1332. https://doi.org/10.1038/s41467-019-09258-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng W, Coleman DC (1990) Effect of living roots on soil organic matter decomposition. Soil Biol Biochem 22:781–787. https://doi.org/10.1016/0038-0717(90)90157-U

    Article  Google Scholar 

  • Chowdappa P, Biddappa CC, Sujatha S (1999) Efficient recycling of organic wastes in arecanut (Areca catechu L.) and cocoa (Theobroma cacao L.) plantations through vermicomposting. Indian J Agric Sci 69:563–566

    Google Scholar 

  • Clermont-Dauphin C, Suvannang N, Pongwichian P, Chevlan V, Hammecker C, Harmand JM (2016) Dinitrogen fixation by the legume cover crop Pueraria phaseoloides and transfer of fixed N to Hevea brasiliensis—impact on tree growth and vulnerability to drought. Agric Ecosyst Environ 217:79–88. https://doi.org/10.1016/j.agee.2015.11.002

    Article  CAS  Google Scholar 

  • Clough Y, Faust H, Tscharntke T (2009) Cacao boom and bust: sustainability of agroforests and opportunities for biodiversity conservation. Cons Lett 2:197–205. https://doi.org/10.1111/j.1755-263X.2009.00072.x

    Article  Google Scholar 

  • Clough Y, Barkmann J, Juhrbandt J (2011) Combining high biodiversity with high yields in tropical agroforests. Proc Natl Acad Sci 108:8311–8316. https://doi.org/10.1073/pnas.1016799108

    Article  PubMed  PubMed Central  Google Scholar 

  • Coir Board (2016) Coir pith-wealth from waste, a reference. Coir Board, Ministry of MS and ME, Coir House, Kochi, 92 p

    Google Scholar 

  • CPCRI (2014) Annual report 2013–14. Central Plantation Crops Research Institute, Kasaragod

    Google Scholar 

  • da Silva Moço MK, da Gama-Rodrigues EF, da Gama-Rodrigues AC, Machado RCR, Baligar VC (2009) Soil and litter fauna of cacao agroforestry systems in Bahia, Brazil. Agrofor Syst 76:127–138. https://doi.org/10.1007/s10457-008-9178-6

    Article  Google Scholar 

  • Das M, Nath PC, Sileshi GW, Pandey R, Nath AJ, Das AK (2021) Biomass models for estimating carbon storage in Areca palm plantations. Environ Sustain Indic 10:100115. https://doi.org/10.1016/j.indic.2021.100115

    Article  Google Scholar 

  • de Carvalho AL, Alves BJ, Baldani VL, Reis VM (2008) Application of 15N natural abundance technique for evaluating biological nitrogen fixation in oil palm ecotypes at nursery stage in pot experiments and at mature plantation sites. Plant Soil 302(1):71–78. https://doi.org/10.1007/s11104-007-9456-5

    Article  CAS  Google Scholar 

  • Del Buono D (2021) Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci Total Environ 751:141763. https://doi.org/10.1016/j.scitotenv.2020.141763

    Article  CAS  PubMed  Google Scholar 

  • Dhanapal R, Subramaniam P, Mathew AC, Palaniswami C (2005) Drip fertigation to increase the productivity of coconut. Indian Coconut J 31:17–19

    Google Scholar 

  • Dinesh R, Suryanarayana MA, Chaudhuri SG, Sheeja TE, Shiva KN (2006) Long-term effects of leguminous cover crops on biochemical and biological properties in the organic and mineral layers of soils of a coconut plantation. Eur J Soil Biol 42:147–157. https://doi.org/10.1016/j.ejsobi.2005.12.004

    Article  CAS  Google Scholar 

  • Dinesh R, Srinivasan V, Hamza S, Anandaraj M (2014) Massive phosphorus accumulation in soils: Kerala’s continuing conundrum. Curr Sci 106(3):343–344

    Google Scholar 

  • Doran JW, Sarrantonio M, Liebig MA (1996) Soil health and sustainability. Adv Agron 56:1–54

    Article  CAS  Google Scholar 

  • Duong B, Marraccini P, Maeght JL, Lebrun VPM, Duponnois R (2020) Coffee microbiota and its potential use in sustainable crop management—a review. Front Sustain Food Syst 4:607935. https://doi.org/10.3389/fsufs.2020.607935

    Article  Google Scholar 

  • Echeverria MC, Nuti M (2017) Valorization of the residues of coffee agro-industry: perspectives and limitations. Open Waste Manag J 10:13–22. https://doi.org/10.2174/1876400201710010013

    Article  CAS  Google Scholar 

  • El Janati M, Robin P, Akkal-Corfini N, Bouaziz A, Sabri A, Chikhaoui M, Thomas Z, Oukarroum A (2022) Composting date palm residues promotes circular agriculture in oases. Biomass Conv Bioref 13:14859. https://doi.org/10.1007/s13399-022-03387-z

    Article  CAS  Google Scholar 

  • Ewel JJ (1999) Natural systems as models for the design of sustainable systems of land use. Agrofor Syst 45:1–21

    Article  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1039. https://doi.org/10.1126/science.1153213

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2021) Food and Agricultural Organization, Rome

    Google Scholar 

  • Feller C, Albrecht A, Blanchart E, Cabidoche YM et al (2001) Soil organic carbon sequestration in tropical areas. General considerations and analysis of some edaphic determinants for Lesser Antilles soils. In: Martius C, Tiessen H, Vlek PLG (eds) Managing organic matter in tropical soils: scope and limitations. Springer, Netherlands, pp 19–31. https://doi.org/10.1007/978-94-017-2172-1_3

    Chapter  Google Scholar 

  • Gaba S, Lescourret F, Boudsocq S, Enjalbert J, Hinsinger P, Journet EP, Navas ML, Wery J, Louarn G, MalĂ©zieux E, Pelzer E, Prudent M, Ozier-Lafontaine H (2015) Multiple cropping systems as drivers for providing multiple ecosystem services: from concepts to design. Agron Sust Dev 35:607–623. https://doi.org/10.1007/s13593-014-0272-z

    Article  Google Scholar 

  • George S, Joseph P (2011) Natural rubber plantation: a nutritionally self-sustaining ecosystem. Nat Rubber Res 24(2):197–202

    Google Scholar 

  • George P, Gupta A, Gopal M, Thomas GV (2012) Screening and in vitro evaluation of phosphate solubilising bacteria from rhizosphere and roots of coconut palms (Cocos nucifera L.) growing in different states of India. J Plantn Crops 40(1):61–64

    Google Scholar 

  • Ghosh PK, Sarma US, Ravindranath AD, Radhakrishnan S, Ghosh P (2007) A novel method for accelerated composting of coir pith. Energy Fuel 21(2):822–827. https://doi.org/10.1021/ef060513c

    Article  CAS  Google Scholar 

  • Glover N, Beer J (1986) Nutrient cycling in two traditional Central American agroforestry systems. Agrofor Syst 4:77–87. https://doi.org/10.1007/BF00141542

    Article  Google Scholar 

  • Gomes LC, Bianchi FJJA, Cardoso IM, Fernandes RBA, Fernandes Filho EIF, Schulte RPO (2020) Agroforestry systems can mitigate the impacts of climate change on coffee production: a spatially explicit assessment in Brazil. Agric Ecosyst Environ 294:106858. https://doi.org/10.1016/j.agee.2020.106858

    Article  Google Scholar 

  • Gopal M, Gupta A, Sunil E, Thomas GV (2009) Amplification of plant beneficial microbial communities during conversion of coconut leaf substrate to vermicompost by Eudrilus sp. Curr Microbiol 59:15–20. https://doi.org/10.1007/s00284-009-9388-9

    Article  CAS  PubMed  Google Scholar 

  • Gopal M, Bhute SS, Gupta A, Prabhu SR, Thomas GV, Whitman WB, Jangid K (2017) Changes in structure and function of bacterial communities during coconut leaf vermicomposting. Antonie Van Leeuwenhoek 110:1339–1355. https://doi.org/10.1007/s10482-017-0894-7

    Article  CAS  PubMed  Google Scholar 

  • Gopal M, Gupta A, Hameed KS, Sathyaseelan N, Rajeela THK, Thomas GV (2020) Biochars produced from coconut palm biomass residues can aid regenerative agriculture by improving soil properties and plant yield in humid tropics. Biochar 2:211–226. https://doi.org/10.1007/s42773-020-00043-5

    Article  Google Scholar 

  • Gupta A, Gopal M, Thomas GV, Manikandan V, Gajewski J, Thomas GV (2014) Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS One 9(8):e104259. https://doi.org/10.1371/journal.pone.0104259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Gopal M, Ravindran D, Thomas GV (2016) Prevalence of potassium solubilizing bacteria in the rhizosphere of coconut palms (Cocos nucifera L.) growing in different soil types. In: Chowdappa P et al (eds) Abstracts of third international symposium on coconut research and development. ICAR-CPCRI, Kasaragod, p 178

    Google Scholar 

  • Harikumar VS, Thomas GV (1991) Effect of fertilizers and irrigation on vesicular—arbuscular mycorrhizal association in coconut. Philipp J Coconut Stud XVI:20–24

    Google Scholar 

  • Hartemink AE (2005) Nutrient stocks, nutrient cycling, and soil changes in cocoa ecosystems: a review. Adv Agron 86:227–253. https://doi.org/10.1016/S0065-2113(05)86005-5

    Article  CAS  Google Scholar 

  • Hussain M, Ray AK, Maheswarappa HP, Krishnakumar V, Bhat R, Subramanian P, Thomas GV (2008) Recycling of organic biomass from arecanut based high density multi-species cropping system models under Assam condition. J Plantn Crops 36(1):53–57

    Google Scholar 

  • ICC (2020) Coconut statistical yearbook 2020. International Coconut Community, Jakarta

    Google Scholar 

  • Idbella M, Bonanomi G (2023) Uncovering the dark side of agriculture: how land use intensity shapes soil microbiome and increases potential plant pathogens. Appl Soil Ecol 192:105090. https://doi.org/10.1016/j.apsoil.2023.105090

    Article  Google Scholar 

  • Isaac SR, Nair MA (2005) Biodegradation of leaf litter in the warm humid tropics of Kerala, India. Soil Boil Biochem 37:1656–1664. https://doi.org/10.1016/j.soilbio.2005.02.002

    Article  CAS  Google Scholar 

  • Jacob J (2003) Carbon sequestration potential of natural rubber plantations. In: Proceedings of IRRDB symposium on challenges for natural rubber in globalization, 15–17 Sept 2003, Chiang Mai, Thailand

    Google Scholar 

  • Jacobi J, Andres C, Schneider M, Pillco M, Calizaya P, Rist S (2014) Carbon stocks, tree diversity, and the role of organic certification in different cocoa production systems in Alto Beni, Bolivia. Agrofor Syst 88:1117–1132. https://doi.org/10.1007/s10457-013-9643-8

    Article  Google Scholar 

  • Jarecki MK, Lal R (2003) Crop management for soil carbon sequestration. Crit Rev Plant Sci 22(6):471–502. https://doi.org/10.1080/713608318

    Article  Google Scholar 

  • Jayasekhar S, Chandran KP (2021) World economic importance. In: Rajesh MK, Ramesh SV, Perera L, Kole C (eds) The coconut genome. Springer, pp 1–12. https://doi.org/10.1007/978-3-030-76649-8_1

    Chapter  Google Scholar 

  • Jessy MD, Nair AS, Bai MM, Rajendran P, Punnoose KI (2009) Self–sustainability of phosphorous cycle in rubber (Hevea brasiliensis) plantations: annual recycling through litter and removal through latex. J Plantn Crops 37(3):177–184

    Google Scholar 

  • Jessy MD, Joseph P, George S (2017) Possibilities of diverse rubber based agroforestry systems for smallholdings in India. Agrofor Syst 91:515–526. https://doi.org/10.1007/s10457-016-9953-8

    Article  Google Scholar 

  • Jha S, Bacon CM, Philpott SM, Ernesto MĂ©ndez V, Läderach P, Rice RA (2014) Shade coffee: update on a disappearing refuge for biodiversity. BioSci 64(5):416–428. https://doi.org/10.1093/biosci/biu038

    Article  Google Scholar 

  • Kalpana M, Gautam B, Srinivasulu B, Rao DVR, Arulraj S, Jayabose C (2008) Impact of integrated nutrient management on nut yield and quality of coconut under coastal ecosystem. J Plantn Crops 36(3):249–253

    Google Scholar 

  • Khan HH, Sankaranarayan MP, Narayanan BB (1978) Characteristics of coconut soils of India. 1. Morphology, some physic chemical characteristics and taxonomy. In: Nelliat EV et al (eds) Proceedings of PLACROSYM I. Indian Society of Plantation Crops, Kasaragod, pp 54–79

    Google Scholar 

  • Khan HH, Upadhyay AK, Palaniswami C (2002) Integrated nutrient management in plantation crops. In: Rethinam P, Khan HH, Reddy VM, Mandal PK, Suresh K (eds) Plantation crops research and development in the new millennium. Coconut Development Board, Kochi, pp 9–22

    Google Scholar 

  • Kotowska MM, Leuschner C, Triadiati T (2015) Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia). Glob Chang Biol 21:3620–3634. https://doi.org/10.1111/gcb.12979

    Article  PubMed  Google Scholar 

  • Krishnakumar V, Reddy DVS (2007) Homestead farms in Northern Kerala—their basic characteristics and socio-economic status. J Plantn Crops 35(2):106–110

    Google Scholar 

  • Kumar BM (2008) Litter dynamics in plantation and agroforestry systems of the tropics-a review of observations and methods. In: Batish DR, Kohli RK, Jose S, Singh HP (eds) Ecological basis of agroforestry. CRC Press, Boca Raton, FL, pp 181–216

    Google Scholar 

  • Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12(6):519–539. https://doi.org/10.1002/ldr.472

    Article  Google Scholar 

  • Lal R (2003) Global potential of soil carbon sequestration to mitigate the greenhouse effect. Crit Rev Plant Sci 22:151–184. https://doi.org/10.1080/713610854

    Article  Google Scholar 

  • Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31(4):575–584. https://doi.org/10.1016/j.envint.2004.09.005

    Article  CAS  PubMed  Google Scholar 

  • Lal R (2009) Challenges and opportunities in soil organic matter research. Eur J Soil Sci 60:158–169. https://doi.org/10.1111/j.1365-2389.2008.01114.x

    Article  CAS  Google Scholar 

  • Lal R (2015) Restoring soil quality to mitigate soil degradation. Sustainability 7:5875–5895. https://doi.org/10.3390/su7055875

    Article  Google Scholar 

  • Lal R (2016) Soil health and carbon management. Food Energy Secur 5(4):212–222. https://doi.org/10.1002/fes3.96

    Article  Google Scholar 

  • Lal R, Kimble JM, Follett RF, Cole CV (1998) Potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Ann Arbor Press, an imprint of Sleeping Bear Press, Chelsea, MI

    Google Scholar 

  • Le VS, Herrmann L, Hudek L, Nguyen TB, Baru L, Lesuer D (2022) How application of agricultural waste can enhance soil health in soils acidified by tea cultivation: a review. Environ Chem Lett 20:813–839. https://doi.org/10.1007/s10311-021-01313-9

    Article  CAS  Google Scholar 

  • Lehman RM, Acosta-Martinez V, Buyer JS, Cambardella CA, Collins HP, Ducey TF, Halvorson JJ, Jin VL, Johnson JM, Kremer RJ, Lundgren JG (2015a) Soil biology for resilient, healthy soil. J Soil Water Conserv 70(1):12A–18A. https://doi.org/10.2489/jswc.70.1.12A

    Article  Google Scholar 

  • Lehman RM, Cambardella CA, Stott DE, Acosta-Martinez V, Manter DK, Buyer JS, Maul JE, Smith JL, Collins HP, Halvorson JJ, Kremer RJ, Lundgren JG, Ducey TF, Jin VL, Karlen DL (2015b) Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability 7:988–1027. https://doi.org/10.3390/su7010988

    Article  Google Scholar 

  • Lord S, Clay L (1999) Environmental impacts of oil palm—practical considerations in defining sustainability for impacts on the air, land and water. New Britain Palm Oil Ltd. Centre, Dami Oil Palm Research Station, 38 p

    Google Scholar 

  • Maheswarappa HP, Hegde MR, Dhanapal R, Biddappa CC (1998) Mixed farming in coconut gardens; its impact on soil physical and chemical properties, coconut nutrition and yield. J Plantn Crops 26:139–143

    Google Scholar 

  • Maheswarappa HP, Dhanapal R, Subramaniam P, Palaniswami C (2013) Evaluation of coconut based high density multispecies cropping system under organic and integrated nutrient management. J Plantn Crops 41(2):130–135

    Google Scholar 

  • Malhotra S, Maheswarappa HP, Selvamani V, Chowdappa C (2017) Diagnosis and management of soil fertility constraints in coconut (Cocos nucifera): a review. Indian J Agric Sci 87(6):711–726

    CAS  Google Scholar 

  • Mangalassery S, Nayak MG, Susan PP, Rupa TR, Behera SK, Srinivasan V (2021) Delineating the nutrient constraints and developing nutrient norms for cashew (Anacardium occidentale L.) in coastal India. J Plant Nutr 44:2627–2639. https://doi.org/10.1080/01904167.2021.1921198

    Article  CAS  Google Scholar 

  • Mathew J, Haris AA, Bhat R, Krishnakumar V, Muralidharan K, John KS, Surendran U (2021) A comparative assessment of nutrient partitioning in healthy and root (wilt) disease affected coconut palms grown in an Entisol of humid tropical Kerala. Trees 35:621–635. https://doi.org/10.1007/s00468-020-02064-w

    Article  CAS  Google Scholar 

  • Matteoli F, Schnetzer J, Jacobs H (2021) Climate-smart agriculture (CSA): an integrated approach for climate change management in the agriculture sector. In: Luetz JM, Ayal D (eds) Handbook of climate change management. Springer, Cham. https://doi.org/10.1007/978-3-030-57281-5_148

    Chapter  Google Scholar 

  • Middendorp R, Vanacker V, Lambin E (2018) Impacts of shaded agroforestry management on carbon sequestration, biodiversity and farmers income in cocoa production landscapes. Landsc Ecol 33:1953–1974. https://doi.org/10.1007/s10980-018-0714-0

    Article  Google Scholar 

  • Mihi A, Tarai N, Chenchouni H (2019) Can palm date plantations and oasification be used as a proxy to fight sustainably against desertification and sand encroachment in hot drylands? Ecol Indic 105:365–375. https://doi.org/10.1016/j.ecolind.2017.11.027

    Article  Google Scholar 

  • Mise K, Koyama Y, Matsumoto A, Fujita K, Kunito T, Senoo K, Otsuka S (2020) Pectin drives microbial phosphorus solubilization in soil: evidence from isolation-based and community-scale approaches. Eur J Soil Biol 97:103169. https://doi.org/10.1016/j.ejsobi.2020.103169

    Article  CAS  Google Scholar 

  • Mohan Kumar B, Kunhamu TK (2022) Nature-based solutions in agriculture: a review of the coconut (Cocos nucifera L.)-based farming systems in Kerala, “the Land of Coconut Trees”. Nat Based Solutions 2:100012. https://doi.org/10.1016/j.nbsj.2022.100012

    Article  Google Scholar 

  • Muschler RG, Bonnemann A (1997) Potentials and limitations of agroforestry for changing land-use in the tropics: experiences from Central America. Forest Ecol Manag 91:61–67. https://doi.org/10.1016/S0378-1127(96)03887-X

    Article  Google Scholar 

  • Nadaf SA, Hariyappa N, Chandrappa K, Manonamani GK, Hareesh SB, Raghuramulu Y (2019) Integrated use of organic and inorganic fertilizers in coffee—a key under the climatic resilience. In: Paper presented in the 23rd plantation crops symposium (PLACROSYM XXIII), 6–8 Mar 2019. CCRI, Chikkamagaluru, p 84

    Google Scholar 

  • Nair PKR (1977) Multispecies crop combinations with tree crops for enhanced productivity in the tropics. Gartenbauwissenschqft 42:145–150

    Google Scholar 

  • Nair PKR (2017) Managed multi-strata tree + crop systems: an agroecological marvel. Front Environ Sci 5:88. https://doi.org/10.3389/fenvs.2017.00088

    Article  Google Scholar 

  • Nair SK, Subba Rao NS (1977) Microbiology of the root region of coconut and cocoa under mixed cropping. Plant Soil 46:511–519

    Article  Google Scholar 

  • Nampoothiri KUK (2001) Organic farming-its relevance to plantation crops. J Plantn Crops 29(1):1–9

    Google Scholar 

  • Nath JC, Arulraj S, Maheswarappa HP (2012) Integrated nutrient management in COD Ă— WCT hybrid coconut under alluvial clay-loam soil of Assam. J Plantn Crops 40(2):105–110

    Google Scholar 

  • Nelliat EV, Bavappa KVA, Nair PKR (1974) Multi-storied cropping—a new dimension in multiple cropping for plantations. World Crops 26(6):262–266

    Google Scholar 

  • Ohler JG (1999) Modern coconut management: palm cultivation and products. Intermediate Technology Publications, 458 p

    Book  Google Scholar 

  • Onyibe HI, Gill LS (1992) Litter production and disappearance in three clones of rubber. J Plantn Crops 20(1):22–31

    Google Scholar 

  • Palaniswami C, Thomas GV, Dhanapal R, Subramanian P, Maheswarappa HP, Upadhyay (2007) Integrated nutrient management in coconut based cropping system. Technical bulletin no. 49. CPCRI, Kasaragod, 24 p

    Google Scholar 

  • Paramesh V, Arunachalam V, Nath AJ (2019) Enhancing ecosystem services and energy use efficiency under organic and conventional nutrient management system to a sustainable arecanut based cropping system. Energy 187:1–10. https://doi.org/10.1016/j.energy.2019.115902

    Article  CAS  Google Scholar 

  • Parthasarathi K, Balamurugan M, Prashija KV, Jayanthi L, Ameer Basha S (2016) Potential of Perionyx excavatus (Perrier) in lignocellulosic solid waste management and quality vermifertilizer production for soil health. Int J Recycl Org Waste Agric 5:65–86. https://doi.org/10.1007/s40093-016-0118-6

    Article  Google Scholar 

  • Patil B, Hegde V, Sridhara S, Narayanaswamy H, Naik MK, Patil KK, Rajashekara H, Mishra AK (2022) Exploring the impact of climatic variables on arecanut fruit rot epidemic by understanding the disease dynamics in relation to space and time. J Fungi 8(745):745. https://doi.org/10.3390/jof8070745

    Article  Google Scholar 

  • Prabhu SR, Thomas GV (2002) Biological conversion of coir pith into a value-added organic resource and its application in agri-horticulture: current status, prospects and perspective. J Plantn Crops 30(1):1–7

    Google Scholar 

  • Prabhu SR, Subramaniam P, Biddappa CC, Bopaiah BM (1998) Prospects for improving coconut productivity through vermiculture technology. Indian Coconut J 29:79–84

    Google Scholar 

  • Qureshi MRNM, Almuflih AS, Sharma J, Tyagi M, Singh S, Almakayeel N (2022) Assessment of the climate-smart agriculture interventions towards the avenues of sustainable production—consumption. Sustainability 14:8410. https://doi.org/10.3390/su14148410

    Article  Google Scholar 

  • Rajesh Kumar PP, Thomas GV, Gupta A, Gopal M (2015) Diversity, richness and degree of colonization of arbuscular mycorrhizal fungi in coconut cultivated along with intercrops in high productive zone of Kerala, India. Symbiosis 65:125–141. https://doi.org/10.1007/s13199-015-0326-2

    Article  Google Scholar 

  • Ray P, Lakshmanan V, LabbĂ© JL, Craven KD (2020) Microbe to microbiome: a paradigm shift in the application of microorganisms for sustainable agriculture. Front Microbiol 11:622926. https://doi.org/10.3389/fmicb.2020.622926

    Article  PubMed  PubMed Central  Google Scholar 

  • Reddy DVS, Upadhyay AK (2002) Impact of integrated nutrient management of the mineral nutrition and yield of WCT coconut in littoral sandy soil at Kasaragod. In: Sreedharan K, Vinod Kumar PK, Jayarama, Chulaki BM (eds) Proceedings of PLACROSYM-XV. Indian Society of Plantation Crops, Kasaragod, pp 274–282

    Google Scholar 

  • Rejani R, Yadukumar N (2010) Soil and water conservation techniques in cashew grown along steep hill slopes. Sci Hort 126(3):371–378. https://doi.org/10.1016/j.scienta.2010.07.032

    Article  Google Scholar 

  • Rejani R, Rupa TR, Nayak MG (2013) Suitability of cashew growing areas in India—an appraisal using GIS. J Agrometeorol 15:123–128

    Google Scholar 

  • Rethinam P (2000) Future of plantation crops in the millennium. In: Rethinam P, Khan HH, Reddy VM, Mandal PK, Suresh K (eds) Plantation crops research and development in the new millennium. Coconut Development Board, Kochi, pp 33–37

    Google Scholar 

  • Rethinam P, Venugopal K (1994) Cropping systems in plantation crops. In: Chadha KL, Rethinam P (eds) Advances in horticulture-plantation and spice crops. Malhotra Publishing House, New Delhi, pp 605–620

    Google Scholar 

  • Rupa TR, Rejani R, Bhat MG (2013) Impact of climate change on cashew and adaptation strategies. In: Singh HP, Rao NKS, Shivasankara KS (eds) Climate resilient horticulture: adaptation and mitigation strategies. Springer Nature, pp 189–198. https://doi.org/10.1007/978-81-322-0974-4_17

    Chapter  Google Scholar 

  • Sadanandan AK, Hamza S, Bhargava BS, Ragupathi HB (2000) Diagnosis and recommendation integrated system (DRIS) norms for black pepper (Piper nigrum L.) growing soils of South India. In: Muraleedharan N, Raj Kumar R (eds) Recent advances in plantation crops research. Allied Publishers Ltd, New Delhi, pp 203–220

    Google Scholar 

  • Santana MBM, Cabala Roland P, Serodio MH, Rosand PC (1988) Nutrient cycling in cocoa agroecosystems. In: Proceedings of international cocoa research conference, Santo Domingo, Dominican Republic, pp 233–237

    Google Scholar 

  • Santha CR (2006) Coir products for soil engineering. J Soil Water Conserv 61(3):88A–93A

    Google Scholar 

  • Selvamani V, Duraisami VP (2018) Mapping soil constraints for coconut using RS and GIS for the major coconut growing region of Tamil Nadu. J Plantn Crops 46(3):190–195. https://doi.org/10.25081/jpc.2018.v46.i3.20181

    Article  Google Scholar 

  • Shinde VV, Maheswarappa HP, Ghavale SL, Wankhade SM, Haldankar PM (2020) Productivity and carbon sequestration potential of coconut based cropping system as influenced by integrated nutrient management practices. J Plantn Crops 48(2):103–110. https://doi.org/10.25081/jpc.2020.v48.i2.6368

    Article  Google Scholar 

  • Shivaprasad P, Hanyappa N, Chandrasekhar N, Manonmani GK, Haresh SB, Nadaj SA, Jagadeesan M, Venkatesh DH, Sujatha K (2018) Studies on soil fertility status of coffee growing districts of Wayanad district. J Plantn Crops 46(3):180–189

    Google Scholar 

  • Singh HP, Thomas GV (eds) (2010) Organic horticulture—principles, practices and technologies. Westville Publishing House, 440 p

    Google Scholar 

  • Singh AK, Liu W, Zakari S, Wu J, Yang B, Jiang XJ, Zhu X, Zou X, Zhang W, Chen C, Singh R (2021) A global review of rubber plantations: impacts on ecosystem functions, mitigations, future directions, and policies for sustainable cultivation. Sci Total Environ 796:148948. https://doi.org/10.1016/j.scitotenv.2021.148948

    Article  CAS  PubMed  Google Scholar 

  • Smil V (1999) Crop residues: agriculture’s largest harvest: crop residues incorporate more than half of the world’s agricultural phytomass. Biosci 49(4):299–308. https://doi.org/10.2307/1313613

    Article  Google Scholar 

  • Spices Board (2021). https://www.indianspices.com/

  • Srinivasan R, Natarajan A, Anil Kumar AS, Lalitha M (2019) Carbon stocks in major cashew growing soils of coastal Karnataka, India. J Plantn Crops 47(1):55–61

    Google Scholar 

  • Subramanian P, Dhanapal R, Sanil P, Palaniswami C, Sairam CV, Maheswarappa HP (2005) Glyricidia (Gliricidia sepium) as green manure in improving soil fertility and productivity of coconut. J Plantn Crops 33(3):179–183

    Google Scholar 

  • Sundram S, Angel LPL, Sirajuddin SA (2019) Integrated balanced fertilizer management in soil health rejuvenation for a sustainable oil palm cultivation: a review. J Oil Palm Res 31(3):348–363

    CAS  Google Scholar 

  • Sunitha S, Krishnakumar T (2006) Biomass production and potential nutrient contribution from oil palm at felling. J Plantn Crops 34(3):309–311

    Google Scholar 

  • Tandon HLS, Ranganathan V (1988) In: Tandon HLS (ed) Fertilizer management in plantation crops—a guide book. Fertilizer Development and Consultation Organization, New Delhi, pp 26–60

    Google Scholar 

  • Thomas GV, Palaniswami C (2005) Effect of different components of farming system and on farm recycling on coconut crop and soil fertility. In: Joshi GD, Rangwala AD, Nagwekar DD, Haldankar PM (eds) Proceedings of national seminar on more remunerative coconut based farming systems. Dr Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, pp 49–61

    Google Scholar 

  • Thomas GV, Prabhu SR (2003) Association of diazotrophic and plant growth promoting rhizobacteria with coconut palm (Cocos nucifera L.). In: Proceedings of sixth international PGPR workshop, 5–10 Oct 2003, Kozhikode, India, pp 20–26

    Google Scholar 

  • Thomas GV, Prabhu SR, Reeny MZ, Bopaiah BM (1989) Evaluation of lignocellulosic biomass from coconut palm as substrate for cultivation of Pleurotus sajor caju (Fr) Singer. World J Microbiol Biotechnol 14:879–882. https://doi.org/10.1023/A:1008881124903

    Article  Google Scholar 

  • Thomas GV, Iyer R, Bopaiah BM (1991) Beneficial microbes in the nutrition of coconut. J Plantn Crops 19:127–138

    Google Scholar 

  • Thomas GV, Biddappa CC, Prabhu SR (2001) Evaluation of N2 fixing cover legumes as green manures for nitrogen substitution in coconut palm. Trop Agric (Trinidad) 78(1):13–18

    Google Scholar 

  • Thomas GV, Palaniswami C, Prabhu SR, Gopal M, Gupta A (2013) Co-composting of coconut coir pith with solid poultry manure. Curr Sci 104(2):245–250

    Google Scholar 

  • Thomas GV, Gopal M, Gupta A, Subramaniam P, Prabhu SR (2016) Bio-resources based biological soil fertility management for sustainable coconut production. In: Chowdappa P et al (eds) Abstracts of third international symposium on coconut research and development. ICAR-Central Plantation Crops Research Institute, Kasaragod

    Google Scholar 

  • Thomas GV, Subramanian P, Gopal M, Gupta A, Prabhu SR (2022) Unraveling the potential of belowground and aboveground biodiversity for sustainable management of the health of plantation crop soils in coastal agroecosystem. In: Lama T, Burman D, Mandal UK, Sarangi SK, Sen H (eds) Transforming coastal zone for sustainable food and income security. Springer, Cham. https://doi.org/10.1007/978-3-030-95618-9_48

    Chapter  Google Scholar 

  • Tiedje JM, Cho JC, Murray A, Treves D, Xia B, Zhou J (2001) Soil teeming with life: new frontiers for soil science. In: Rees RM, Ball BC, Campbell CD, Watson CA (eds) Sustainable management of soil organic matter. CAB International, Wallingford, pp 393–412

    Chapter  Google Scholar 

  • USDA (2022) Oil seeds and products update. Available at: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Oilseeds%20and%20Products%20Update_Jakarta_Indonesia_ID2022-0021

  • Usha KE, Vikraman Nair R (2002) Recycling potential of litter in cashew. In: Rethinam P, Khan HH, Reddy VM (eds) Plantation crops research and development in the new millennium. Coconut Development Board, Kochi, pp 348–350

    Google Scholar 

  • van Doren J, Van den Hurk K, Broekmeulen D (2017) Can coir pith replace peatmoss for horticultural purposes in the future? Acta Hort 1266:43–48. https://doi.org/10.17660/ActaHortic.2019.1266.7

    Article  Google Scholar 

  • van Vliet JA, Giller KE (2017) Mineral nutrition of cocoa: a review. Adv Agron 141:185–270. https://doi.org/10.1016/bs.agron.2016.10.017

    Article  Google Scholar 

  • van Vliet JA, Slingerland MA, Waarts YR, Giller KE (2021) A living income for cocoa producers in CĂ´te d’Ivoire and Ghana. Front Sustain Food Syst 5:732831. https://doi.org/10.3389/fsufs.2021.732831

    Article  Google Scholar 

  • Vannarath A, Thalla AK (2022) Effects of chemical pretreatments on material solubilization of Areca catechu L. husk: digestion, biodegradability, and kinetic studies for biogas yield. J Environ Manag 316:15322. https://doi.org/10.1016/j.jenvman.2022.115322

    Article  CAS  Google Scholar 

  • Vasundara R, Prakash NB, Anil Kumar KS, Hegde R (2020) Characterisation and classification of arecanut growing soils of Karnataka. J Plantn Crops 48(2):91–102

    Article  Google Scholar 

  • Vermeulen SJ, Campbell BM, Ingram JS (2012) Climate change and food systems. Ann Rev Environ Resour 37(1):195–222. https://doi.org/10.1146/annurev-environ-020411-130608

    Article  Google Scholar 

  • Wang Y, Yao Z, Pan Z, Wang R, Yan G, Liu C, Su Y, Zheng X, Butterbach-Bahl K (2020) Tea-planted soils as global hotspots for N2O emissions from croplands. Environ Res Lett 15(10):104018. https://doi.org/10.1088/1748-9326/aba5b2

    Article  CAS  Google Scholar 

  • Watson G (1989) Nutrient addition. In: Webster CC, Baulkwill WJ (eds) Rubber, Tropical agricultural series. Longman Scientific and Technical, London, p 348

    Google Scholar 

  • Willer H, Schlatter B, TrávnĂ­ÄŤek J (2023) The world of organic agriculture. statistics and emerging trends 2023. Research Institute of Organic Agriculture FiBL, Frick, and IFOAM—Organics International, Bonn, 358 p

    Google Scholar 

  • Yuan J, Zhang H, Zhao H, Ren H, Zhai H (2023) Study on dissociation and chemical structural characteristics of arecanut husk. Molecules 28(3):1513. https://doi.org/10.3390/molecules28031513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman Q, Sarwar S, Ahmad F, Hamid FS (2011) Effect of nitrogenous fertilizer on the growth and yield of tea (Camellia sinensis L.) pruned in curved vs. flat shape. J Agric Res 49:477–482

    Google Scholar 

  • Zhang G, Chu X, Zhu H, Zou D, Li L, Du L (2021) The response of soil nutrients and microbial community structures in long term tea plantations and diverse intercropping systems. Sustainability 13(14). https://doi.org/10.3390/su13147799

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735. https://doi.org/10.1111/j.1574-6976.2008.00123.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, G.V., Krishnakumar, V. (2024). Plantation Crops and Soil Health Management: An Overview. In: Thomas, G.V., Krishnakumar, V. (eds) Soil Health Management for Plantation Crops. Springer, Singapore. https://doi.org/10.1007/978-981-97-0092-9_1

Download citation

Publish with us

Policies and ethics