Skip to main content

H. pylori Virulence Factors: Toxins (CagA, VacA, DupA, OipA, IceA)

  • Chapter
  • First Online:
Helicobacter pylori
  • 135 Accesses

Abstract

Helicobacter pylori (H. pylori) specifically colonizes the human stomach. The majority of bacteria live in the mucus layer overlying gastric epithelial cells and only a small proportion of bacteria are found interacting with the epithelial cells. To succeed in long-term colonization, H. pylori has developed a unique set of virulence factors, which allow survival in a harsh ecological niche. Clinical outcomes associated with H. pylori infections are largely mediated by a complex interaction between bacterial, host, and environmental factors. Over the past year, a variety of studies focusing on both host and bacterial factors have proceeded. Among the bacterial factors that contribute to the pathophysiology associated with H. pylori infections, it is remarkable that the cytotoxin-associated gene A (CagA) protein is delivered into gastric epithelial cells via bacterial type IV secretion system, leading to the induction of diverse immune responses and gastroduodenal diseases. The vacuolating cytotoxin (VacA) is also one of the most important virulence factors and functions as an intracellular-acting protein exotoxin, in which one of the most important target sites for VacA is the mitochondrial inner membrane in the host. In addition, the outer membrane inflammatory protein (OipA), induced by contact with epithelium (IceA), and duodenal ulcer promoting (dupA) gene have emerged as virulence factors, although the specific genes involved in virulence are still being determined. This chapter summarizes the results of the most relevant studies regarding H. pylori virulence factors, such as CagA, VacA, OipA, IceA, and dupA genes, and discusses their molecular mechanism for generating gastrointestinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim JM. Current researches on the virulence factors of Helicobacter pylori. Korean J Gastroenterol. 2003;41:77–86.

    Google Scholar 

  2. Bridge DR, Merrell DS. Polymorphism in the Helicobacter pylori CagA and VacA toxins and disease. Gut Microbes. 2013;4:101–17.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Franco AT, Johnston E, Krishna U, Yamaoka Y, Israel DA, Nagy TA, et al. Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res. 2008;68:379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A, et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci U S A. 2008;105:1003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Doorn LJ, Figueiredo C, Sanna R, Plaisier A, Schneebergeret P, de Boer W, et al. Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pylori. Gastroenterology. 1998;115:58–66.

    Article  PubMed  Google Scholar 

  6. Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol. 2010;7:629–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim JM, Kim JS, Jung HC, Song IS, Kim CY. Virulence factors of Helicobacter pylori in Korean isolates do not influence proinflammatory cytokine gene expression and apoptosis in human gastric epithelial cells, nor do these factors influence the clinical outcome. J Gastroenterol. 2000;35:898–906.

    Article  CAS  PubMed  Google Scholar 

  8. Israel DA, Salama N, Krishna U, Rieger UM, Atherton JC, Falkow S, et al. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc Natl Acad Sci U S A. 2001;98:14625–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Noto JM, Peek RM Jr. The Helicobacter pylori cag pathogenicity island. Methods Mol Biol. 2012;921:41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Camorlinga-Ponce M, Romo C, Gonzalez-Valencia G, MunoZ O, Torres J. Topographical localisation of cagA positive and cagA negative Helicobacter pylori strains in the gastric mucosa; an in situ hybridisation study. J Clin Pathol. 2004;57:822–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tegtmeyer N, Wessler S, Backert S. Role of the cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J. 2011;278:1190–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature. 2007;449:862–6.

    Article  CAS  PubMed  Google Scholar 

  13. Jimenez-Soto LF, Kutter S, Sewald X, Ertl C, Weiss E, Kapp U, et al. Helicobacter pylori type IV secretion apparatus exploits beta1 integrin in a novel RGD-independent manner. PLoS Pathog. 2009;5:e1000684.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hatakeyama M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer. 2004;4:688–94.

    Article  CAS  PubMed  Google Scholar 

  15. Argent RH, Kidd M, Owen RJ, Thomas RJ, Limb MC, Atherton JC. Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. Gastroenterology. 2004;127:514–23.

    Article  CAS  PubMed  Google Scholar 

  16. Azuma T, Yamakawa A, Yamazaki S, Fukuta K, Ohtani M, Ito Y, et al. Correlation between variation of the 3′ region of the cagA gene in Helicobacter pylori and disease outcome in Japan. J Infect Dis. 2002;186:1621–30.

    Article  CAS  PubMed  Google Scholar 

  17. Xia Y, Yamaoka Y, Zhu Q, Matha I, Gao X. A comprehensive sequence and disease correlation analyses for the C-terminal region of CagA protein of Helicobacter pylori. PLoS One. 2009;4:e7736.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yamaoka Y, Kodama T, Kashima K, Graham DY, Sepulveda AR. Variants of the 3′ region of the cagA gene in Helicobacter pylori isolates from patients with different H. pylori-associated diseases. J Clin Microbiol. 1998;36:2258–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poppe M, Feller SM, Romer G, Wessler S. Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene. 2007;26:3462–72.

    Article  CAS  PubMed  Google Scholar 

  20. Selbach M, Moese S, Hauck CR, Meyer TF, Backert S. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem. 2002;277:6775–8.

    Article  CAS  PubMed  Google Scholar 

  21. Tammer I, Brandt S, Hartig R, Konig W, Backert S. Activation of Abl by Helicobacter pylori: a novel kinase for CagA and crucial mediator of host cell scattering. Gastroenterology. 2007;132:1309–19.

    Article  CAS  PubMed  Google Scholar 

  22. Backert S, Tegtmeyer N, Selbach M. The versatility of Helicobacter pylori CagA effector protein functions: the master key hypothesis. Helicobacter. 2010;15:163–76.

    Article  CAS  PubMed  Google Scholar 

  23. Selbach M, Paul FE, Brandt S, Guye P, Daumke O, Backert S, et al. Host cell interactome of tyrosine-phosphorylated bacterial proteins. Cell Host Microbe. 2009;5:397–403.

    Article  CAS  PubMed  Google Scholar 

  24. Ren S, Higashi H, Lu H, Azuma T, Hatakeyama M. Structural basis and functional consequence of Helicobacter pylori CagA multimerization in cells. J Biol Chem. 2006;281:32344–52.

    Article  CAS  PubMed  Google Scholar 

  25. Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature. 2007;447:330–3.

    Article  CAS  PubMed  Google Scholar 

  26. Umeda M, Murata-Kamiya N, Saito Y, Ohba Y, Takahashi M, Hatakeyama M. Helicobacter pylori CagA causes mitotic impairment and induces chromosomal instability. J Biol Chem. 2009;284:22166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nesic D, Miller MC, Quinkert ZT, Stein M, Chait BT, Stebbins CE. Helicobacter pylori CagA inhibits PAR1-MARK family kinases by mimicking host substrates. Nat Struct Mol Biol. 2010;17:130–2.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki M, Mimuro H, Kiga K, Fukumatsu M, Ishijima N, Nagai S, et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe. 2009;5:23–34.

    Article  CAS  PubMed  Google Scholar 

  29. Tsang YH, Lamb A, Romero-Gallo J, Huang B, Ito K, Peek RM Jr, et al. Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene. 2010;29:5643–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gonzalez-Rivera C, Gangwer KA, McClain MS, Eli IM, Chambers MG, Ohi MD, et al. Reconstitution of Helicobacter pylori VacA toxin from purified components. Biochemistry. 2010;49:5743–52.

    Article  CAS  PubMed  Google Scholar 

  31. Cover TL, Blaser MJ. Helicobacter pylori in health and disease. Gastroenterology. 2009;136:1863–73.

    Article  CAS  PubMed  Google Scholar 

  32. Forsyth MH, Atherton JC, Blaser MJ, Cover TL. Heterogeneity in levels of vacuolating cytotoxin gene (vacA) transcription among Helicobacter pylori strains. Infect Immun. 1998;66:3088–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ito Y, Azuma T, Ito S, Suto H, Miyaji H, Yamazaki Y, et al. Full-length sequence analysis of the vacA gene from cytotoxic and noncytotoxic Helicobacter pylori. J Infect Dis. 1998;178:1391–8.

    Article  CAS  PubMed  Google Scholar 

  34. Atherton JC, Cao P, Peek RM Jr, Tummuru MK, Blaser MJ, Cover TL. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem. 1995;270:17771–7.

    Article  CAS  PubMed  Google Scholar 

  35. Letley DP, Lastovica A, Louw JA, Hawkey CJ, Atherton JC. Allelic diversity of the Helicobacter pylori vacuolating cytotoxin gene in South Africa: rarity of the vacA s1a genotype and natural occurrence of an s2/m1 allele. J Clin Microbiol. 1999;37:1203–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rhead JL, Letley DP, Mohammad M, Hussein N, Mohagheghi MA, Eshagh Hosseini M, et al. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology. 2007;133:926–36.

    Article  CAS  PubMed  Google Scholar 

  37. Chung C, Olivares A, Torres E, Yilmaz O, Cohen H, Perez-Perez G. Diversity of VacA intermediate region among Helicobacter pylori strains from several regions of the world. J Clin Microbiol. 2010;48:690–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim IJ, Blanke SR. Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front Cell Infect Microbiol. 2012;2:37.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Basso D, Zambon CF, Letley DP, Stranges A, Marchet A, Rhead JL, et al. Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology. 2008;135:91–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kim JY, Kim N, Nam RH, Suh JH, Chang H, Lee JW, et al. Association of polymorphisms in virulence factor of Helicobacter pylori and gastroduodenal diseases in South Korea. J Gastroenterol Hepatol. 2014;29:984–91.

    Article  CAS  PubMed  Google Scholar 

  41. Ogiwara H, Sugimoto M, Ohno T, Vilaichone RK, Mahachai V, Graham DY, et al. Role of deletion located between the intermediate and middle regions of the Helicobacter pylori vacA gene in cases of gastroduodenal diseases. J Clin Microbiol. 2009;47:3493–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kidd M, Lastovica AJ, Atherton JC, Louw JA. Heterogeneity in the Helicobacter pylori vacA and cagA genes: association with gastroduodenal disease in South Africa? Gut. 1999;45:499–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rudi J, Kolb C, Maiwald M, Kuck D, Sieg A, Galle PR, et al. Diversity of Helicobacter pylori vacA and cagA genes and relationship to VacA and CagA protein expression, cytotoxin production, and associated diseases. J Clin Microbiol. 1998;36:944–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van Doorn LJ, Figueiredo C, Megraud F, Pena S, Midolo P, Queiroz DM, et al. Geographic distribution of vacA allelic types of Helicobacter pylori. Gastroenterology. 1999;116:823–30.

    Article  PubMed  Google Scholar 

  45. Ashour AA, Magalhaes PP, Mendes EN, Collares GB, de Gusmao VR, Queiroz DM, et al. Distribution of vacA genotypes in Helicobacter pylori strains isolated from Brazilian adult patients with gastritis, duodenal ulcer or gastric carcinoma. FEMS Immunol Med Microbiol. 2002;33:173–8.

    Article  CAS  PubMed  Google Scholar 

  46. Figueiredo C, Machado JC, Pharoah P, Seruca R, Sousa S, Carvalho R, et al. Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst. 2002;94:1680–7.

    Article  CAS  PubMed  Google Scholar 

  47. Miehlke S, Kirsch C, Agha-Amiri K, Gunther T, Lehn N, Malfertheiner P, et al. The Helicobacter pylori vacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany. Int J Cancer. 2000;87:322–7.

    Article  CAS  PubMed  Google Scholar 

  48. Nogueira C, Figueiredo C, Carneiro F, Gomes AT, Barreira R, Figueira P, et al. Helicobacter pylori genotypes may determine gastric histopathology. Am J Pathol. 2001;158:647–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hofman VJ, Moreilhon C, Brest PD, Lassalle S, Le Brigand K, Sicard D, et al. Gene expression profiling in human gastric mucosa infected with Helicobacter pylori. Mod Pathol. 2007;20:974–89.

    Article  CAS  PubMed  Google Scholar 

  50. Basso D, Navaglia F, Brigato L, Piva MG, Toma A, Greco E, et al. Analysis of Helicobacter pylori vacA and cagA genotypes and serum antibody profile in benign and malignant gastroduodenal diseases. Gut. 1998;43:182–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim JM, Kim JS, Lee JY, Sim YS, Oh YK, Yoon HJ, et al. Dual effects of Helicobacter pylori vacuolating cytotoxin on human eosinophil apoptosis in early and late periods of stimulation. Eur J Immunol. 2010;40:1651–62.

    Article  CAS  PubMed  Google Scholar 

  52. Kim JM, Kim JS, Kim N, Ko SH, Jeon JI, Kim YJ. Helicobacter pylori vacuolating cytotoxin induces apoptosis via activation of endoplasmic reticulum stress in dendritic cells. J Gastroenterol Hepatol. 2015;30:99–108.

    Article  CAS  PubMed  Google Scholar 

  53. Gupta VR, Wilson BA, Blanke SR. Sphingomyelin is important for the cellular entry and intracellular localization of Helicobacter pylori VacA. Cell Microbiol. 2010;12:1517–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Papini E, Zoratti M, Cover TL. In search of the Helicobacter pylori VacA mechanism of action. Toxicon. 2001;39:1757–67.

    Article  CAS  PubMed  Google Scholar 

  55. Greenfield LK, Jones NL. Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis. Trends Microbiol. 2013;21:602–12.

    Article  CAS  PubMed  Google Scholar 

  56. Terebiznik MR, Raju D, Vazquez CL, Torbricki K, Kulkami R, Blanke SR, et al. Effect of Helicobacter pylori’s vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy. 2009;5:370–9.

    Article  CAS  PubMed  Google Scholar 

  57. Schmees C, Gerhard M, Treptau T, Voland P, Schwendy S, Rad R, et al. VacA-associated inhibition of T-cell function: reviewed and reconsidered. Helicobacter. 2006;11:144–6.

    Article  CAS  PubMed  Google Scholar 

  58. Lu H, Yamaoka Y, Graham DY. Helicobacter pylori virulence factors: facts and fantasies. Curr Opin Gastroenterol. 2005;21:653–9.

    Article  PubMed  Google Scholar 

  59. Molinari M, Salio M, Galli C, Norais N, Rappuoli R, LanZavecchia A, et al. Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA. J Exp Med. 1998;187:135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Supajatura V, Ushio H, Wada A, Yahiro K, Okumura K, Ogawa H, et al. Cutting edge: VacA, a vacuolating cytotoxin of Helicobacter pylori, directly activates mast cells for migration and production of proinflammatory cytokines. J Immunol. 2002;168:2603–7.

    Article  CAS  PubMed  Google Scholar 

  61. Kim JM, Kim JS, Lee JY, Kim YJ, Youn HJ, Kim IY, et al. Vacuolating cytotoxin in Helicobacter pylori water-soluble proteins upregulates chemokine expression in human eosinophils via Ca2+ influx, mitochondrial reactive oxygen intermediates, and NF-kappaB activation. Infect Immun. 2007;75:3373–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Brest P, Hofman V, Lassalle S, Cesaro A, Ricci V, Selva E, et al. Human polymorphonuclear leukocytes are sensitive in vitro to Helicobacter pylori VacA toxin. Helicobacter. 2006;11:544–55.

    Article  CAS  PubMed  Google Scholar 

  63. Akada JK, Aoki H, Torigoe Y, Kitagawa T, Kurazono H, Hoshida H, et al. Helicobacter pylori CagA inhibits endocytosis of cytotoxin VacA in host cells. Dis Model Mech. 2010;3:605–17.

    Article  CAS  PubMed  Google Scholar 

  64. Mimuro H, Suzuki T, Nagai S, Rieder G, Suzuki M, Nagai T, et al. Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe. 2007;2:250–63.

    Article  CAS  PubMed  Google Scholar 

  65. Oldani A, Cormont M, Hofman V, Chiozzi V, Oregioni O, Canonici A, et al. Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. PLoS Pathog. 2009;5:e1000603.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yamaoka Y, Kikuchi S, el-Zimaity HM, Gutierrez O, Osato MS, Graham DY. Importance of Helicobacter pylori oipA in clinical presentation, gastric inflammation, and mucosal interleukin 8 production. Gastroenterology. 2002;123:414–24.

    Article  CAS  PubMed  Google Scholar 

  67. Peek RM Jr, Thompson SA, Donahue JP, Tham KT, Atherton JC, Blaser MJ, et al. Adherence to gastric epithelial cells induces expression of a Helicobacter pylori gene, iceA, that is associated with clinical outcome. Proc Assoc Am Physicians. 1998;110:531–44.

    CAS  PubMed  Google Scholar 

  68. Blaser MJ. Heterogeneity of Helicobacter pylori. Eur J Gastroenterol Hepatol. 2012;9 (Suppl 1):S3–6.

    Google Scholar 

  69. Shiota S, Suzuki R, Yamaoka Y. The significance of virulence factors in Helicobacter pylori. J Dig Dis. 2013;14:341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kersulyte D, Kalia A, Gilman RH, Mendez M, Herrera P, Cabrera L, et al. Helicobacter pylori from Peruvian Amerindians: traces of human migrations in strains from remote Amazon, and genome sequence of an Amerind strain. PLoS One. 2010;5:e15076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kersulyte D, Lee W, Subramaniam D, Anant S, Herrera P, Cabrera L, et al. Helicobacter pylori’s plasticity zones are novel transposable elements. PLoS One. 2009;4:e6859.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hussein NR, Argent RH, Marx CK, Patel SR, Robinson K, Atherton JC. Helicobacter pylori dupA is polymorphic, and its active form induces proinflammatory cytokine secretion by mononuclear cells. J Infect Dis. 2010;202:261–9.

    Article  CAS  PubMed  Google Scholar 

  73. Gomes LI, Rocha GA, Rocha AM, Soares TF, Oliveira CA, Bittencourt PF, et al. Lack of association between Helicobacter pylori infection with dupA-positive strains and gastroduodenal diseases in Brazilian patients. Int J Med Microbiol. 2008;298:223–30.

    Article  CAS  PubMed  Google Scholar 

  74. Queiroz DM, Rocha GA, Rocha AM, Moura SB, Saraiva IE, Gomes LI, et al. dupA polymorphisms and risk of Helicobacter pylori-associated diseases. Int J Med Microbiol. 2011;301:225–8.

    Article  CAS  PubMed  Google Scholar 

  75. Lu H, Hsu PI, Graham DY, Yamaoka Y. Duodenal ulcer promoting gene of Helicobacter pylori. Gastroenterology. 2005;128:833–48.

    Article  CAS  PubMed  Google Scholar 

  76. Yamaoka Y. Roles of the plasticity regions of Helicobacter pylori in gastroduodenal pathogenesis. J Med Microbiol. 2008;57:545–53.

    Article  CAS  PubMed  Google Scholar 

  77. Jung SW, Sugimoto M, Shiota S, Graham DY, Yamaoka Y. The intact dupA cluster is a more reliable Helicobacter pylori virulence marker than dupA alone. Infect Immun. 2012;80:381–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sharndama HC, Mba IE. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol. 2022;53:33–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Elhahriri M, Hanza D, Elhew R, Hamza E. Occurrence of cagA+ vacA s1a m1 i1 Helicobacter pylori in farm animals in Egypt and ability to survive in experimentally contaminated UHT milk. Sci Rep. 2018;8:1–3.

    Google Scholar 

  80. Krzyżek P, Grande R. Transformation of Helicobacter pylori into Coccoid forms as a challenge for research determining activity of antimicrobial substances. Pathogens. 2020;9:184.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Andersen AP, Elliott DA, Lawson M, Barland P, Hatcher VB, Puszkin EG. Growth and morphological transformations of Helicobacter pylori in broth media. J Clin Microbiol. 1997;35:2918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chang WL, Yeh YC, Sheu BS. The impacts of H. pylori virulence factors on the development of gastroduodenal diseases. J Biomed Sci. 2018;25:68.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tegtmeyer N, Moodley Y, Yamaoka Y, Pernitzsch SR, Schmidt V, Traverso FR, et al. Characterisation of worldwide Helicobacter pylori strains reveals genetic conservation and essentiality of serine protease HtrA. Mol Microbiol. 2016;99:925–44.

    Article  CAS  PubMed  Google Scholar 

  84. Yeh YC, Kuo HY, Chang WL, Yang HB, Lu CC, Cheng HC, et al. H. pylori isolates with amino acid sequence polymorphisms as presence of both HtrA-L171 & CagL-Y58/E59 increase the risk of gastric cancer. J Biomed Sci. 2019;26:4.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Baj J, Forma A, Sitarz M, Portincasa P, Garruti G, Krasowska D, et al. Helicobacter pylori virulence factors-mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells. 2020;10:27.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mendz GL, Hazell SL. The urea cycle of Helicobacter pylori. Microbiology. 1996;142:2959–67.

    Article  CAS  PubMed  Google Scholar 

  87. Harris AG, Hazell SL. Localisation of Helicobacter pylori catalase in both the periplasm and cytoplasm, and its dependence on the twin-arginine target protein, KapA, for activity. FEMS Microbiol Lett. 2003;229:283–9.

    Article  CAS  PubMed  Google Scholar 

  88. Mahawar M, Tran V, Sharp JS, Maier RJ. Synergistic roles of Helicobacter pylori methionine sulfoxide reductase and GroEL in repairing oxidant-damaged catalase. J Biol Chem. 2011;286:19159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Boonjakuakul JK, Syvanen M, Suryaprasad A, Bowlus CL, Solnick JV. Transcription profile of Helicobacter pylori in the human stomach reflects its physiology in vivo. J Infect Dis. 2004;190:946–56.

    Article  CAS  PubMed  Google Scholar 

  90. Morishita K, Takeuchi H, Morimoto N, Shimamura T, Kadota Y, Tsuda M, et al. Superoxide dismutase activity of Helicobacter pylori per se from 158 clinical isolates and the characteristics. Microbiol Immunol. 2012;56:262–72.

    Article  CAS  PubMed  Google Scholar 

  91. Švagelj D, Terzić V, Dovhanj J, Švagelj M, Cvrković M, Švagelj I. Superoxide dismutases in chronic gastritis. APMIS. 2016;124:252–6.

    Article  PubMed  Google Scholar 

  92. Negovan A, Iancu M, Tripon F, Crauciuc A, Mocan S, Bănescu C. The CAT-262 C> T, MnSOD Ala16Val, GPX1 Pro-198Leu polymorphisms related to oxidative stress and the presence of gastric lesions. J Gastrointestin Liver Dis. 2018;27:371–8.

    Article  PubMed  Google Scholar 

  93. Stent A, Every AL, Chionh YT, Ng GZ, Sutton P. Superoxide dismutase from Helicobacter pylori suppresses the production of pro-inflammatory cytokines during in vivo infection. Helicobacter. 2018;23:e12459.

    Article  Google Scholar 

  94. Hoshino H, Tsuchida A, Kametani K, Mori M, Nishizawa T, Suzuki T, et al. Membrane-associated activation of cholesterol α-glucosyltransferase, an enzyme responsible for biosynthesis of cholesteryl-α-D-glucopyranoside in Helicobacter pylori critical for its survival. J Histochem Cytochem. 2011;59:98–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shibayama K, Wachino JI, Arakawa Y, Saidijam M, Rutherford NG, Henderson PJ. Metabolism of glutamine and glutathione via γ-glutamyltranspeptidase and glutamate transport in Helicobacter pylori: possible significance in the pathophysiology of the organism. Mol Microbiol. 2007;64:396–406.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Mogg Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, J.M. (2023). H. pylori Virulence Factors: Toxins (CagA, VacA, DupA, OipA, IceA). In: Kim, N. (eds) Helicobacter pylori. Springer, Singapore. https://doi.org/10.1007/978-981-97-0013-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0013-4_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0012-7

  • Online ISBN: 978-981-97-0013-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics