Skip to main content

Emerging SMES Technology into Energy Storage Systems and Smart Grid Applications

  • Chapter
  • First Online:
Large Scale Renewable Power Generation

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

With the rapid development of clean and renewable energy technology, energy storage devices are more eagerly required. The applicable high temperature superconducting (HTS) materials achieved arouse the superconducting magnetic energy storage (SMES) devices having unique properties to play a substantial role. Superior characteristics have made the SMES technology attractive and a perspective option to practical applications broadly, especially for smart grids (SGs). SMES technology is described and verified including principle, circuit topology, control strategy, and device performance to form a comprehensive understanding of the emerging energy storage technology using the advanced HTS material and associated technology. SMES application is then introduced with the emphasis to develop relevant concepts to suit smart grids (SGs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin JX, Zhang CM, Guo YG, Zhu JG (2007) Theory and operation principle of a HTS high Q resonant circuit. IEEE Trans Appl Supercond 17(2):2022–2025

    Article  Google Scholar 

  2. Jin JX (2007) HTS energy storage techniques for use in distributed generation systems. Phys C 460–462:1449–1450

    Article  Google Scholar 

  3. Jin JX (2007) High efficient DC power transmission using high-temperature superconductors. Phys C 460–462:1443–1444

    Article  Google Scholar 

  4. Jin JX, Zheng LH, Guo YG, Zhu JG, Grantham C, Sorrell CC, Xu W (2012) High-temperature superconducting linear synchronous motors integrated with HTS magnetic levitation components. IEEE Trans Appl Supercond 22(5):5202617 (17 pages)

    Google Scholar 

  5. Jin JX, Zheng LH, Guo YG, Zhu JG (2011) Performance characteristics of an HTS linear synchronous motor with HTS bulk magnet secondary. IEEE Trans Ind Appl 47(6):2469–2477

    Article  Google Scholar 

  6. Zheng LH, Jin JX, Guo YG, Xu W, Zhu JG (2012) Performance analysis of a double-sided HTSLSM for a HTS magnetic suspension system. IEEE Trans Magn 48(2):655–658

    Article  Google Scholar 

  7. Jin JX, Zheng LH, Xu W, Guo YG, Zhu JG (2011) Influence of external traveling-wave magnetic field on trapped field of a high temperature superconducting bulk magnet in a linear synchronous motor. J Appl Phys 109(11):113913-1–113913-4

    Google Scholar 

  8. Jin JX, Zheng LH, Guo YG, Xu W, Zhu JG (2011) Analysis and experimental validation of an HTS linear synchronous propulsion prototype with HTS magnetic suspension. Phys C 471(1–2):520–527

    Article  Google Scholar 

  9. Jin JX, Grantham C, Dou SX, Liu HK, Zeng ZJ, Liu ZY, Blackburn TR, Li XY, Liu HL, Liu JY (1997) Electrical application of high T c superconducting saturable magnetic core fault current limiter. IEEE Trans Appl Supercond 7(2):1009–1012

    Article  Google Scholar 

  10. Jin JX, Dou SX, Liu HK, Grantham C (1997) High voltage generation with a high T c superconducting resonant circuit. IEEE Trans Appl Supercond 7(2):881–884

    Article  Google Scholar 

  11. Jin JX, Dou SX, Grantham C, Liu HK (1995) Preparation of high T c superconducting coils for consideration of their use in a prototype fault current limiter. IEEE Trans Appl Supercond 5(2):1051–1054

    Article  Google Scholar 

  12. Chakraborty A (2011) Advancements in power electronics and drives in interface with growing renewable energy resources. Renew Sustain Energy Rev 15:1816–1827

    Article  Google Scholar 

  13. Jin JX (2011) High temperature superconducting energy storage technologies: principle and application. Science Press, Beijing

    Google Scholar 

  14. Shikimachi K, Hirano N, Nagaya S, Kawashima H, Higashikawa K, Nakamura T (2009) System coordination of 2 GJ class YBCO SMES for power system control. IEEE Trans Appl Supercond 19(3):2012–2018

    Article  Google Scholar 

  15. Pahlevaninezhad M, Drobnik J, Jain PK, Bakhshai A (2012) A load adaptive control approach for a zero-voltage-switching DC/DC converter used for electric vehicles. IEEE Trans Industr Electron 59(2):920–933

    Article  Google Scholar 

  16. Kim HS, Ryu MH, Baek JW, Jung JH (2013) High-efficiency isolated bidirectional AC–DC converter for a DC distribution system. IEEE Trans Power Electron 28(4):1642–1654

    Article  Google Scholar 

  17. Morandi A, Trevisani L, Negrini F, Ribani PL, Fabbri M (2012) Feasibility of superconducting magnetic energy storage on board of ground vehicles with present state-of-the-art superconductors. IEEE Trans Appl Supercond 22(2):5700106

    Article  Google Scholar 

  18. Hamajima T, Amata H, Iwasaki T, Atomura N, Tsuda M, Miyagi D, Shintomi T, Makida Y, Takao T, Munakata K, Kajiwara M (2012) Application of SMES and fuel cell system combined with liquid hydrogen vehicle station to renewable energy control. IEEE Trans Appl Supercond 22(3):5701704

    Article  Google Scholar 

  19. Kakigano H, Miura Y, Ise T (2012) Low-voltage bipolar-type DC microgrid for super high quality distribution. IEEE Trans Power Electron 25(12):3066–3075

    Article  Google Scholar 

  20. Salomonsson D, Sannino A (2007) Low-voltage DC distribution system for commercial power systems with sensitive electronic loads. IEEE Trans Power Deliv 22(3):1620–1627

    Article  Google Scholar 

  21. Furuse M, Fuchino S, Higuchi N, Ishii I (2005) Feasibility study of low-voltage DC superconducting distribution system. IEEE Trans Appl Supercond 15(2):1759–1762

    Article  Google Scholar 

  22. Nakayama T, Yagai T, Tsuda M, Hamajima T (2009) Micro power grid system with SMES and superconducting cable modules cooled by liquid hydrogen. IEEE Trans Appl Supercond 19(3):2062–2065

    Article  Google Scholar 

  23. Jin JX, Chen XY, Zhou X, Xu W, Zhang YC, Xin Y (2013) Development of a new bridge-type chopper for low-voltage SMES applications. In: 2013 IEEE energy conversion congress and exposition (ECCE), Denver, Colorado, USA, September 15, 2013, pp 5258–5265

    Google Scholar 

  24. Bibian S, Jin H (2000) Time delay compensation of digital control for DC switch mode power supplies using prediction techniques. IEEE Trans Power Electron 15(5):835–842

    Article  Google Scholar 

  25. Bae BH, Sul SK (2003) A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives. IEEE Trans Ind Appl 39(3):802–810

    Article  Google Scholar 

  26. Tomita M, Murakami M, Nariki S, Sawa K (2002) Mechanical persistent current switch made of resin-impregnated bulk superconductors. Supercond Sci Technol 15(5):846–849

    Article  Google Scholar 

  27. Hayashi H, Sannomiya T, Kimura H, Tsutsumi K, Yamashita Y, Kuboyama R, Sato S, Takeo M, Ishii T, Asano K, Okada S (2001) Connecting tests of superconducting persistent-current-switch in a type of current transformer to 1 kWh SMES system. IEEE Trans Appl Supercond 11(1):1904–1907

    Article  Google Scholar 

  28. Yuan WJ, Xian W, Ainslie M, Hong Z, Yan Y, Pei R, Jiang Y, Coombs TA (2010) Design and test of a superconducting magnetic energy Storage (SMES) coil. IEEE Trans Appl Supercond 20(3):1379–1382

    Article  Google Scholar 

  29. Chen XY, Jin JX, Ma KM, Wen J, Xin Y, Gong WZ (2008) High temperature superconducting magnetic energy storage and its power control technology. J Electr Sci Technol China 6(2):137–142

    Google Scholar 

  30. Chen XY, Jin JX (2011) Development and evaluation of superconducting magnetic energy storage techniques for smart grid. Appl Supercond Electromagnet 2(1):31–35

    Google Scholar 

  31. Jin JX, Xu W, Chen XY, Zhou X, Zhang JY, Gong WZ, Ren AL, Xin Y (2012) Developments of SMES devices and potential applications in smart grids. In: IEEE conference on innovative smart grid technologies Asia (ISGT Asia), 21–24 May 2012, pp 1–6

    Google Scholar 

  32. Rogers JD, Schemer RI, Miller BL, Hauer JF (1983) 30-MJ superconducting magnetic energy storage system for electric utility transmission stabilization. Proc IEEE 71(9):1099–1107

    Article  Google Scholar 

  33. Luongo CA, Baldwin T, Ribeiro P, Weber CM (2003) A 100 MJ SMES demonstration at FSU-CAPS. IEEE Trans Appl Supercond 13(2):1800–1805

    Article  Google Scholar 

  34. Nagaya S, Hirano N, Moriguchi H, Shikimachi K, Nakabayashi H, Hanai S, Inagaki J, Ioka S, Kawashima S (2006) Field test results of the 5 MVA SMES system for bridging instantaneous voltage dips. IEEE Trans Appl Supercond 16(2):632–635

    Article  Google Scholar 

  35. Wang QL, Dai YM, Zhao BZ, Song SS, Cao ZQ, Chen SZ, Zhang Q, Wang HS, Cheng JS, Lei YZ, Li X, Liu JH, Zhao SW, Zhang HJ, Xu GX, Yang ZM, Hu XN, Liu HY, Wang CZ, Yan LG (2010) Development of large scale superconducting magnet with very small stray magnetic field for 2 MJ SMES. IEEE Trans Appl Supercond 20(3):1352–1355

    Article  Google Scholar 

  36. Kim HJ, Seong KC, Cho JW, Bae JH, Sim KD, Kim S, Lee EY, Ryu K, Kim SH (2006) 3 MJ/750 kVA SMES system for improving power quality. IEEE Trans Appl Supercond 16(2):574–577

    Article  Google Scholar 

  37. Ottonello L, Canepa G, Albertelli P, Picco E, Florio A, Masciarelli G, Rossi S, Martini L, Pincella C, Mariscotti A, Torello E, Martinolli A, Mariani M (2006) The largest Italian SMES. IEEE Trans Appl Supercond 16(2):602–607

    Article  Google Scholar 

  38. Nagaya S, Hirano N, Shikimachi K, Hanai S, Inagaki J, Maruyama K, Ioka S, Ono M, Ohsemochi K, Kurusu T (2004) Development of MJ-class HTS SMES for bridging instantaneous voltage dips. IEEE Trans Appl Supercond 14(2):770–773

    Article  Google Scholar 

  39. Dai ST, Xiao LY, Wang ZK, Zhang JY, Zhang D, Hui D, Song NH, Zhang FY, Gao ZY, Wang YS, Lin LZ (2007) Design of a 1 MJ/0.5 MVA HTS magnet for SMES. IEEE Trans Appl Supercond 17(2):1977–1980

    Article  Google Scholar 

  40. Tixador P, Bellin B, Deleglise M, Vallier JC, Bruzek CE, Pavard S, Saugrain JM (2005) Design of a 800 kJ HTS SMES. IEEE Trans Appl Supercond 15(2):1907–1910

    Article  Google Scholar 

  41. Kim WS, Kwak SY, Lee JK, Choi KD, Jung HK, Seong KC, Hahn SY (2006) Design of HTS magnets for a 600 kJ SMES. IEEE Trans Appl Supercond 16(2):620–623

    Article  Google Scholar 

  42. Sander M, Gehring R, Neumann H (2013) LIQHYSMES—a 48 GJ toroidal MgB2-SMES for buffering minute and second fluctuations. IEEE Trans Appl Supercond 23(3):5700505

    Article  Google Scholar 

  43. Howe JB (2001) Distributed SMES: a new technology supporting active grid management. Mod Power Syst 21(1):27–28

    Google Scholar 

  44. Mito T, Chikaraishi H, Kawagoe A, Maekawa R, Abe R, Baba T, Okumura K, Kuge A, Iwakuma M, Sumiyoshi F (2009) Summary of a 1 MJ conduction-cooled LTS pulse coil developed for 1 MW, 1 s UPS-SMES. IEEE Trans Appl Supercond 19(3):1999–2003

    Article  Google Scholar 

  45. Katagiri T, Nakabayashi H, Nijo Y, Tamada T, Noda T, Hirano N, Nagata T, Nagaya S, Yamane M, Ishii Y, Nitta T (2009) Field test result of 10MVA/20 MJ SMES for load fluctuation compensation. IEEE Trans Appl Supercond 19(3):1993–1998

    Article  Google Scholar 

  46. Hayashi H, Hatabe Y, Nagafuchi T, Taguchi A, Terazono K, Ishii T, Taniguchi S (2006) Test results of power system control by experimental SMES. IEEE Trans Appl Supercond 16(2):598–601

    Article  Google Scholar 

  47. Nomura S, Kasuya K, Tanaka N, Tsuboi K, Tsutsui H, Tsuji-Iio S, Shimada R (2008) Experimental results of a 7-T force-balanced helical coil for large-scale SMES. IEEE Trans Appl Supercond 18(2):701–704

    Article  Google Scholar 

  48. Zhu XG, Jiang XH (2007) 150kVA/0.3 MJ current source type dynamic voltage compensation device. Power Electron Technol 41(1):1–3

    Google Scholar 

  49. Morandi A, Breschi M, Fabbri M, Negrini F, Penco R, Perrella M, Ribani PL, Tassisto M, Trevisani L (2008) Design, manufacturing and preliminary tests of a conduction cooled 200 kJ Nb–Ti μSMES. IEEE Trans Appl Supercond 18(2):697–700

    Article  Google Scholar 

  50. Koyanagi K, Ohsemochi K, Takahashi M, Kurusu T, Tosaka T, Ono M, Ishii Y, Shimada K, Nomura S, Kidoguchi K, Onoda H, Hirano N, Nagaya S (2006) Design of a high energy-density SMES coil with Bi-2212 cables. IEEE Trans Appl Supercond 16(2):586–589

    Article  Google Scholar 

  51. Wang QL, Dai YM, Song SS, Wen HM, Bai Y, Yan LG, Kim K (2008) A 30 kJ Bi2223 high temperature superconducting magnet for SMES with solid-nitrogen protection. IEEE Trans Appl Supercond 18(2):754–757

    Article  Google Scholar 

  52. Shi J, Tang YJ, Zhou YS, Chen JL, Xu DH, Wang HL, Lu YF, Ren L, Wei B, Li JD, Cheng SJ (2007) Development of a conduction-cooled HTS SMES. IEEE Trans Appl Supercond 17(3):3846–3852

    Article  Google Scholar 

  53. Kwak SY, Lee S, Lee S, Kim WS, Lee JK, Park C, Bae J, Song JB, Lee H, Choi K, Seong K, Jung H, Hahn SY (2009) Design of HTS magnets for a 2.5 MJ SMES. IEEE Trans Appl Supercond 19(3):1985–1988

    Article  Google Scholar 

  54. Kreutz R, Salbert H, Krischel D, Hobl A, Radermacher C, Blacha N, Behrens P, Dütsch K (2003) Design of a 150 kJ high-Tc SMES (HSMES) for a 20 kVA uninterruptible power supply system. IEEE Trans Appl Supercond 13(2):1860–1862

    Article  Google Scholar 

  55. Kozak J, Kozak S, Janowski T, Majka M (2009) Design and performance results of first polish SMES. IEEE Trans Appl Supercond 19(3):1981–1984

    Article  Google Scholar 

  56. Hawley CJ, Gower SA (2005) Design and preliminary results of a prototype HTS SMES device. IEEE Trans Appl Supercond 15(2):1899–1902

    Article  Google Scholar 

  57. Ali MH, Wu B, Dougal RA (2010) An overview of SMES applications in power and energy systems. IEEE Trans Sustain Energ 1(1):38–47

    Article  Google Scholar 

  58. Liu CJ, Hu CS, Li X, Chen M, Xu DF (2008) Design of SMES control system for smoothing power fluctuations in wind farms. Autom Electr Power Syst 32(16):84–88

    Google Scholar 

  59. Tam KS, Kumar P, Foreman M (1989) Enhancing the utilization of photovoltaic power generation by superconductive magnetic energy storage. IEEE Trans Energy Convers 4(3):314–321

    Article  Google Scholar 

  60. Jung HY, Kim AR, Kim JH, Park M, Yu IK, Kim SH, Sim K, Kim HJ, Seong KC, Asao T, Tamura J (2009) A study on the operating characteristics of SMES for the dispersed power generation system. IEEE Trans Appl Supercond 19(3):2028–2031

    Article  Google Scholar 

  61. Padimiti DS, Chowdhury BH (2007) Superconducting magnetic energy storage system (SMES) for improved dynamic system performance. In: Power engineering society general meeting, 24–28 June 2007, pp 1–6

    Google Scholar 

  62. Zheng L, Ma WA (2000) Application of SMES system with a comprehensive control for enhancing transient stability. In: International conference on advances in power system control, operation and management, Oct. 30–Nov. 1, 2000, pp 225–229

    Google Scholar 

  63. Ali MH, Murata T, Tamura J (2005) A fuzzy logic-controlled superconducting magnetic energy storage (SMES) unit for augmentation of transient stability. In: International conference on power electronics and drives systems, 2005, vol 2, pp 1566–1571

    Google Scholar 

  64. Kim AR, Kim GH, Kim JH, Ali MH, Park M, Yu IK, Kim HJ, Kim SH, Seong KC (2008) Operational characteristic of the high quality power conditioner with SMES. IEEE Trans Appl Supercond 18(2):705–708

    Article  Google Scholar 

  65. Zhu GP, Wang ZJ, Zhang GQ (2005) Research on a combined device SMES-SFCL based on multi-object optimization. IEEE Trans Appl Supercond 15(2):2019–2022

    Article  Google Scholar 

  66. Nomura S, Shintomi T, Akita S, Nitta T, Shimada R, Meguro S (2010) Technical and cost evaluation on SMES for electric power compensation. IEEE Trans Appl Supercond 20(2):101–106

    Google Scholar 

  67. Green MA, Strauss BP (2008) The cost of superconducting magnets as a function of stored energy and design magnetic induction times the field volume. IEEE Trans Appl Supercond 18(2):248–251

    Article  Google Scholar 

  68. Van Sciver SW (2001) Cryogenic systems for superconducting devices. Phys C 354(1–4):129–135

    Article  Google Scholar 

  69. Nomura S, Chikaraishi H, Tsutsui H, Shimada R (2013) Feasibility study on large scale SMES for daily load leveling using force-balanced helical coils. IEEE Trans Appl Supercond 23(3):5700904

    Article  Google Scholar 

  70. Nomura S, Yamagnta K, Watauabe N, Ajiki D, Ajikawa H, Koizumi E, Shimada R (2000) Experiment of HTS stress-balanced helical coil. IEEE Trans Appl Supercond 10(1):792–795

    Article  Google Scholar 

  71. Fabbri M, Ajiki D, Negrini F, Shimada R, Tsutsui H, Venturi F (2003) Tilted toroidal coils for superconducting magnetic energy storage systems. IEEE Trans Magn 39(6):3546–3550

    Article  Google Scholar 

  72. Kondoh J, Ishii I, Yamaguchi H, Murata A, Otani K, Sakuta K, Higuchi N, Sekine S, Kamimoto M (2000) Electrical energy storage systems for energy networks. Energy Convers Manag 41(17):1863–1874

    Article  Google Scholar 

  73. Jin JX, Chen XY (2012) Study on the SMES application solutions for smart grid. Physics Procedia 36:902–907

    Article  Google Scholar 

  74. Lee SJ (2007) Location of a superconducting device in a power grid for system loss minimization using loss sensitivity. IEEE Trans Appl Supercond 17(2):2531–2534

    Article  Google Scholar 

  75. Bossel U (2006) Does a hydrogen economy make sense? Proc IEEE 94(10):1826–1837

    Article  Google Scholar 

  76. Yamada S, Hishinuma Y, Uede T, Schippl K, Yanagi N, Mito T, Sato M (2010) Conceptual design of 1 GW class hybrid energy transfer line of hydrogen and electricity. J Phys Conf Ser 234:032064

    Google Scholar 

  77. Shintomi T, Makida Y, Hamajima T, Tsuda S, Miyagi D, Takao T, Tanoue N, Ota N, Munakata K, Miwa Y (2012) Design study of SMES system cooled by thermo-siphon with liquid hydrogen for effective use of renewable energy. IEEE Trans Appl Supercond 22(3):5701604

    Article  Google Scholar 

  78. Liu H, Ning HS, Zhang Y, Guizani M (2013) Battery status-aware authentication scheme for V2G networks in smart grid. IEEE Trans Smart Grid 4(1):99–110

    Article  Google Scholar 

  79. Pang C, Dutta P, Kezunovic M (2012) BEVs/PHEVs as dispersed energy storage for V2B uses in the smart grid. IEEE Trans Smart Grid 3(1):473–482

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks X. Y. Chen who assisted this work, and also the support from Y. Xin, Y. G. Guo, J. G. Zhu, and C. Grantham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xun Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Jin, J.X. (2014). Emerging SMES Technology into Energy Storage Systems and Smart Grid Applications. In: Hossain, J., Mahmud, A. (eds) Large Scale Renewable Power Generation. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-30-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-30-9_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-29-3

  • Online ISBN: 978-981-4585-30-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics