Skip to main content

Introduction

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

  • 2112 Accesses

Abstract

This chapter starts with a brief overview in this section on the significance and current understandings of the structure and anomalies of water ice, which drives the efforts based on knowledge and approach described in previous parts of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J.D. Bernal, R.H. Fowler, A Theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1(8), 515–548 (1933)

    Article  ADS  Google Scholar 

  2. G.H. Zuo, J. Hu, H.P. Fang, Effect of the ordered water on protein folding: an off-lattice Go$$($) over-bar-like model study. Phys. Rev. E 79(3), 031925 (2009)

    Article  ADS  Google Scholar 

  3. J.L. Kulp, D.L. Pompliano, F. Guarnieri, Diverse fragment clustering and water exclusion identify protein hot spots. J. Am. Chem. Soc. 133(28), 10740–10743 (2011)

    Article  Google Scholar 

  4. A. Twomey, R. Less, K. Kurata, H. Takamatsu, A. Aksan, In situ spectroscopic quantification of protein-ice interactions. J. Phys. Chem. B 117(26), 7889–7897 (2013)

    Article  Google Scholar 

  5. P. Ball, Water: water—an enduring mystery. Nature 452(7185), 291–292 (2008)

    Article  ADS  Google Scholar 

  6. I.V. Stiopkin, C. Weeraman, P.A. Pieniazek, F.Y. Shalhout, J.L. Skinner, A.V. Benderskii, Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474(7350), 192–195 (2011)

    Article  ADS  Google Scholar 

  7. D. Marx, M.E. Tuckerman, J. Hutter, M. Parrinello, The nature of the hydrated excess proton in water. Nature 397(6720), 601–604 (1999)

    Article  ADS  Google Scholar 

  8. Y. Yoshimura, S.T. Stewart, M. Somayazulu, H. Mao, R.J. Hemley, High-pressure X-ray diffraction and Raman spectroscopy of ice VIII. J. Chem. Phys. 124(2), 024502 (2006)

    Article  ADS  Google Scholar 

  9. D. Kang, J. Dai, Y. Hou, J. Yuan, Structure and vibrational spectra of small water clusters from first principles simulations. J. Chem. Phys. 133(1), 014302 (2010)

    Article  ADS  Google Scholar 

  10. J.W.M. Frenken, T.H. Oosterkamp, Microscopy when mica and water meet. Nature 464(7285), 38–39 (2010)

    Article  ADS  Google Scholar 

  11. J.M. Headrick, E.G. Diken, R.S. Walters, N.I. Hammer, R.A. Christie, J. Cui, E.M. Myshakin, M.A. Duncan, M.A. Johnson, K.D. Jordan, Spectral signatures of hydrated proton vibrations in water clusters. Science 308(5729), 1765–1769 (2005)

    Article  ADS  Google Scholar 

  12. J.K. Gregory, D.C. Clary, K. Liu, M.G. Brown, R.J. Saykally, The water dipole moment in water clusters. Science 275(5301), 814–817 (1997)

    Article  Google Scholar 

  13. N. Bjerrum, Structure and properties of ice. Science 115(2989), 385–390 (1952)

    Article  ADS  Google Scholar 

  14. A.K. Soper, J. Teixeira, T. Head-Gordon, Is ambient water inhomogeneous on the nanometer-length scale? PNAS 107(12), E44 (2010)

    Article  ADS  Google Scholar 

  15. C.S. Zha, R.J. Hemley, S.A. Gramsch, H.K. Mao, W.A. Bassett, Optical study of H2O ice to 120 GPa: dielectric function, molecular polarizability, and equation of state. J. Chem. Phys. 126(7), 074506 (2007)

    Article  ADS  Google Scholar 

  16. R.J. Bakker, M. Baumgartner, Unexpected phase assemblages in inclusions with ternary H2O-salt fluids at low temperatures. Central European J. Geosci. 4(2), 225–237 (2012)

    Article  ADS  Google Scholar 

  17. R.J. Bakker, Raman spectra of fluid and crystal mixtures in the systems H2O, H2O–NaCl and H2O–MgCl2 at low temperatures: applications to fluid-inclusion research. Can. Mineral. 42, 1283–1314 (2004)

    Article  Google Scholar 

  18. M. Smyth, J. Kohanoff, Excess electron localization in solvated DNA bases. Phys. Rev. Lett. 106(23), 238108 (2011)

    Article  ADS  Google Scholar 

  19. P. Baaske, S. Duhr, D. Braun, Melting curve analysis in a snapshot. Appl. Phys. Lett. 91(13), 133901 (2007)

    Article  ADS  Google Scholar 

  20. A. Kuffel, J. Zielkiewicz, Why the solvation water around proteins is more dense than bulk water. J. Phys. Chem. B 116(40), 12113–12124 (2012)

    Article  Google Scholar 

  21. C. Castellano, J. Generosi, A. Congiu, R. Cantelli, Glass transition temperature of water confined in lipid membranes as determined by anelastic spectroscopy. Appl. Phys. Lett. 89(23), 233905 (2006)

    Article  ADS  Google Scholar 

  22. J.H. Park, N.R. Aluru, Water film thickness-dependent conformation and diffusion of single-strand DNA on poly (ethylene glycol)-silane surface. Appl. Phys. Lett. 96(12), 123703 (2010)

    Article  ADS  Google Scholar 

  23. F. Garczarek, K. Gerwert, Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439(7072), 109–112 (2006)

    Article  ADS  Google Scholar 

  24. P. Ball, Water as an active constituent in cell biology. Chem. Rev. 108(1), 74–108 (2008)

    Article  Google Scholar 

  25. Y.B. Shan, E.T. Kim, M.P. Eastwood, R.O. Dror, M.A. Seeliger, D.E. Shaw, How does a drug molecule find its target binding site? J. Am. Chem. Soc. 133(24), 9181–9183 (2011)

    Article  Google Scholar 

  26. J. Ostmeyer, S. Chakrapani, A.C. Pan, E. Perozo, B. Roux, Recovery from slow inactivation in K channels is controlled by water molecules. Nature 501(7465), 121–124 (2013)

    Article  ADS  Google Scholar 

  27. H.M. Lee, S.B. Suh, J.Y. Lee, P. Tarakeshwar, K.S. Kim, Structures, energies, vibrational spectra, and electronic properties of water monomer to decamer. J. Chem. Phys. 112(22), 9759 (2000)

    Article  ADS  Google Scholar 

  28. H.G. Lu, Y.K. Wang, Y.B. Wu, P. Yang, L.M. Li, S.D. Li, Hydrogen-bond network and local structure of liquid water: an atoms-in-molecules perspective. J. Chem. Phys. 129(12), 124512 (2008)

    Article  ADS  Google Scholar 

  29. C.K. Lin, C.C. Wu, Y.S. Wang, Y.T. Lee, H.C. Chang, J.L. Kuo, M.L. Klein, Vibrational predissociation spectra and hydrogen-bond topologies of H + (H2O) (9–11). PCCP 7(5), 938–944 (2005)

    Article  ADS  Google Scholar 

  30. A. Lenz, L. Ojamae, A theoretical study of water equilibria: the cluster distribution versus temperature and pressure for (H2O) (n), n = 1–60, and ice. J. Chem. Phys. 131(13), 134302 (2009)

    Article  ADS  Google Scholar 

  31. S.O.N. Lill, Application of dispersion-corrected density functional theory. J. Phys. Chem. A 113(38), 10321–10326 (2009)

    Article  Google Scholar 

  32. S.N. Steinmann, C. Corminboeuf, Comprehensive bench marking of a density-dependent dispersion correction. J. Che. Theo. Comput. 7(11), 3567–3577 (2011)

    Article  Google Scholar 

  33. K. Kobayashi, M. Koshino, K. Suenaga, Atomically resolved images of I(h) ice single crystals in the solid phase. Phys. Rev. Lett. 106(20), 206101 (2011)

    Article  ADS  Google Scholar 

  34. A. Hermann, P. Schwerdtfeger, Blueshifting the onset of optical UV absorption for water under pressure. Phys. Rev. Lett. 106(18), 187403 (2011)

    Article  ADS  Google Scholar 

  35. W. Chen, X.F. Wu, R. Car, X-ray absorption signatures of the molecular environment in water and ice. Phys. Rev. Lett. 105(1), 017802 (2010)

    Article  ADS  Google Scholar 

  36. Y. Wang, H. Liu, J. Lv, L. Zhu, H. Wang, Y. Ma, High pressure partially ionic phase of water ice. Nat. Commun. 2, 563 (2011)

    Article  ADS  Google Scholar 

  37. M. Abu-Samha, K.J. Borve, Surface relaxation in water clusters: evidence from theoretical analysis of the oxygen 1s photoelectron spectrum. J. Chem. Phys. 128(15), 154710 (2008)

    Article  ADS  Google Scholar 

  38. O. Bjorneholm, F. Federmann, S. Kakar, T. Moller, Between vapor and ice: free water clusters studied by core level spectroscopy. J. Chem. Phys. 111(2), 546–550 (1999)

    Article  ADS  Google Scholar 

  39. G. Ohrwall, R.F. Fink, M. Tchaplyguine, L. Ojamae, M. Lundwall, R.R.T. Marinho, A.N. de Brito, S.L. Sorensen, M. Gisselbrecht, R. Feifel, T. Rander, A. Lindblad, J. Schulz, L.J. Saethre, N. Martensson, S. Svensson, O. Bjorneholm, The electronic structure of free water clusters probed by Auger electron spectroscopy. J. Chem. Phys. 123(5), 054310 (2005)

    Article  ADS  Google Scholar 

  40. S. Hirabayashi, K.M.T. Yamada, Infrared spectra and structure of water clusters trapped in argon and krypton matrices. J. Mol. Struct. 795(1–3), 78–83 (2006)

    Article  ADS  Google Scholar 

  41. P. Andersson, C. Steinbach, U. Buck, Vibrational spectroscopy of large water clusters of known size. Eu. Phys. J. D. 24(1–3), 53–56 (2003)

    Article  ADS  Google Scholar 

  42. S. Maheshwary, N. Patel, N. Sathyamurthy, A.D. Kulkarni, S.R. Gadre, Structure and Stability of Water Clusters (H2O)n, n) 8-20: An Ab Initio Investigation. J. Phys. Chem. A 105, 10525–10537 (2001)

    Article  Google Scholar 

  43. A. Nilsson, L.G.M. Pettersson, Perspective on the structure of liquid water. Chem. Phys. 389(1–3), 1–34 (2011)

    ADS  Google Scholar 

  44. G.N.I. Clark, C.D. Cappa, J.D. Smith, R.J. Saykally, T. Head-Gordon, The structure of ambient water. Mol. Phys. 108(11), 1415–1433 (2010)

    Article  ADS  Google Scholar 

  45. C. Vega, J.L.F. Abascal, M.M. Conde, J.L. Aragones, What ice can teach us about water interactions: a critical comparison of the performance of different water models. Faraday Discuss. 141, 251–276 (2009)

    Article  ADS  Google Scholar 

  46. J.L. Skinner, P.A. Pieniazek, S.M. Gruenbaum, Vibrational Spectroscopy of water at interfaces. Acc. Chem. Res. 45(1), 93–100 (2012)

    Article  Google Scholar 

  47. Y.R. Shen, V. Ostroverkhov, Sum-frequency vibrational spectroscopy on water interfaces: polar orientation of water molecules at interfaces. Chem. Rev. 106(4), 1140–1154 (2006)

    Article  Google Scholar 

  48. R. Ludwig, The importance of tetrahedrally coordinated molecules for the explanation of liquid water properties. Chem. Phys. Chem. 8(6), 938–943 (2007)

    Article  MathSciNet  Google Scholar 

  49. B. Santra, A. Michaelides, M. Fuchs, A. Tkatchenko, C. Filippi, M. Scheffler, On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. II. The water hexamer and Van der Waals interactions. J. Chem. Phys. 129(19), 194111 (2008)

    Article  ADS  Google Scholar 

  50. K. Liu, J.D. Cruzan, R.J. Saykally, Water clusters. Science 271(5251), 929–933 (1996)

    Article  ADS  Google Scholar 

  51. V. Buch, S. Bauerecker, J.P. Devlin, U. Buck, J.K. Kazimirski, Solid water clusters in the size range of tens-thousands of H2O: a combined computational/spectroscopic outlook. Int. Rev. Phys. Chem. 23(3), 375–433 (2004)

    Article  Google Scholar 

  52. C.H. Sun, L.M. Liu, A. Selloni, G.Q. Lu, S.C. Smith, Titania-water interactions: a review of theoretical studies. J. Mater. Chem. 20(46), 10319–10334 (2010)

    Article  Google Scholar 

  53. M.A. Henderson, The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 46(1–8), 5–308 (2002)

    ADS  Google Scholar 

  54. A. Hodgson, S. Haq, Water adsorption and the wetting of metal surfaces. Surf. Sci. Rep. 64(9), 381–451 (2009)

    Article  ADS  Google Scholar 

  55. A. Verdaguer, G.M. Sacha, H. Bluhm, M. Salmeron, Molecular structure of water at interfaces: wetting at the nanometer scale. Chem. Rev. 106(4), 1478–1510 (2006)

    Article  Google Scholar 

  56. J. Carrasco, A. Hodgson, A. Michaelides, A molecular perspective of water at metal interfaces. Nat. Mater. 11(8), 667–674 (2012)

    Article  ADS  Google Scholar 

  57. Y. Marcus, Effect of Ions on the structure of water: structure making and breaking. Chem. Rev. 109(3), 1346–1370 (2009)

    Article  Google Scholar 

  58. M. Chaplin, Theory vs experiment: what is the surface charge of water?. Water 1(1–28) (2009)

    Google Scholar 

  59. Y. Li, G.A. Somorjai, Surface premelting of ice. J. Chem. Phys. C 111(27), 9631–9637 (2007)

    Article  Google Scholar 

  60. A.-M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Physics of ice friction. J. Appl. Phys. 107(8), 081101–081115 (2010)

    Article  ADS  Google Scholar 

  61. M. Faubel, K.R. Siefermann, Y. Liu, B. Abel, Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets. Acc. Chem. Res. 45(1), 120–130 (2011)

    Article  Google Scholar 

  62. A. Morita, T. Ishiyama, Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy. PCCP 10(38), 5801–5816 (2008)

    Article  ADS  Google Scholar 

  63. S.K. Sikka, S.M. Sharma, The hydrogen bond under pressure. Phase Trans. 81(10), 907–934 (2008)

    Article  Google Scholar 

  64. P. Pruzan, J.C. Chervin, E. Wolanin, B. Canny, M. Gauthier, M. Hanfland, Phase diagram of ice in the VII-VIII-X domain. Vibrational and structural data for strongly compressed ice VIII. J. Raman Spec. 34(7–8), 591–610 (2003)

    Article  ADS  Google Scholar 

  65. K. Davitt, E. Rolley, F. Caupin, A. Arvengas, S. Balibar, Equation of state of water under negative pressure. J. Chem. Phys. 133(17), 174507 (2010)

    Article  ADS  Google Scholar 

  66. Y.R. Shen, Basic theory of surface sum-frequency generation. J. Phys. Chem. C 116, 15505–15509 (2012)

    Article  Google Scholar 

  67. K.R. Wilson, B.S. Rude, T. Catalano, R.D. Schaller, J.G. Tobin, D.T. Co, R.J. Saykally, X-ray spectroscopy of liquid water microjets. J. Phys. Chem. B 105(17), 3346–3349 (2001)

    Article  Google Scholar 

  68. S.N. Wren, D.J. Donaldson, Glancing-angle Raman spectroscopic probe for reaction kinetics at water surfaces. Phys. Chem. Chem. Phys. 12(11), 2648–2654 (2010)

    Article  Google Scholar 

  69. T.F. Kahan, J.P. Reid, D.J. Donaldson, Spectroscopic probes of the quasi-liquid layer on ice. J. Phys. Chem. A 111(43), 11006–11012 (2007)

    Article  Google Scholar 

  70. M. Chaplin, Water structure and science (2011). http://www.lsbu.ac.uk/water/

  71. So Much More to Know … Science, 309(5731), 78–102 (2005)

    Google Scholar 

  72. V. Molinero, E.B. Moore, Water modeled as an intermediate element between carbon and silicon. J. Phys. Chem. B 113(13), 4008–4016 (2009)

    Article  Google Scholar 

  73. P.T. Kiss, A. Baranyai, Density maximum and polarizable models of water. J. Chem. Phys. 137(8), 084506–084508 (2012)

    Article  ADS  Google Scholar 

  74. L. Pauling, The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935)

    Article  Google Scholar 

  75. J. Teixeira, High-pressure physics—the double identity of ice X. Nature 392(6673), 232–233 (1998)

    Article  ADS  Google Scholar 

  76. P. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.A. Naslund, T.K. Hirsch, L. Ojamae, P. Glatzel, L.G.M. Pettersson, A. Nilsson, The structure of the first coordination shell in liquid water. Science 304(5673), 995–999 (2004)

    Article  ADS  Google Scholar 

  77. A.K. Soper, An asymmetric model for water structure. J. Phys. Condens. Matter 17(45), S3273–S3282 (2005)

    Article  ADS  Google Scholar 

  78. K.T. Wikfeldt, M. Leetmaa, M.P. Ljungberg, A. Nilsson, L.G.M. Pettersson, On the range of water structure models compatible with X-ray and neutron diffraction data. J. Phys. Chem. B 113(18), 6246–6255 (2009)

    Article  Google Scholar 

  79. M. Leetmaa, K.T. Wikfeldt, M.P. Ljungberg, M. Odelius, J. Swenson, A. Nilsson, L.G.M. Pettersson, Diffraction and IR/Raman data do not prove tetrahedral water. J. Chem. Phys. 129(8), 084502 (2008)

    Article  ADS  Google Scholar 

  80. J. Alejandre, G.A. Chapela, H. Saint-Martin, N. Mendoza, A non-polarizable model of water that yields the dielectric constant and the density anomalies of the liquid: TIP4Q. PCCP 13, 19728–19740 (2011)

    Article  ADS  Google Scholar 

  81. J. Zhang, P. Chen, B. Yuan, W. Ji, Z. Cheng, X. Qiu, Real-space identification of intermolecular bonding with atomic force microscopy. Science 342(6158), 611–614 (2013)

    Article  ADS  Google Scholar 

  82. C. Vega, J.L.F. Abascal, P.G. Debenedetti, Physics and chemistry of water and ice. PCCP 13(44), 19660–19662 (2011)

    Article  ADS  Google Scholar 

  83. C. Vega, J.L.F. Abascal, Simulating water with rigid non-polarizable models: a general perspective. PCCP 13(44), 19663–19688 (2011)

    Article  ADS  Google Scholar 

  84. C.Q. Sun, Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2(10), 1930–1961 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Introduction. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_32

Download citation

Publish with us

Policies and ethics