Skip to main content

Electrons: Entrapment and Polarization

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

  • 2140 Accesses

Abstract

The core-level binding-energy shifts from that of an isolated atom upon interatomic interaction being involved. The exchange integral that is proportional to the single bond energy at equilibrium determines the amount of shift. The energy level shift is always positive unless polarization is involved. Atomic under-coordination induced quantum entrapment not only deepens the core level but also enlarges the electroaffinity of a substance. The latter represents the ability of the specimen holding electrons captured from its partner that has lower electronegativity. Non-bonding electron polarization not only lowers the work function but also splits and screens the local interatomic potential. Complementing STM/S and PES, ZPS collects coordination-resolved information of bond length, bond energy, binding-energy density, atomic cohesive energy and the extent of polarization at sites of defects, monolayer skins, terrace edges, hetero-junction interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.Q. Sun, Oxidation electronics: bond-band-barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Google Scholar 

  2. W.D. Phillips, Laser cooling and trapping of neutral atoms. Rev. Mod. Phys. 70(3), 721–741 (1998)

    ADS  Google Scholar 

  3. C.Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Google Scholar 

  4. B.S. Fang, W.S. Lo, T.S. Chien, T.C. Leung, C.Y. Lue, C.T. Chan, K.M. Ho, Surface band structures on Nb(001). Phys. Rev. B 50(15), 11093–11101 (1994)

    ADS  Google Scholar 

  5. T. Balasubramanian, J.N. Andersen, L. Wallden, Surface-bulk core-level splitting in graphite. Phys. Rev. B 64, 205420 (2001)

    ADS  Google Scholar 

  6. M. Alden, H.L. Skriver, B. Johansson, Ab-initio surface core-level shifts and surface segregation energies. Phys. Rev. Lett. 71(15), 2449–2452 (1993)

    ADS  Google Scholar 

  7. E. Navas, K. Starke, C. Laubschat, E. Weschke, G. Kaindl, Surface core-level shift of 4f states for Tb(0001). Phys. Rev. B 48(19), 14753 (1993)

    ADS  Google Scholar 

  8. R.A. Bartynski, D. Heskett, K. Garrison, G. Watson, D.M. Zehner, W.N. Mei, S.Y. Tong, X. Pan, The 1st interlayer spacing of Ta(100) determined by photoelectron diffraction. J. Vac. Sci. Technol. a-Vac. Surf. Films 7(3), 1931–1936 (1989)

    ADS  Google Scholar 

  9. J.N. Andersen, D. Hennig, E. Lundgren, M. Methfessel, R. Nyholm, M. Scheffler, Surface core-level shifts of some 4d-metal single-crystal surfaces: experiments and ab initio calculations. Phys. Rev. B 50(23), 17525–17533 (1994)

    ADS  Google Scholar 

  10. D.M. Riffe, G.K. Wertheim, Ta(110) surface and subsurface core-level shifts and 4f7/2 line-shapes. Phys. Rev. B 47(11), 6672–6679 (1993)

    ADS  Google Scholar 

  11. J.H. Cho, K.S. Kim, S.H. Lee, M.H. Kang, Z.Y. Zhang, Origin of contrasting surface core-level shifts at the Be(10(1)over-bar0) and Mg(10(1)over-bar0) surfaces. Phys. Rev. B 61(15), 9975–9978 (2000)

    ADS  Google Scholar 

  12. A.V. Fedorov, E. Arenholz, K. Starke, E. Navas, L. Baumgarten, C. Laubschat, G. Kaindl, Surface shifts of 4f electron-addition and electron-removal states in Gd(0001). Phys. Rev. Lett. 73(4), 601–604 (1994)

    ADS  Google Scholar 

  13. L.I. Johansson, H.I.P. Johansson, J.N. Andersen, E. Lundgren, R. Nyholm, 3 Surface-shifted core levels on Be(0001). Phys. Rev. Lett. 71(15), 2453–2456 (1993)

    ADS  Google Scholar 

  14. S. Lizzit, K. Pohl, A. Baraldi, G. Comelli, V. Fritzsche, E.W. Plummer, R. Stumpf, P. Hofmann, Physics of the Be(10(1)over-bar0) surface core level spectrum. Phys. Rev. Lett. 81(15), 3271–3274 (1998)

    ADS  Google Scholar 

  15. H.I.P. Johansson, L.I. Johansson, E. Lundgren, J.N. Andersen, R. Nyholm, Core-level shifts on Be(10(1)over-bar-0). Phys. Rev. B 49(24), 17460–17463 (1994)

    ADS  Google Scholar 

  16. A. Baraldi, S. Lizzit, G. Comelli, A. Goldoni, P. Hofmann, G. Paolucci, Core-level subsurface shifted component in a 4d transition metal: Ru(10(1)over-bar-0). Phys. Rev. B 61(7), 4534–4537 (2000)

    ADS  Google Scholar 

  17. E. Lundgren, U. Johansson, R. Nyholm, J.N. Andersen, Surface core-level shift of the Mo(110) surface. Phys. Rev. B 48(8), 5525–5529 (1993)

    ADS  Google Scholar 

  18. R. Nyholm, J.N. Andersen, J.F. Vanacker, M. Qvarford, Surface core-level shifts of the Al(100) and Al(111) surfaces. Phys. Rev. B 44(19), 10987–10990 (1991)

    ADS  Google Scholar 

  19. D.M. Riffe, B. Kim, J.L. Erskine, Surface core-level shifts and atomic coordination at a stepped W(110) surface. Phys. Rev. B 50(19), 14481–14488 (1994)

    ADS  Google Scholar 

  20. J.H. Cho, D.H. Oh, L. Kleinman, Core-level shifts of low coordination atoms at the W(320) stepped surface. Phys. Rev. B 64(11), 115404 (2001)

    ADS  Google Scholar 

  21. C.J. Karlsson, E. Landemark, Y.C. Chao, R.I.G. Uhrberg, Atomic origins of the surface components in the Si 2p core-level spectra of the Si(111)7 x 7 surface. Phys. Rev. B 50(8), 5767–5770 (1994)

    ADS  Google Scholar 

  22. S.M. Scholz, K. Jacobi, Core-level shifts on clean and adsorbate-covered Si(113) surfaces. Phys. Rev. B 52(8), 5795–5802 (1995)

    ADS  Google Scholar 

  23. T.W. Pi, J.F. Wen, C.P. Ouyang, R.T. Wu, Surface core-level shifts of Ge(100)-2X1. Phys. Rev. B 63(15), 153310 (2001)

    ADS  Google Scholar 

  24. S. Lizzit, A. Baraldi, A. Groso, K. Reuter, M.V. Ganduglia-Pirovano, C. Stampl, M. Scheffler, M. Stichler, C. Keller, W. Wurth, D. Menzel, Surface core-level shifts of clean and oxygen-covered Ru(0001). Phys. Rev. B 63(20), 205419 (2001)

    ADS  Google Scholar 

  25. P.A. Glans, L.I. Johansson, T. Balasubramanian, R.J. Blake, Assignment of the surface core-level shifts to the surface layers of Be(10(1)over-bar0). Phys. Rev. B 70(3), 033408 (2004)

    ADS  Google Scholar 

  26. M. Zacchigna, C. Astaldi, K.C. Prince, M. Sastry, C. Comicioli, R. Rosei, C. Quaresima, C. Ottaviani, C. Crotti, A. Antonini, M. Matteucci, P. Perfetti, Photoemission from atomic and molecular adsorbates on Rh(100). Surf. Sci. 347(1–2), 53–62 (1996)

    ADS  Google Scholar 

  27. D. Schmeisser, O. Bohme, A. Yfantis, T. Heller, D.R. Batchelor, I. Lundstrom, A.L. Spetz, Dipole moment of nanoparticles at interfaces. Phys. Rev. Lett. 83(2), 380–383 (1999)

    ADS  Google Scholar 

  28. J. Nanda, D.D. Sarma, Photoemission spectroscopy of size selected zinc sulfide nanocrystallites. J. Appl. Phys. 90(5), 2504–2510 (2001)

    ADS  Google Scholar 

  29. J. Nanda, B.A. Kuruvilla, D.D. Sarma, Photoelectron spectroscopic study of CdS nanocrystallites. Phys. Rev. B 59(11), 7473–7479 (1999)

    ADS  Google Scholar 

  30. C.Q. Sun, L.K. Pan, H.L. Bai, Z.Q. Li, P. Wu, E.Y. Jiang, Effects of surface passivation and interfacial reaction on the size-dependent 2p-level shift of supported copper nanosolids. Acta Mater. 51(15), 4631–4636 (2003)

    Google Scholar 

  31. D.Q. Yang, E. Sacher, Initial- and final-state effects on metal cluster/substrate interactions, as determined by XPS: copper clusters on Dow Cyclotene and highly oriented pyrolytic graphite. Appl. Surf. Sci. 195(1–4), 187–195 (2002)

    ADS  Google Scholar 

  32. T. Ohgi, D. Fujita, Consistent size dependency of core-level binding energy shifts and single-electron tunneling effects in supported gold nanoclusters. Phys. Rev. B 66(11), 115410 (2002)

    ADS  Google Scholar 

  33. A. Howard, D.N.S. Clark, C.E.J. Mitchell, R.G. Egdell, V.R. Dhanak, Initial and final state effects in photoemission from Au nanoclusters on TiO2(110). Surf. Sci. 518(3), 210–224 (2002)

    ADS  Google Scholar 

  34. M. Salmeron, S. Ferrer, M. Jazzar, G.A. Somorjai, Core-band and valence-band energy-level shifts in small two-dimensional islands of gold deposited on Pt(100)—the effect of step edge, surface, and bulk atoms. Phys. Rev. B 28(2), 1158–1160 (1983)

    ADS  Google Scholar 

  35. H.N. Aiyer, V. Vijayakrishnan, G.N. Subbanna, C.N.R. Rao, Investigations of Pd clusters by the combined use of HREM, STM, high-energy spectroscopies and tunneling conductance measurements. Surf. Sci. 313(3), 392–398 (1994)

    ADS  Google Scholar 

  36. K. Borgohain, J.B. Singh, M.V.R. Rao, T. Shripathi, S. Mahamuni, Quantum size effects in CuO nanoparticles. Phys. Rev. B 61(16), 11093–11096 (2000)

    ADS  Google Scholar 

  37. C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Size-dependent chemistry: properties of nanocrystals. Chem.-a Eur. J. 8(1), 29–35 (2002)

    Google Scholar 

  38. V. Vijayakrishnan, A. Chainani, D.D. Sarma, C.N.R. Rao, Metal-insulator transitions in metal-clusters: a high-energy spectroscopy study of Pd and Ag clusters. J. Phys. Chem. 96(22), 8679–8682 (1992)

    Google Scholar 

  39. M.G. Mason, in Cluster Models for Surface and Bulk Phenomena, ed. by G. Pacchioni (Plenum, New York, 1992)

    Google Scholar 

  40. Z.X. Yang, R.Q. Wu, Origin of positive core-level shifts in Au clusters on oxides. Phys. Rev. B 67(8), 081403 (2003)

    ADS  Google Scholar 

  41. M.A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley, New York, 1993)

    Google Scholar 

  42. M. Reif, L. Glaser, M. Martins, W. Wurth, Size-dependent properties of small deposited chromium clusters by X-ray absorption spectroscopy. Phys. Rev. B 72(15), 155405 (2005)

    ADS  Google Scholar 

  43. C.Q. Sun, Y. Shi, C.M. Li, S. Li, T.C.A. Yeung, Size-induced undercooling and overheating in phase transitions in bare and embedded clusters. Phys. Rev. B 73(7), 075408 (2006)

    ADS  Google Scholar 

  44. X.J. Liu, J.W. Li, Z.F. Zhou, L.W. Yang, Z.S. Ma, G.F. Xie, Y. Pan, C.Q. Sun, Size-induced elastic stiffening of ZnO nanostructures: skin-depth energy pinning. Appl. Phys. Lett. 94, 131902 (2009)

    ADS  Google Scholar 

  45. Y. Wang, Y.G. Nie, J.S. Pan, L.K. Pan, Z. Sun, L.L. Wang, C.Q. Sun, Orientation-resolved 3d(5/2) binding energy shift of Rh and Pd surfaces: anisotropy of the skin-depth lattice strain and quantum trapping. PCCP 12(9), 2177–2182 (2010)

    ADS  Google Scholar 

  46. A. Baraldi, L. Bianchettin, E. Vesselli, S. de Gironcoli, S. Lizzit, L. Petaccia, G. Zampieri, G. Comelli, R. Rosei, Highly under-coordinated atoms at Rh surfaces: interplay of strain and coordination effects on core level shift. N. J. Phys. 9(143), 12 (2007)

    Google Scholar 

  47. M. Rocca, L. Savio, L. Vattuone, U. Burghaus, V. Palomba, N. Novelli, F.B. de Mongeot, U. Valbusa, R. Gunnella, G. Comelli, A. Baraldi, S. Lizzit, G. Paolucci, Phase transition of dissociatively adsorbed oxygen on Ag(001). Phys. Rev. B 61(1), 213–227 (2000)

    ADS  Google Scholar 

  48. M.P. Goertz, X.Y. Zhu, J.E. Houston, Exploring the liquid-like layer on the ice surface. Langmuir: The ACS J. Surf. Colloids 25(12), 6905–6908 (2009)

    Google Scholar 

  49. J. Jupille, K.G. Purcell, D.A. King, W(100) clean surface phase transition studied by core-level-shift spectroscopy: order-order or order-disorder transition. Phys. Rev. B 39(10), 6871–6879 (1989)

    ADS  Google Scholar 

  50. K.G. Purcell, J. Jupille, G.P. Derby, D.A. King, Identification of underlayer components in the surface core-level spectra of W(111). Phys. Rev. B 36(2), 1288–1291 (1987)

    ADS  Google Scholar 

  51. X.B. Zhou, J.L. Erskine, Surface core-level shifts at vicinal tungsten surfaces. Phys. Rev. B 79(15), 155422 (2009)

    ADS  Google Scholar 

  52. Y.G. Nie, X. Zhang, S.Z. Ma, Y. Wang, J.S. Pan, C.Q. Sun, XPS revelation of tungsten edges as a potential donor-type catalyst. PCCP 13(27), 12640–12645 (2011)

    ADS  Google Scholar 

  53. N. Martensson, H.B. Saalfeld, H. Kuhlenbeck, M. Neumann, Structural dependence of the 5d-metal surface energies as deduced from surface core-level shift measurements. Phys. Rev. B 39(12), 8181–8186 (1989)

    ADS  Google Scholar 

  54. A.S.Y. Chan, G.K. Wertheim, H. Wang, M.D. Ulrich, J.E. Rowe, T.E. Madey, Surface atom core-level shifts of clean and oxygen-covered Re(1231). Phys. Rev. B 72(3), 035442 (2005)

    ADS  Google Scholar 

  55. R. Ducros, J. Fusy, Core level binding energy shifts of rhenium surface atoms for a clean and oxygenated surface. J. Electron Spectrosc. Relat. Phenom. 42(4), 305–312 (1987)

    Google Scholar 

  56. Y.G. Nie, J.S. Pan, W.T. Zheng, J. Zhou, C.Q. Sun, Atomic scale purification of Re surface kink states with and without oxygen chemisorption. J. Chem. Phys. C 115(15), 7450–7455 (2011)

    Google Scholar 

  57. Y. Wang, Y.G. Nie, J.S. Pan, L.K. Pan, Z. Sun, C.Q. Sun, Layer and orientation resolved bond relaxation and quantum entrapment of charge and energy at Be surfaces. PCCP 12(39), 12753–12759 (2010)

    ADS  Google Scholar 

  58. Y. Wang, Y.G. Nie, L.L. Wang, C.Q. Sun, Atomic-layer- and crystal-orientation-resolved 3d5/2 binding energy Shift of Ru(0001) and Ru(1010) surfaces. J. Chem. Phys. C 114(2), 1226–1230 (2010)

    Google Scholar 

  59. A. Baraldi, S. Lizzit, G. Comelli, G. Paolucci, Oxygen adsorption and ordering on Ru(10(1)over-bar-0). Phys. Rev. B 63(11), 115410 (2001)

    ADS  Google Scholar 

  60. F. Matsui, T. Matsushita, Y. Kato, M. Hashimoto, K. Inaji, F.Z. Guo, H. Daimon, Atomic-layer resolved magnetic and electronic structure analysis of Ni thin film on a Cu(001) surface by diffraction spectroscopy. Phys. Rev. Lett. 100(20), 207201 (2008)

    ADS  Google Scholar 

  61. C. Kittel, Introduction to Solid State Physics, 8th edn. (Willey, New York, 2005)

    Google Scholar 

  62. M. Zhao, W.T. Zheng, J.C. Li, Z. Wen, M.X. Gu, C.Q. Sun, Atomistic origin, temperature dependence, and responsibilities of surface energetics: an extended broken-bond rule. Phys. Rev. B 75(8), 085427 (2007)

    ADS  Google Scholar 

  63. F. Himpsel, P. Heimann, T. Chiang, D. Eastman, Geometry-dependent Si(2p) surface core-level excitations for Si(111) and Si(100) surfaces. Phys. Rev. Lett. 45(13), 1112–1115 (1980)

    ADS  Google Scholar 

  64. F. Himpsel, G. Hollinger, R. Pollak, Determination of the Fermi-level pinning position at Si(111) surfaces. Phys. Rev. B 28(12), 7014–7018 (1983)

    ADS  Google Scholar 

  65. M. Vogel, C. Kasigkeit, K. Hirsch, A. Langenberg, J. Rittmann, V. Zamudio-Bayer, A. Kulesza, R. Mitrić, T. Möller, B. Issendorff, J. Lau, 2p core-level binding energies of size-selected free silicon clusters: chemical shifts and cluster structure. Phys. Rev. B 85(19), 195454 (2012)

    ADS  Google Scholar 

  66. L.K. Pan, C.Q. Sun, Coordination imperfection enhanced electron–phonon interaction. J. Appl. Phys. 95(7), 3819–3821 (2004)

    ADS  Google Scholar 

  67. L.K. Pan, S.Q. Xu, W. Qin, X.J. Liu, Z. Sun, W.T. Zheng, C.Q. Sun, Skin dominance of the dielectric-electronic-phononic-photonic attribute of nanostructured silicon. Surf. Sci. Rep. 68(3–4), 418–455 (2013)

    ADS  Google Scholar 

  68. P. Buffat, J.P. Borel, Size effect on melting temperature of gold particles. Phys. Rev. A 13(6), 2287–2298 (1976)

    ADS  Google Scholar 

  69. C.Q. Sun, Atomic-coordination-imperfection-enhanced Pd-3d(5/2) crystal binding energy. Surf. Rev. Lett. 10(6), 1009–1013 (2003)

    Google Scholar 

  70. P. Zhang, T.K. Sham, X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Phys. Rev. Lett. 90(24), 245502 (2003)

    ADS  Google Scholar 

  71. K.J. Kim, H. Lee, J.H. Choi, Y.S. Youn, J. Choi, T.H. Kang, M.C. Jung, H.J. Shin, H.J. Lee, S. Kim, B. Kim, Scanning photoemission microscopy of graphene sheets on SiO2. Adv. Mater. 20(19), 3589–3591 (2008)

    Google Scholar 

  72. K.V. Emtsev, F. Speck, T. Seyller, L. Ley, J.D. Riley, Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy study. Phys. Rev. B 77(15), 155303 (2008)

    ADS  Google Scholar 

  73. H.Y. Mao, R. Wang, H. Huang, Y.Z. Wang, X.Y. Gao, S.N. Bao, A.T.S. Wee, W. Chen, Tuning of C[sub 60] energy levels using orientation-controlled phthalocyanine films. J. Appl. Phys. 108(5), 053706 (2010)

    ADS  Google Scholar 

  74. Y.M. Shulga, T.C. Tien, C.C. Huang, S.C. Lo, V. Muradyan, N.V. Polyakova, Y.C. Ling, R.O. Loutfy, A.P. Moravsky, XPS study of fluorinated carbon multi-walled nanotubes. J. Electron Spectrosc. Relat. Phenom. 160(1–3), 22–28 (2007)

    Google Scholar 

  75. A. Goldoni, R. Larciprete, L. Gregoratti, B. Kaulich, M. Kiskinova, Y. Zhang, H. Dai, L. Sangaletti, F. Parmigiani, X-ray photoelectron microscopy of the C 1 s core level of free-standing single-wall carbon nanotube bundles. Appl. Phys. Lett. 80(12), 2165–2167 (2002)

    ADS  Google Scholar 

  76. P. Bennich, C. Puglia, P.A. Bruhwiler, A. Nilsson, A.J. Maxwell, A. Sandell, N. Martensson, P. Rudolf, Photoemission study of K on graphite. Phys. Rev. B 59(12), 8292–8304 (1999)

    ADS  Google Scholar 

  77. C.S. Yannoni, P.P. Bernier, D.S. Bethune, G. Meijer, J.R. Salem, NMR determination of the bond lengths in C60. J. Am. Chem. Soc. 113(8), 3190–3192 (1991)

    Google Scholar 

  78. G. Speranza, N. Laidani, Measurement of the relative abundance of sp(2) and sp(3) hybridised atoms in carbon based materials by XPS: a critical approach. Part I. Diamond Relat. Mater. 13(3), 445–450 (2004)

    ADS  Google Scholar 

  79. S. Takabayashi, K. Motomitsu, T. Takahagi, A. Terayama, K. Okamoto, T. Nakatani, Qualitative analysis of a diamondlike carbon film by angle-resolved X-ray photoelectron spectroscopy. J. Appl. Phys. 101, 103542 (2007)

    ADS  Google Scholar 

  80. K.G. Saw, J. du Plessis, The X-ray photoelectron spectroscopy C 1 s diamond peak of chemical vapour deposition diamond from a sharp interfacial structure. Mater. Lett. 58(7–8), 1344–1348 (2004)

    Google Scholar 

  81. C.Q. Sun, Y. Sun, Y.G. Nie, Y. Wang, J.S. Pan, G. Ouyang, L.K. Pan, Z. Sun, Coordination-resolved C–C bond length and the C 1 s binding energy of carbon allotropes and the effective atomic coordination of the few-layer graphene. J. Chem. Phys. C 113(37), 16464–16467 (2009)

    Google Scholar 

  82. H. Hibino, H. Kageshima, M. Kotsugi, F. Maeda, F.-Z. Guo, Y. Watanabe, Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy. Phys. Rev. B 79, 125431 (2009)

    ADS  Google Scholar 

  83. T. Filleter, K.V. Emtsev, T. Seyller, R. Bennewitz, Local work function measurements of epitaxial graphene. Appl. Phys. Lett. 93(13), 133117 (2008)

    ADS  Google Scholar 

  84. U. Starke, C. Riedl, Epitaxial graphene on SiC(0001) and SiC(000(1)over-bar): from surface reconstructions to carbon electronics. J. Phys.: Condens. Matter 21(13), 134016 (2009)

    ADS  Google Scholar 

  85. Y.Y. Tay, S. Li, C.Q. Sun, P. Chen, Size dependence of Zn 2p 3/2 binding energy in nanocrystalline ZnO. Appl. Phys. Lett. 88(17), 173118 (2006)

    ADS  Google Scholar 

  86. Y.Y. Tay, T.T. Tan, M.H. Liang, F. Boey, S. Li, Specific defects, surface band bending and characteristic green emissions of ZnO. Phys. Chem. Chem. Phys. 12(23), 6008–6013 (2010)

    Google Scholar 

  87. Y.Y. Tay, T.T. Tan, F. Boey, M.H. Liang, J. Ye, Y. Zhao, T. Norby, S. Li, Correlation between the characteristic green emissions and specific defects of ZnO. Phys. Chem. Chem. Phys. 12(10), 2373–2379 (2010)

    Google Scholar 

  88. C.Q. Sun, Dominance of broken bonds and nonbonding electrons at the nanoscale. Nanoscale 2(10), 1930–1961 (2010)

    ADS  Google Scholar 

  89. J.W. Li, S.Z. Ma, X.J. Liu, Z.F. Zhou, C.Q. Sun, ZnO meso-mechano-thermo physical chemistry. Chem. Rev. 112(5), 2833–2852 (2012)

    Google Scholar 

  90. C.Q. Sun, L.K. Pan, T.P. Chen, X.W. Sun, S. Li, C.M. Li, Distinguishing the effect of crystal-field screening from the effect of valence recharging on the 2P(3/2) and 3d(5/2) level energies of nanostructured copper. Appl. Surf. Sci. 252(6), 2101–2107 (2006)

    ADS  Google Scholar 

  91. P. Abbott, E.D. Sosa, D.E. Golden, Effect of average grain size on the work function of diamond films. Appl. Phys. Lett. 79(17), 2835–2837 (2001)

    ADS  Google Scholar 

  92. A.A. Rouse, J.B. Bernhard, E.D. Sosa, D.E. Golden, Variation of field emission and photoelectric thresholds of diamond films with average grain size. Appl. Phys. Lett. 75(21), 3417–3419 (1999)

    ADS  Google Scholar 

  93. T. Yamauchi, M. Tabuchi, A. Nakamura, Size dependence of the work function in InAs quantum dots on GaAs(001) as studied by Kelvin force probe microscopy. Appl. Phys. Lett. 84(19), 3834–3836 (2004)

    ADS  Google Scholar 

  94. M.M. Kappes, R.W. Kunz, E. Schuhmacher, Production of large sodium clusters (Nax , x < 65) by seeded beam expansions. Chem. Phys. Lett. 91:413–418 (1982)

    Google Scholar 

  95. T.M. Bhave, S.V. Bhoraskar, Surface work function studies in porous silicon. J. Vac. Sci. Technol. B 16(4), 2073–2078 (1998)

    Google Scholar 

  96. Y. Tzeng, C. Liu, A. Hirata, Effects of oxygen and hydrogen on electron field emission from microwave plasma chemically vapor deposited microcrystalline diamond, nanocrystalline diamond, and glassy carbon coatings. Diam. Relat. Mat. 12(3–7), 456–463 (2003)

    Google Scholar 

  97. R.P. Gao, Z.W. Pan, Z.L. Wang, Work function at the tips of multiwalled carbon nanotubes. Appl. Phys. Lett. 78(12), 1757–1759 (2001)

    ADS  Google Scholar 

  98. C.H.P. Poa, R.G. Lacerda, D.C. Cox, F.C. Marques, S.R.P. Silva, Effects of stress on electron emission from nanostructured carbon materials. J. Vac. Sci. Technol. B 21(4), 1710–1714 (2003)

    Google Scholar 

  99. C. Uher, R.L. Hockey, E. Benjacob, Pressure-dependence of the c-axis resistivity of graphite. Phys. Rev. B 35(9), 4483–4488 (1987)

    ADS  Google Scholar 

  100. C.H. Poa, R.G. Lacerda, D.C. Cox, S.R.P. Silva, F.C. Marques, Stress-induced electron emission from nanocomposite amorphous carbon thin films. Appl. Phys. Lett. 81(5), 853–855 (2002)

    ADS  Google Scholar 

  101. C.H.P. Poa, R.C. Smith, S.R.P. Silva, C.Q. Sun, Influence of mechanical stress on electron field emission of multiwalled carbon nanotube-polymer composites. J. Vac. Sci. Tech. B 23(2), 698–701 (2005)

    Google Scholar 

  102. R.G. Lacerda, M.C. dos Santos, L.R. Tessler, P. Hammer, F. Alvarez, F.C. Marques, Pressure-induced physical changes of noble gases implanted in highly stressed amorphous carbon films. Phys. Rev. B 68(5), 054104 (2003)

    ADS  Google Scholar 

  103. R.W. Lynch, H.G. Drickame, Effect of high pressure on lattice parameters of diamond graphite and hexagonal boron nitride. J. Chem. Phys. 44(1), 181–184 (1966)

    ADS  Google Scholar 

  104. S. Bhattacharyya, S.V. Subramanyam, Metallic conductivity of amorphous carbon films under high pressure. Appl. Phys. Lett. 71(5), 632–634 (1997)

    ADS  Google Scholar 

  105. K. Umemoto, S. Saito, S. Berber, D. Tomanek, Carbon foam: spanning the phase space between graphite and diamond. Phys. Rev. B 64(19), 193409 (2001)

    ADS  Google Scholar 

  106. L. Lu, M.L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature. Science 287(5457), 1463–1466 (2000)

    ADS  Google Scholar 

  107. K. Lu, Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Mater. Sci. Eng. R-Rep. 16(4), 161–221 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Electrons: Entrapment and Polarization. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_16

Download citation

Publish with us

Policies and ethics