Skip to main content

Thermal Stability: Atomic Cohesive Energy

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

  • 2219 Accesses

Abstract

Critical temperature for phase transition depends on the atomic cohesive energy that is the product of bond number and bond energy. The skin of a solid generally melts prior to the bulk (supercooling) and some interfaces melt at temperatures higher than the bulk melting point (superheating). Group IIIa and IVa atomic clusters show superheating because of the bond nature evolution. A dual-shell model describes the T C for ferromagnetic, ferroelectric, and superconductive phase transitions because of the involvement of both the long- and the short-range interactions. Activation energy for diffusion and epitaxial growth is proportional to the atomic cohesive energy; growing temperature controls the crystal size and associated properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. W.H. Qi, M.P. Wang, Size effect on the cohesive energy of nanoparticle. J. Mater. Sci. Lett. 21(22), 1743–1745 (2002)

    Google Scholar 

  2. D. Xie, M.P. Wang, W.H. Qi, A simplified model to calculate the surface-to-volume atomic ratio dependent cohesive energy of nanocrystals. J. Phy.-Condens. Matter 16(36), L401–L405 (2004)

    ADS  Google Scholar 

  3. W.H. Qi, M.P. Wang, G.Y. Xu, The particle size dependence of cohesive energy of metallic nanoparticles. Chem. Phys. Lett. 372(5–6), 632–634 (2003)

    ADS  Google Scholar 

  4. D. Tomanek, S. Mukherjee, K.H. Bennemann, Simple theory for the electronic and atomic-structure of small clusters. Phys. Rev. B 28(2), 665–673 (1983)

    ADS  Google Scholar 

  5. Q. Jiang, J.C. Li, B.Q. Chi, Size-dependent cohesive energy of nanocrystals. Chem. Phys. Lett. 366(5–6), 551–554 (2002)

    ADS  Google Scholar 

  6. H.K. Kim, S.H. Huh, J.W. Park, J.W. Jeong, G.H. Lee, The cluster size dependence of thermal stabilities of both molybdenum and tungsten nanoclusters. Chem. Phys. Lett. 354(1–2), 165–172 (2002)

    ADS  Google Scholar 

  7. C.Q. Sun, Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35(1), 1–159 (2007)

    Google Scholar 

  8. T. Gorecki, Vacancies and changes of physical-properties of metals at melting-point. Z. Metallk. 65(6), 426–431 (1974)

    Google Scholar 

  9. M.W. Finnis, The Harris functional applied to surface and vacancy formation energies in aluminum. J. Phys.-Condens. Matter 2(2), 331–342 (1990)

    ADS  Google Scholar 

  10. H. Brooks, Impurities and Imperfection (American Socienty for Metals, Cleveland, 1955)

    Google Scholar 

  11. W.H. Qi, M.P. Wang, Size dependence of vacancy formation energy of metallic nanoparticles. Phys. B-Condens. Matter 334(3–4), 432–435 (2003)

    ADS  Google Scholar 

  12. E.A. Brands, Smithells Metals Reference Book, 6th edn. (Butterworths, London, 1983)

    Google Scholar 

  13. A.R. Miedema, Surface energies of solid metals. Z. Metallk. 69(5), 287–292 (1978)

    Google Scholar 

  14. A.N. Goldstein, C.M. Echer, A.P. Alivisatos, Melting in semiconductor nanocrystals. Science 256(5062), 1425–1427 (1992)

    ADS  Google Scholar 

  15. J.G. Dash, History of the search for continuous melting. Rev. Mod. Phys. 71(5), 1737–1743 (1999)

    ADS  MathSciNet  Google Scholar 

  16. J. Penfold, The structure of the surface of pure liquids. Rep. Prog. Phys. 64(7), 777–814 (2001)

    ADS  Google Scholar 

  17. V.P. Modak, H. Pathak, M. Thayer, S.J. Singer, B.E. Wyslouzil, Experimental evidence for surface freezing in supercooled n-alkane nanodroplets. Phys. Chem. Chem. Phys. 15(18), 6783–6795 (2013)

    Google Scholar 

  18. J.I. Akhter, Size-dependent superheating in confined Pb(111) films. J. Phys.-Condens. Matter 17(1), 53–60 (2005)

    ADS  Google Scholar 

  19. H.W. Sheng, G. Ren, L.M. Peng, Z.Q. Hu, K. Lu, Superheating and melting-point depression of Pb nanoparticles embedded in Al matrices. Philos. Mag. Lett. 73(4), 179–186 (1996)

    ADS  Google Scholar 

  20. H.W. Sheng, G. Ren, L.M. Peng, Z.Q. Hu, K. Lu, Epitaxial dependence of the melting behavior of In nanoparticles embedded in Al matrices. J. Mater. Res. 12(1), 119–123 (1997)

    ADS  Google Scholar 

  21. Y. Lereah, G. Deutscher, P. Cheyssac, R. Kofman, A direct observation of low-dimensional effects on melting of small lead particles. Europhys. Lett. 12(8), 709–713 (1990)

    ADS  Google Scholar 

  22. A.A. Rouse, J.B. Bernhard, E.D. Sosa, D.E. Golden, Variation of field emission and photoelectric thresholds of diamond films with average grain size. Appl. Phys. Lett. 75(21), 3417–3419 (1999)

    ADS  Google Scholar 

  23. N. Hamada, S. Sawada, A. Oshiyama, New one-dimensional conductors—graphitic microtubules. Phys. Rev. Lett. 68(10), 1579–1581 (1992)

    ADS  Google Scholar 

  24. V.P. Skripov, V.P. Koverda, V.N. Skokov, Size effect on melting of small particle. Phys. Status Solidi A-Appl. Res. 66(1), 109–118 (1981)

    ADS  Google Scholar 

  25. J.F. Pocza, A. Barna, P.B. Barna, Formation processes of vacuum-deposited indium films and thermodynamical properties of submicroscopic particles observed by in situ electron microscopy. J. Vacuum Sci. Technol. 6(4), 472–474 (1969)

    ADS  Google Scholar 

  26. Y.J. Lee, E.K. Lee, S. Kim, R.M. Nieminen, Effect of potential energy distribution on the melting of clusters. Phys. Rev. Lett. 86(6), 999–1002 (2001)

    ADS  Google Scholar 

  27. S.C. Santucci, A. Goldoni, R. Larciprete, S. Lizzit, M. Bertolo, A. Baraldi, C. Masciovecchio, Calorimetry at surfaces using high-resolution core-level photoemission. Phys. Rev. Lett. 93(10), 106105 (2004)

    ADS  Google Scholar 

  28. P. Bergese, I. Colombo, D. Gervasoni, L.E. Depero, Melting of nanostructured drugs embedded into a polymeric matrix. J. Phys. Chem. B 108(40), 15488–15493 (2004)

    Google Scholar 

  29. I.S. Hwang, S.H. Chang, C.K. Fang, L.J. Chen, T.T. Tsong, Observation of finite-size effects on a structural phase transition of 2D nanoislands. Phys. Rev. Lett. 93(10), 106101 (2004)

    ADS  Google Scholar 

  30. L. Miao, V.R. Bhethanabotla, B. Joseph, Melting of Pd clusters and nanowires: A comparison study using molecular dynamics simulation. Phys. Rev. B 72(13), 134109 (2005)

    ADS  Google Scholar 

  31. F.G. Shi, Size-dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 9(5), 1307–1313 (1994)

    ADS  Google Scholar 

  32. P. Buffat, J.P. Borel, Size effect on melting temperature of gold particles. Phys. Rev. A 13(6), 2287–2298 (1976)

    ADS  Google Scholar 

  33. P. Pawlow, The dependency of the melting point on the surface energy of a solid body (Supplement). Zeitschrift Fur Physikalische Chemie–Stochiometrie Und Verwandtschaftslehre 65(5), 545–548 (1909)

    Google Scholar 

  34. H. Reiss, P. Mirabel, R.L. Whetten, Capillarity theory for the coexistence of liquid and solid clusters. J. Phys. Chem. 92(26), 7241–7246 (1988)

    Google Scholar 

  35. H. Sakai, Surface-induced melting of small particles. Surf. Sci. 351(1–3), 285–291 (1996)

    ADS  Google Scholar 

  36. K.J. Hanszen, Theoretische untersuchungen uber den schmelzpunkt kleiner kugelchen—ein beitrag zur thermodynamik der grenzflachen. Z. Angew. Phys. 157(5), 523–553 (1960)

    Google Scholar 

  37. P.R. Couchman, W.A. Jesser, Thermodynamic theory of size dependence of melting temperature in metals. Nature 269(5628), 481–483 (1977)

    ADS  Google Scholar 

  38. R.R. Vanfleet, J.M. Mochel, Thermodynamics of melting and freezing in small particles. Surf. Sci. 341(1–2), 40–50 (1995)

    ADS  Google Scholar 

  39. B. Vekhter, R.S. Berry, Phase coexistence in clusters: an ‘‘experimental’’ isobar and an elementary model. J. Chem. Phys. 106(15), 6456–6459 (1997)

    ADS  Google Scholar 

  40. Q. Jiang, Z. Zhang, J.C. Li, Superheating of nanocrystals embedded in matrix. Chem. Phys. Lett. 322(6), 549–552 (2000)

    ADS  Google Scholar 

  41. M. Zhang, M.Y. Efremov, F. Schiettekatte, E.A. Olson, A.T. Kwan, S.L. Lai, T. Wisleder, J.E. Greene, L.H. Allen, Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys. Rev. B 62(15), 10548–10557 (2000)

    ADS  Google Scholar 

  42. Z.H. Jin, P. Gumbsch, K. Lu, E. Ma, Melting mechanisms at the limit of superheating. Phys. Rev. Lett. 87(5), 055703 (2001)

    ADS  Google Scholar 

  43. R. Defay, I. Prigogine, Surface Tension and Adsorption (Wiley, New York, 1951)

    Google Scholar 

  44. K.F. Peters, J.B. Cohen, Y.W. Chung, Melting of Pb nanocrystals. Phys. Rev. B 57(21), 13430–13438 (1998)

    ADS  Google Scholar 

  45. U. Tartaglino, T. Zykova-Timan, F. Ercolessi, E. Tosatti, Melting and nonmelting of solid surfaces and nanosystems. Phys. Rep.-Rev. Sec. Phys. Lett. 411(5), 291–321 (2005)

    Google Scholar 

  46. Q.W. Yang, R.Z. Zhu, J.A. Wei, Y.H. Wen, Surface-induced melting of metal nanoclusters. Chin. Phys. Lett. 21(11), 2171–2174 (2004)

    ADS  Google Scholar 

  47. K.K. Nanda, S.N. Sahu, S.N. Behera, Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66(1), 013208 (2002)

    ADS  Google Scholar 

  48. J.H. Rose, J.R. Smith, J. Ferrante, Universal features of bonding in metals. Phys. Rev. B 28(4), 1835–1845 (1983)

    ADS  Google Scholar 

  49. J. Tateno, Empirical relation on melting temperature of some ionic-crystals. Solid State Commun. 10(1), 61–62 (1972)

    ADS  Google Scholar 

  50. M.A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley, New York, 1993)

    Google Scholar 

  51. B. Pluis, D. Frenkel, J.F. Vanderveen, Surface-induced melting and freezing II. A semi-empirical landau-type model. Surf. Sci. 239(3), 282–300 (1990)

    ADS  Google Scholar 

  52. M. Wautelet, Estimation of the variation of the melting temperature with the size of small particles, on the basis of a surface-phonon instability model. J. Phys. D-Appl. Phys. 24(3), 343–346 (1991)

    ADS  Google Scholar 

  53. R. Vallee, M. Wautelet, J.P. Dauchot, M. Hecq, Size and segregation effects on the phase diagrams of nanoparticles of binary systems. Nanotechnology 12(1), 68–74 (2001)

    ADS  Google Scholar 

  54. M. Wautelet, Phase stability of electronically excited Si nanoparticles. J. Phys.-Condens. Matter 16(12), L163–L166 (2004)

    ADS  Google Scholar 

  55. Q. Jiang, L.H. Liang, J.C. Li, Thermodynamic superheating and relevant interface stability of low-dimensional metallic crystals. J. Phys.: Condens. Matter 13(4), 565–571 (2001)

    ADS  Google Scholar 

  56. Q. Jiang, H.Y. Tong, D.T. Hsu, K. Okuyama, F.G. Shi, Thermal stability of crystalline thin films. Thin Solid Films 312(1–2), 357–361 (1998)

    ADS  Google Scholar 

  57. Q. Jiang, H.X. Shi, J.C. Li, Finite size effect on glass transition temperatures. Thin Solid Films 354(1–2), 283–286 (1999)

    ADS  Google Scholar 

  58. Z. Wen, M. Zhao, Q. Jiang, The melting temperature of molecular nanocrystals at the lower bound of the mesoscopic size range. J. Phys.-Condens. Matter 12(41), 8819–8824 (2000)

    ADS  Google Scholar 

  59. Q. Jiang, L.H. Liang, M. Zhao, Modelling of the melting temperature of nano-ice in MCM-41 pores. J. Phys.-Condens. Matter 13(20), L397–L401 (2001)

    ADS  Google Scholar 

  60. F.A. Lindemann, The calculation of molecular natural frequencies. Physikalische Zeitschrift 11, 609–612 (1910)

    MATH  Google Scholar 

  61. Z. Zhang, J.C. Li, Q. Jiang, Modelling for size-dependent and dimension-dependent melting of nanocrystals. J. Phys. D-Appl. Phys. 33(20), 2653–2656 (2000)

    ADS  Google Scholar 

  62. J.L. Wang, X.S. Chen, G.H. Wang, B.L. Wang, W. Lu, J.J. Zhao, Melting behavior in ultrathin metallic nanowires. Phys. Rev. B 66(8), 085408 (2002)

    ADS  Google Scholar 

  63. W.Y. Hu, S.G. Xiao, J.Y. Yang, Z. Zhang, Melting evolution and diffusion behavior of vanadium nanoparticles. Eur. Phys. J. B 45(4), 547–554 (2005)

    ADS  Google Scholar 

  64. S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen, Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys. Rev. Lett. 77(1), 99–102 (1996)

    ADS  Google Scholar 

  65. Q. Jiang, X.Y. Lang, Glass transition of low-dimensional polystyrene. Macromol. Rapid Commun. 25(7), 825–828 (2004)

    Google Scholar 

  66. X.Z. Ding, X.H. Liu, The Debye temperature of nanocrystalline titania measured by two different methods. Phys. Status Solidi A-Appl. Res. 158(2), 433–439 (1996)

    ADS  Google Scholar 

  67. M. Schmidt, R. Kusche, B. von Issendorff, H. Haberland, Irregular variations in the melting point of size-selected atomic clusters. Nature 393(6682), 238–240 (1998)

    ADS  Google Scholar 

  68. S.L. Lai, J.R.A. Carlsson, L.H. Allen, Melting point depression of Al clusters generated during the early stages of film growth: nanocalorimetry measurements. Appl. Phys. Lett. 72(9), 1098–1100 (1998)

    ADS  Google Scholar 

  69. C.E. Bottani, A.L. Bassi, B.K. Tanner, A. Stella, P. Tognini, P. Cheyssac, R. Kofman, Melting in metallic Sn nanoparticles studied by surface Brillouin scattering and synchrotron-x-ray diffraction. Phys. Rev. B 59(24), 15601–15604 (1999)

    ADS  Google Scholar 

  70. J. Zhong, L.H. Zhang, Z.H. Jin, M.L. Sui, K. Lu, Superheating of Ag nanoparticles embedded in Ni matrix. Acta Mater. 49(15), 2897–2904 (2001)

    ADS  Google Scholar 

  71. O.G. Shpyrko, A.Y. Grigoriev, C. Steimer, P.S. Pershan, B.H. Lin, M. Meron, T. Graber, J. Gerbhardt, B. Ocko, M. Deutsch, Anomalous layering at the liquid Sn surface. Phys. Rev. B 70(22), 224206 (2004)

    ADS  Google Scholar 

  72. L. Lu, R. Schwaiger, Z.W. Shan, M. Dao, K. Lu, S. Suresh, Nano-sized twins induce high rate sensitivity of flow stress in pure copper. Acta Mater. 53(7), 2169–2179 (2005)

    Google Scholar 

  73. S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476(1), 1–29 (2005)

    ADS  Google Scholar 

  74. S.G. Srinivasan, X.Z. Liao, M.I. Baskes, R.J. McCabe, Y.H. Zhao, Y.T. Zhu, Compact and dissociated dislocations in aluminum: Implications for deformation. Phys. Rev. Lett. 94(12), 125502 (2005)

    ADS  Google Scholar 

  75. F. Ding, A. Rosen, K. Bolton, Size dependence of the coalescence and melting of iron clusters: a molecular-dynamics study. Phys. Rev. B 70(7), 075416 (2004)

    ADS  Google Scholar 

  76. C.Q. Sun, Y. Shi, C.M. Li, S. Li, T.C.A. Yeung, Size-induced undercooling and overheating in phase transitions in bare and embedded clusters. Phys. Rev. B 73(7), 075408 (2006)

    ADS  Google Scholar 

  77. M.J. Sinnott, The solid state for engineers (Wiley, New York, 1963)

    Google Scholar 

  78. K. Dick, T. Dhanasekaran, Z.Y. Zhang, D. Meisel, Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124(10), 2312–2317 (2002)

    Google Scholar 

  79. K.K. Nanda, A. Maisels, F.E. Kruis, H. Fissan, S. Stappert, Higher surface energy of free nanoparticles. Phys. Rev. Lett. 91(10), 106102 (2003)

    ADS  Google Scholar 

  80. J. Eckert, J.C. Holzer, C.C. Ahn, Z. Fu, W.L. Johnson, Melting behavior of nanocrystalline aluminum powders. Nanostruc Mater 2(4), 407–413 (1993)

    Google Scholar 

  81. S.L. Lai, G. Ramanath, L.H. Allen, P. Infante, Heat capacity measurements of Sn nanostructures using a thin-film differential scanning calorimeter with 0.2 nJ sensitivity. Appl. Phys. Lett. 70(1), 43–45 (1997)

    ADS  Google Scholar 

  82. G.L. Allen, W.W. Gile, W.A. Jesser, The melting temperature of micro-crystals embedded in a matrix. Acta Metall. 28(12), 1695–1701 (1980)

    Google Scholar 

  83. K.M. Unruh, T.E. Huber, C.A. Huber, Melting and freezing behavior of indium metal in porous glasses. Phys. Rev. B 48(12), 9021–9027 (1993)

    ADS  Google Scholar 

  84. T. Bendavid, Y. Lereah, G. Deutscher, R. Kofman, P. Cheyssac, Solid-liquid transition in ultra-fine lead particles. Philos. Mag. A:-Phys. Condens. Matter Struct. Defects Mech. Prop. 71(5), 1135–1143 (1995)

    ADS  Google Scholar 

  85. A.N. Goldstein, The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors. Appl. Phys. A-Mater. Sci. Process. 62(1), 33–37 (1996)

    ADS  Google Scholar 

  86. P. Keblinski (1999) Thermodynamics and kinetics of melting and growth of crystalline silicon clusters, in Microcrystalline and Nanocrystalline Semiconductors-1998, ed. by L.T. Canham et al., pp 311–316

    Google Scholar 

  87. Y.Y. Wu, P.D. Yang, Melting and welding semiconductor nanowires in nanotubes. Adv. Mater. 13(7), 520–523 (2001)

    Google Scholar 

  88. G. Kellermann, A.F. Craievich, Structure and melting of Bi nanocrystals embedded in a B2O3-Na2O glass. Physical Review B 65(13), 134204 (2002)

    ADS  Google Scholar 

  89. S.J. Peppiatt, Melting of small particles II. Bismuth. Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci. 345(1642), 401–412 (1975)

    ADS  Google Scholar 

  90. H. Itoigawa, T. Kamiyama, Y. Nakamura, Bi precipitates in Na2O–B2O3 glasses. J. Non-Cryst. Solids 210(1), 95–100 (1997)

    ADS  Google Scholar 

  91. K. Morishige, K. Kawano, Freezing and melting of nitrogen, carbon monoxide, and krypton in a single cylindrical pore. J. Phys. Chem. B 104(13), 2894–2900 (2000)

    Google Scholar 

  92. E. Molz, A.P.Y. Wong, M.H.W. Chan, J.R. Beamish, Freezing and melting of fluids in porous glass. Phys. Rev. B 48(9), 5741–5750 (1993)

    ADS  Google Scholar 

  93. H. Saka, Y. Nishikawa, T. Imura, Temperature dependence of the stacking fault energy in silver-base alloys. Phil. Mag. A 57, 859–868 (1983)

    ADS  Google Scholar 

  94. L. Grabaek, J. Bohr, E. Johnson, A. Johansen, L. Sarholtkristensen, H.H. Andersen, Superheating and supercooling of lead precipitates in aluminum. Phys. Rev. Lett. 64(8), 934–937 (1990)

    ADS  Google Scholar 

  95. L. Zhang, Z.H. Jin, L.H. Zhang, M.L. Sui, K. Lu, Superheating of confined Pb thin films. Phys. Rev. Lett. 85(7), 1484–1487 (2000)

    ADS  Google Scholar 

  96. K. Chattopadhyay, R. Goswami, Melting and superheating of metals and alloys. Prog. Mater Sci. 42(1–4), 287–300 (1997)

    Google Scholar 

  97. G.A. Breaux, R.C. Benirschke, T. Sugai, B.S. Kinnear, M.F. Jarrold, Hot and solid gallium clusters: too small to melt. Phys. Rev. Lett. 91(21), 215508 (2003)

    ADS  Google Scholar 

  98. S. Chacko, K. Joshi, D.G. Kanhere, S.A. Blundell, Why do gallium clusters have a higher melting point than the bulk? Phys. Rev. Lett. 92(13), 135506 (2004)

    ADS  Google Scholar 

  99. Z.Y. Lu, C.Z. Wang, K.M. Ho, Structures and dynamical properties of C-n, Si-n, Ge-n, and Sn-n clusters with n up to 13. Phys. Rev. B 61(3), 2329–2334 (2000)

    ADS  Google Scholar 

  100. F.C. Chuang, C.Z. Wang, S. Ogut, J.R. Chelikowsky, K.M. Ho, Melting of small Sn clusters by ab initio molecular dynamics simulations. Phys. Rev. B 69(16), 165408 (2004)

    ADS  Google Scholar 

  101. K. Joshi, D.G. Kanhere, S.A. Blundell, Abnormally high melting temperature of the Sn-10 cluster. Phys. Rev. B 66(15), 155329 (2002)

    ADS  Google Scholar 

  102. G.A. Breaux, C.M. Neal, B.P. Cao, M.F. Jarrold, Tin clusters that do not melt: Calorimetry measurements up to 650 K. Phys. Rev. B 71(7), 073410 (2005)

    ADS  Google Scholar 

  103. E.A. Olson, M.Y. Efremov, M. Zhang, Z. Zhang, L.H. Allen, Size-dependent melting of Bi nanoparticles. J. Appl. Phys. 97(3), 034304 (2005)

    ADS  Google Scholar 

  104. R.O. Jones, Simulated annealing study of neutral and charged clusters—Al(n) and Ga(n). J. Chem. Phys. 99(2), 1194–1206 (1993)

    ADS  Google Scholar 

  105. A.A. Shvartsburg, B. Liu, Z.Y. Lu, C.Z. Wang, M.F. Jarrold, K.M. Ho, Structures of germanium clusters: Where the growth patterns of silicon and germanium clusters diverge. Phys. Rev. Lett. 83(11), 2167–2170 (1999)

    ADS  Google Scholar 

  106. G.H. Lu, S.H. Deng, T.M. Wang, M. Kohyama, R. Yamamoto, Theoretical tensile strength of an Al grain boundary. Phys. Rev. B 69(13), 134106 (2004)

    ADS  Google Scholar 

  107. K. Carling, G. Wahnstrom, T.R. Mattsson, A.E. Mattsson, N. Sandberg, G. Grimvall, Vacancies in metals: from first-principles calculations to experimental data. Phys. Rev. Lett. 85(18), 3862–3865 (2000)

    ADS  Google Scholar 

  108. S. Ogata, J. Li, S. Yip, Ideal pure shear strength of aluminum and copper. Science 298(5594), 807–811 (2002)

    ADS  Google Scholar 

  109. G.A. Breaux, C.M. Neal, B. Cao, M.F. Jarrold, Melting, premelting, and structural transitions in size-selected aluminum clusters with around 55 atoms. Phys. Rev. Lett. 94(17), 173401 (2005)

    ADS  Google Scholar 

  110. H.H. Liu, E.Y. Jiang, H.L. Bai, P. Wu, Z.Q. Li, C.Q. Sun, Possible paths towards magic clusters formation. THEOCHEM 728(1–3), 203–207 (2005)

    Google Scholar 

  111. H. Haberland, T. Hippler, J. Donges, O. Kostko, M. Schmidt, B. von Issendorff, Melting of sodium clusters: where do the magic numbers come from? Phys. Rev. Lett. 94(3), 035701 (2005)

    ADS  Google Scholar 

  112. T. Bachels, H.J. Guntherodt, R. Schafer, Melting of isolated tin nanoparticles. Phys. Rev. Lett. 85(6), 1250–1253 (2000)

    ADS  Google Scholar 

  113. C.Q. Sun, C.M. Li, H.L. Bai, E.Y. Jiang, Melting point oscillation of a solid over the whole range of sizes. Nanotechnology 16(8), 1290–1293 (2005)

    ADS  Google Scholar 

  114. F. Huang, G.J. Mankey, M.T. Kief, R.F. Willis, Finite-size-scaling behavior of ferromagnetic thin-films. J. Appl. Phys. 73(10), 6760–6762 (1993)

    ADS  Google Scholar 

  115. G.G. Kenning, J.M. Slaughter, J.A. Cowen, Finite-size effects in a CuMn spin-glass. Phys. Rev. Lett. 59(22), 2596–2599 (1987)

    ADS  Google Scholar 

  116. Z.Q. Qiu, J. Pearson, S.D. Bader, Asymmetry of the spin reorientation transition in ultrathin fe films and wedges grown on Ag(100). Phys. Rev. Lett. 70(7), 1006–1009 (1993)

    ADS  Google Scholar 

  117. W.L. Zhong, B. Jiang, P.L. Zhang, J.M. Ma, H.M. Cheng, Z.H. Yang, L.X. Li, Phase-transition in PbTiO3 ultrafine particles of different sizes. J. Phys.: Condens. Matter 5(16), 2619–2624 (1993)

    ADS  Google Scholar 

  118. K. Ishikawa, K. Yoshikawa, N. Okada, Size effect on the ferroelectric phase-transition in PbTiO3 ultrafine particles. Phys. Rev. B 37(10), 5852–5855 (1988)

    ADS  Google Scholar 

  119. T. Yu, Z.X. Shen, W.S. Toh, J.M. Xue, J. Wang, Size effect on the ferroelectric phase transition in SrBi2Ta2O9 nanoparticles. J. Appl. Phys. 94(1), 618–620 (2003)

    ADS  Google Scholar 

  120. A.V. Pogrebnyakov, J.M. Redwing, J.E. Jones, X.X. Xi, S.Y. Xu, Q. Li, V. Vaithyanathan, D.G. Schlom, Thickness dependence of the properties of epitaxial MgB2 thin films grown by hybrid physical-chemical vapor deposition. Appl. Phys. Lett. 82(24), 4319–4321 (2003)

    ADS  Google Scholar 

  121. A.P. Tsai, N. Chandrasekhar, K. Chattopadhyay, Size effect on the superconducting transition of embedded lead particles in an Al-Cu-V amorphous matrix. Appl. Phys. Lett. 75(11), 1527–1528 (1999)

    ADS  Google Scholar 

  122. I. Giaever, H.R. Zeller, Superconductivity of small TiN particles measured by tunneling. Phys. Rev. Lett. 20(26), 1504–1508 (1968)

    ADS  Google Scholar 

  123. M. Stampanoni, A. Vaterlaus, M. Aeschlimann, F. Meier, Magnetism of epitaxial bcc iron on Ag(001) observed by spin-polarized photoemission. Phys. Rev. Lett. 59(21), 2483–2485 (1987)

    ADS  Google Scholar 

  124. M.N. Baibich, J.M. Broto, A. Fert, F.N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, J. Chazelas, Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61(21), 2472–2475 (1988)

    ADS  Google Scholar 

  125. C. Liu, E.R. Moog, S.D. Bader, Polar Kerr-effect observation of perpendicular surface anisotropy for ultrathin fcc Fe grown on Cu(100). Phys. Rev. Lett. 60(23), 2422–2425 (1988)

    ADS  Google Scholar 

  126. C.M. Schneider, P. Bressler, P. Schuster, J. Kirschner, J.J. Demiguel, R. Miranda, Curie-temperature of ultrathin films of fcc cobalt epitaxially grown on atomically flat Cu(100) surfaces. Phys. Rev. Lett. 64(9), 1059–1062 (1990)

    ADS  Google Scholar 

  127. X. Hu, Y. Kawazoe, Mean-field theory for critical phenomena in bilayer systems. Phys. Rev. B 50(17), 12647–12658 (1994)

    ADS  Google Scholar 

  128. J.T. Ou, F.R. Wang, D.L. Lin, Critical behavior of magnetic films in the Ising model. Phys. Rev. E 56(3), 2805–2810 (1997)

    ADS  Google Scholar 

  129. Y. Li, K. Baberschke, Dimensional crossover in ultrathin Ni(111) films on W(110). Phys. Rev. Lett. 68(8), 1208–1211 (1992)

    ADS  Google Scholar 

  130. M. Tischer, D. Arvanitis, T. Yokoyama, T. Lederer, L. Troger, K. Baberschke, Temperature-dependent mcxd measurements of thin Ni films on Cu(100). Surf. Sci. 307, 1096–1101 (1994)

    ADS  Google Scholar 

  131. L.H. Tjeng, Y.U. Idzerda, P. Rudolf, F. Sette, C.T. Chen, Soft-x-ray magnetic circular-dichroism—a new technique for probing magnetic-properties of magnetic-surfaces and ultrathin films. J. Magn. Magn. Mater. 109(2–3), 288–292 (1992)

    ADS  Google Scholar 

  132. J.S. Jiang, C.L. Chien, Magnetization and finite-size effects in Gd/W multilayers. J. Appl. Phys. 79(8), 5615–5617 (1996)

    ADS  Google Scholar 

  133. J.S. Jiang, D. Davidovic, D.H. Reich, C.L. Chien, Oscillatory superconducting transition-temperature in Nb/Gd multilayers. Phys. Rev. Lett. 74(2), 314–317 (1995)

    ADS  Google Scholar 

  134. P.H. Zhou, D.S. Xue, Finite-size effect on magnetic properties in Prussian blue nanowire arrays. J. Appl. Phys. 96(1), 610–614 (2004)

    ADS  Google Scholar 

  135. M.E. Fisher, M.N. Barber, Scaling theory for finite-size effects in critical region. Phys. Rev. Lett. 28(23), 1516–1519 (1972)

    ADS  Google Scholar 

  136. D.S. Ritchie, M.E. Fisher, Finite-size and surface effects in Heisenberg films. Phys. Rev. B 7(1), 480–494 (1973)

    ADS  Google Scholar 

  137. M.N. Barber, in Phase Transitions and Critical Phenomena, ed. by C. Domb, J. Lebowita, Vol. 8 (Academic, New York, 1983)

    Google Scholar 

  138. R.J. Zhang, R.F. Willis, Thickness-dependent Curie temperatures of ultrathin magnetic films: Effect of the range of spin–spin interactions. Phys. Rev. Lett. 86(12), 2665–2668 (2001)

    ADS  Google Scholar 

  139. V.I. Nikolaev, A.M. Shipilin, The influence of breaking of exchange bonds on the Curie temperature. Phys. Solid State 45(6), 1079–1080 (2003)

    ADS  Google Scholar 

  140. B. Sadeh, M. Doi, T. Shimizu, M.J. Matsui, Dependence of the Curie temperature on the diameter of Fe3O4 ultra-fine particles. J Magn Soc Jpn 24, 511–514 (2000)

    Google Scholar 

  141. P.G. Degennes, Superconductivity of Metals and Alloys (Benjamin, New York, 1966)

    Google Scholar 

  142. R. Goswami, S. Banerjee, K. Chattopadhyay, A.K. Raychaudhuri, Superconductivity in rapidly quenched metallic systems with nanoscale structure. J. Appl. Phys. 73(6), 2934–2940 (1993)

    ADS  Google Scholar 

  143. C.Q. Sun, Surface and nanosolid core-level shift: Impact of atomic coordination-number imperfection. Phys. Rev. B 69(4), 045105 (2004)

    ADS  Google Scholar 

  144. R. Kubo, Electronic properties of metallic fine particles. I. J. Phys. Soc. Jpn. 17(6), 975–979 (1962)

    ADS  MATH  MathSciNet  Google Scholar 

  145. P.W. Anderson, Theory of dirty superconductors. J. Phys. Chem. Solids 11(1–2), 26–30 (1959)

    ADS  Google Scholar 

  146. M. Strongin, R.S. Thompson, O.F. Kammerer, J.E. Crow, Destruction of superconductivity in disordered near-monolayer films. Phys. Rev. B 1(3), 1078–1090 (1970)

    ADS  Google Scholar 

  147. B. Muhlschl, Dj Scalapin, R. Denton, Thermodynamic properties of small superconducting particles. Phys. Rev. B 6(5), 1767 (1972)

    ADS  Google Scholar 

  148. Y. Guo, Y.F. Zhang, X.Y. Bao, T.Z. Han, Z. Tang, L.X. Zhang, W.G. Zhu, E.G. Wang, Q. Niu, Z.Q. Qiu, J.F. Jia, Z.X. Zhao, Q.K. Xue, Superconductivity modulated by quantum size effects. Science 306(5703), 1915–1917 (2004)

    ADS  Google Scholar 

  149. A.V. Pogrebnyakov, J.M. Redwing, S. Raghavan, V. Vaithyanathan, D.G. Schlom, S.Y. Xu, Q. Li, D.A. Tenne, A. Soukiassian, X.X. Xi, M.D. Johannes, D. Kasinathan, W.E. Pickett, J.S. Wu, J.C.H. Spence, Enhancement of the superconducting transition temperature of MgB2 by a strain-induced bond-stretching mode softening. Phys. Rev. Lett. 93(14), 147006 (2004)

    ADS  Google Scholar 

  150. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410(6824), 63–64 (2001)

    ADS  Google Scholar 

  151. N. Hur, P.A. Sharma, S. Guha, M.Z. Cieplak, D.J. Werder, Y. Horibe, C.H. Chen, S.W. Cheong, High-quality MgB2 films on boron crystals with onset T-c of 41.7 K. Appl. Phys. Lett. 79(25), 4180–4182 (2001)

    ADS  Google Scholar 

  152. T. Yildirim, O. Gulseren, A simple theory of 40 K superconductivity in MgB2: first-principles calculations of T-c its dependence on boron mass and pressure. J. Phys. Chem. Solids 63(12), 2201–2206 (2002)

    ADS  Google Scholar 

  153. V. Hornebecq, C. Huber, M. Maglione, M. Antonietti, C. Elissalde, Dielectric properties of pure (BaSr)TiO3 and composites with different grain sizes ranging from the nanometer to the micrometer. Adv. Funct. Mater. 14(9), 899–904 (2004)

    Google Scholar 

  154. Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70(2), 024107 (2004)

    ADS  Google Scholar 

  155. J. Hong, H.W. Song, J. Choi, S.K. Kim, Y. Kim, K. No, Dependence of ferroelectricity on film thickness in nano-scale Pb(Zr, Ti)O-3 thin films. Integr. Ferroelectr. 68, 157–159 (2004)

    Google Scholar 

  156. W.P. Tong, N.R. Tao, Z.B. Wang, J. Lu, K. Lu, Nitriding iron at lower temperatures. Science 299(5607), 686–688 (2003)

    ADS  Google Scholar 

  157. C.L. Wang, Y. Xin, X.S. Wang, W.L. Zhong, Size effects of ferroelectric particles described by the transverse Ising model. Phys. Rev. B 62(17), 11423–11427 (2000)

    ADS  Google Scholar 

  158. B. Jiang, L.A. Bursill, Phenomenological theory of size effects in ultrafine ferroelectric particles of lead titanate. Phys. Rev. B 60(14), 9978–9982 (1999)

    ADS  Google Scholar 

  159. H.T. Huang, C.Q. Sun, T.S. Zhang, P. Hing, Grain-size effect on ferroelectric Pb(Zr1-xTix)O-3 solid solutions induced by surface bond contraction. Phys. Rev. B 63(18), 184112 (2001)

    ADS  Google Scholar 

  160. H.T. Huang, C.Q. Sun, P. Hing, Surface bond contraction and its effect on the nanometric sized lead zirconate titanate. J. Phys.: Condens. Matter 12(6), L127–L132 (2000)

    ADS  Google Scholar 

  161. M. Tanaka, Y. Makino, Finite size effects in submicron barium titanate particles. Ferroelectr. Lett. Sect. 24(1–2), 13–23 (1998)

    Google Scholar 

  162. A. Munkholm, S.K. Streiffer, M.V.R. Murty, J.A. Eastman, C. Thompson, O. Auciello, L. Thompson, J.F. Moore, G.B. Stephenson, Antiferrodistortive reconstruction of the PbTiO3(001) surface. Phys. Rev. Lett. 88(1), 016101 (2002)

    ADS  Google Scholar 

  163. H.T. Huang, L.M. Zhou, J. Guo, H.H. Hng, J.T. Oh, P. Hing, F spots and domain patterns in rhombohedral PbZr0.90Ti0.10O3. Appl. Phys. Lett. 83(18), 3692–3694 (2003)

    ADS  Google Scholar 

  164. Q. Jiang, X.F. Cui, M. Zhao, Size effects on Curie temperature of ferroelectric particles. Appl. Phys. A-Mater. Sci. Process. 78(5), 703–704 (2004)

    ADS  Google Scholar 

  165. R.D. Zysler, D. Fiorani, A.M. Testa, L. Suber, E. Agostinelli, M. Godinho, Size dependence of the spin-flop transition in hematite nanoparticles. Phys. Rev. B 68(21), 212408 (2003)

    ADS  Google Scholar 

  166. N. Amin, S. Arajs, Morin temperature of annealed submicronic alpha-Fe2O3 particles. Phys. Rev. B 35(10), 4810–4811 (1987)

    ADS  Google Scholar 

  167. E. Weschke, H. Ott, E. Schierle, C. Schussler-Langeheine, D.V. Vyalikh, G. Kaindl, V. Leiner, M. Ay, T. Schmitte, H. Zabel, P.J. Jensen, Finite-size effect on magnetic ordering temperatures in long-period antiferromagnets: holmium thin films. Phys. Rev. Lett. 93(15), 157204 (2004)

    ADS  Google Scholar 

  168. E.E. Fullerton, K.T. Riggs, C.H. Sowers, S.D. Bader, A. Berger, Suppression of biquadratic coupling in Fe/Cr(001) superlattices below the neel transition of Cr. Phys. Rev. Lett. 75(2), 330–333 (1995)

    ADS  Google Scholar 

  169. S.S. Rao, K.N. Anuradha, S. Sarangi, S.V. Bhat, Weakening of charge order and antiferromagnetic to ferromagnetic switch over in Pr0.5Ca0.5MnO3 nanowires. Appl. Phys. Lett. 87(18), 182503 (2005)

    ADS  Google Scholar 

  170. S.Z. Ma, X.H. Wang, J. Zhou, L.T. Li, C.Q. Sun, Thermal stability of the nanostructured BaTiO3 determined by long and short range interactions: a dual-shell model. J. Appl. Phys. 107(6), 064102 (2010)

    ADS  Google Scholar 

  171. W.H. Zhong, C.Q. Sun, B.K. Tay, S. Li, H.L. Bai, E.Y. Jiang, Curie temperature suppression of ferromagnetic nanosolids. J. Phys.: Condens. Matter 14(23), L399–L405 (2002)

    ADS  Google Scholar 

  172. R. Bergholz, U. Gradmann, Structure and magnetism of oligatomic Ni(111)-films on Re(0001). J. Magn. Magn. Mater. 45(2–3), 389–398 (1984)

    ADS  Google Scholar 

  173. K. Uchina, Y. Sadanaga, T. Hirose, J Am Ceram Soc. 72, 1555 (1999)

    Google Scholar 

  174. S. Chattopadhyay, P. Ayyub, V.R. Palkar, A.V. Gurjar, R.M. Wankar, M. Multani, Finite-size effects in antiferroelectric PbZrO3 nanoparticles. J. Phys.-Condens Matter 9(38), 8135–8145 (1997)

    ADS  Google Scholar 

  175. S. Li, T. White, J. Plevert, C.Q. Sun, Superconductivity of nano-crystalline MgB2. Supercond. Sci. Technol. 17(9), S589–S594 (2004)

    ADS  Google Scholar 

  176. S. Li, T. White, C.Q. Sun, Y.Q. Fu, J. Plevert, K. Lauren, Discriminating lattice structural effects from electronic contributions to the superconductivity of doped MgB2 with nanotechnology. J. Phys. Chem. B 108(42), 16415–16419 (2004)

    Google Scholar 

  177. S. Schlag, H.F. Eicke, W.B. Stern, Size driven phase transition and thermodynamic properties of nanocrystalline BaTiO3. Ferroelectr. Lett. Sect. 173, 351–369 (1995)

    Google Scholar 

  178. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45(2), 103–189 (2000)

    Google Scholar 

  179. G. Ouyang, C.X. Wang, G.W. Yang, Anomalous interfacial diffusion in immiscible metallic multilayers: a size-dependent kinetic approach. Appl. Phys. Lett. 86(17), 171914 (2005)

    ADS  Google Scholar 

  180. I.M. Razumovskii, L.G. Kornelyuk, R.Z. Valiev, V.I. Sergeev, Diffusion along nonequilibrium grain-boundaries in a nickel-base superalloy. Mater. Sci. Eng., A:-Struct. Mater. Prop. Microstruct and Processing 167(1–2), 123–127 (1993)

    Google Scholar 

  181. J. Horvath, Diffusion in nanocrystalline materials diffusion and defect data—Solid State Data. Part A: Defect Diffus. Forum 66–69, 207–227 (1989)

    Google Scholar 

  182. T. Mutschele, R. Kirchheim, Segregation and diffusion of hydrogen in grain-boundaries of palladium. Scr. Metall. 21(2), 135–140 (1987)

    Google Scholar 

  183. Y.R. Kolobov, G.P. Grabovetskaya, I.V. Ratochka, E.V. Kabanova, E.V. Naidenkin, T.C. Lowe, Effect of grain-boundary diffusion fluxes of copper on the acceleration of creep in submicrocrystalline nickel. Ann. Chim.-Sci. Mat. 21(6-7), 483–491 (1996)

    Google Scholar 

  184. R. Wurschum, A. Kubler, S. Gruss, P. Acharwaechter, W. Frank, R.Z. Valiev, R.R. Mulyukov, H.E. Schaeffer, Tracer diffusion and crystallite growth in ultra-fine-grained Pd prepared by severe plastic deformation. Ann. Chim.-Sci. Mat. 21(6-7), 471–482 (1996)

    Google Scholar 

  185. Z.B. Wang, N.R. Tao, W.P. Tong, J. Lu, K. Lu, Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment. Acta Mater. 51(14), 4319–4329 (2003)

    Google Scholar 

  186. Y.M. Mishin, I.M. Razumovskii, Development of boundary diffusion-models. Scr. Metall. Materialia 25(6), 1375–1380 (1991)

    Google Scholar 

  187. T. Shibata, B.A. Bunker, Z.Y. Zhang, D. Meisel, C.F. Vardeman, J.D. Gezelter, Size-dependent spontaneous alloying of Au-Ag nanoparticles. J. Am. Chem. Soc. 124(40), 11989–11996 (2002)

    Google Scholar 

  188. H.C. Kim, T.L. Alford, D.R. Allee, Thickness dependence on the thermal stability of silver thin films. Appl. Phys. Lett. 81(22), 4287–4289 (2002)

    ADS  Google Scholar 

  189. C.M. Li, C.S. Cha, Powder microelectrodes I. Reversible systems. Acta Phys. Chim. Sin. 4(2), 167–171 (1988)

    Google Scholar 

  190. C.S. Cha, C.M. Li, H.X. Yang, P.F. Liu, Powder microelectrodes. J. Electroanal. Chem. 368(1–2), 47–54 (1994)

    Google Scholar 

  191. C.M. Li, C.S. Cha, Porous carbon composite/enzyme glucose microsensor. Front. Biosci. 9, 3324–3330 (2004)

    Google Scholar 

  192. D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, S.T. Lee, Small-diameter silicon nanowire surfaces. Science 299(5614), 1874–1877 (2003)

    ADS  Google Scholar 

  193. C.Q. Sun, H. Xie, W. Zhang, H. Ye, P. Hing, Preferential oxidation of diamond {111}. J. Phys. D-Appl. Phys. 33(17), 2196–2199 (2000)

    ADS  Google Scholar 

  194. M.L. Alymov, E.I. Maltina, Y.N. Stepanov, Nanostruct. Mater. 4 (1994)

    Google Scholar 

  195. S. Ma, H. Liang, X. Wang, J. Zhou, L. Li, C.Q. Sun, Controlling the band gap of ZnO by programmable annealing. J. Phys. Chem. C 115(42), 20487–20490 (2011)

    Google Scholar 

  196. Y. Hu, O.K. Tan, W.Q. Cao, W.G. Zhu, Fabrication and characterization of nano-sized SrTiO3-based oxygen sensor for near room-temperature operation. IEEE Sens. J. 5(5), 825–832 (2005)

    Google Scholar 

  197. Y. Hu, O.K. Tan, J.S. Pan, X. Yao, A new form of nanosized SrTiO3 material for near-human-body temperature oxygen sensing applications. J. Phys. Chem. B 108(30), 11214–11218 (2004)

    Google Scholar 

  198. M.K. Zayed, H.E. Elsayed-Ali, Condensation on (002) graphite of liquid bismuth far below its bulk melting point. Phys. Rev. B 72(20), 205426 (2005)

    ADS  Google Scholar 

  199. Q. Jiang, F.G. Shi, Size-dependent initial sintering temperature of ultrafine particles. J. Mater. Sci. Technol. 14(2), 171–172 (1998)

    MathSciNet  Google Scholar 

  200. H. Roder, E. Hahn, H. Brune, J.P. Bucher, K. Kern, Building one-dimensional and 2-dimensional nanostructures by diffusion-controlled aggregation at surfaces. Nature 366(6451), 141–143 (1993)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). Thermal Stability: Atomic Cohesive Energy. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_14

Download citation

Publish with us

Policies and ethics