Skip to main content

End and Edge States: Entrapment and Polarization

  • Chapter
  • First Online:
Relaxation of the Chemical Bond

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 108))

Abstract

The effective atomic CN of adatoms, atoms at terrace edges, and the ends of atomic chains is even lower than that of the flat surface (4 instead of 6). Quantum entrapment is global, and polarization is subjective, depending on the electronic configuration in the valence band. Defects and edges are associated with local bond strain, entrapment, and the subjective polarization. Graphite monolayer skin only shows entrapment, but the atomic vacancy shows both entrapment and polarization—one neighbor short makes a great difference. Pt and Co islands exhibit entrapment dominance, while Au, Ag, Rh, W edges, and islands show both, which could be of use in classifying the catalytic nature of the undercoordinated specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Jiang, K.H. Wu, J. Ma, B. Wu, E.G. Wang, P. Ebert, Quantum size effects in the nonmetal to metal transition of two-dimensional Al Islands. Phys. Rev. B 76(23), 235434 (2007)

    Article  ADS  Google Scholar 

  2. Y. Niimi, T. Matsui, H. Kambara, H. Fukuyama, STM/STS measurements of two-dimensional electronic states trapped around surface defects in magnetic fields. Physica E 34(1–2), 100–103 (2006)

    Article  ADS  Google Scholar 

  3. V.S. Stepanyuk, A.N. Klavsyuk, L. Niebergall, P. Bruno, End electronic states in Cu chains on Cu(111): ab initio calculations. Phys. Rev. B 72(15), 153407 (2005)

    Article  ADS  Google Scholar 

  4. J.N. Crain, D.T. Pierce, End states in one-dimensional atom chains. Science 307(5710), 703–706 (2005)

    Article  ADS  Google Scholar 

  5. Y. Kobayashi, K. Kusakabe, K. Fukui, T. Enoki, STM/STS observation of peculiar electronic states at graphite edges. Physica E 34(1–2), 678–681 (2006)

    Article  ADS  Google Scholar 

  6. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B 54(24), 17954–17961 (1996)

    Article  ADS  Google Scholar 

  7. S. Mattila, J.A. Leiro, M. Heinonen, T. Laiho, Core level spectroscopy of MoS2. Surf. Sci. 600(24), 1168–1175 (2006)

    Article  Google Scholar 

  8. G. Fanchini, A. Tagliaferro, N.M.J. Conway, C. Godet, Role of lone-pair interactions and local disorder in determining the interdependency of optical constants of a—CN:H thin films. Phys. Rev. B 66(19), 195415 (2002)

    Article  ADS  Google Scholar 

  9. J. Ciston, L.D. Marks, R. Feidenhans’l, O. Bunk, G. Falkenberg, E.M. Lauridsen, Experimental surface charge density of the Si(100)-2 × 1H surface. Phys. Rev. B 74(8), 085401 (2006)

    Article  ADS  Google Scholar 

  10. T. Fauster, C. Reuss, I.L. Shumay, M. Weinelt, F. Theilmann, A. Goldmann, Influence of surface morphology on surface states for Cu on Cu(111). Phys. Rev. B 61(23), 16168–16173 (2000)

    Article  ADS  Google Scholar 

  11. A. Hermann, P. Schwerdtfeger, W.G. Schmidt, Theoretical study of the localization of excess electrons at the surface of ice. J. Phys. Condens. Matter 20(22), 225003 (2008)

    Article  ADS  Google Scholar 

  12. Z. Abbas, C. Labbez, S. Nordholm, E. Ahlberg, Size-dependent surface charging of nanoparticles. J. Chem. Phys. C 112(15), 5715–5723 (2008)

    Article  Google Scholar 

  13. C.Q. Sun, Oxidation electronics: bond–band–barrier correlation and its applications. Prog. Mater Sci. 48(6), 521–685 (2003)

    Article  Google Scholar 

  14. K. Schouteden, E. Lijnen, D.A. Muzychenko, A. Ceulemans, L.F. Chibotaru, P. Lievens, C.V. Haesendonck, A study of the electronic properties of Au nanowires and Au nanoislands on Au(111) surfaces. Nanotechnology 20(39), 395401 (2009)

    Article  Google Scholar 

  15. X. Zhang, J.L. Kuo, M.X. Gu, X.F. Fan, P. Bai, Q.G. Song, C.Q. Sun, Local structure relaxation, quantum trap depression, and valence charge polarization induced by the shorter-and-stronger bonds between under-coordinated atoms in gold nanostructures. Nanoscale 2(3), 412–417 (2010)

    Article  ADS  Google Scholar 

  16. W.J. Huang, R. Sun, J. Tao, L.D. Menard, R.G. Nuzzo, J.M. Zuo, Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat. Mater. 7(4), 308–313 (2008)

    Article  ADS  Google Scholar 

  17. C.Q. Sun, H.L. Bai, S. Li, B.K. Tay, C. Li, T.P. Chen, E.Y. Jiang, Length, strength, extensibility, and thermal stability of a Au–Au bond in the gold monatomic chain. J. Phys. Chem. B 108(7), 2162–2167 (2004)

    Article  Google Scholar 

  18. N. Nilius, M.V. Ganduglia-Pirovano, V. Brázdová, M. Kulawik, J. Sauer, H.J. Freund, Electronic properties and charge state of gold monomers and chains adsorbed on alumina thin films on NiAl(110). Phys. Rev. B 81, 045422 (2010)

    Article  ADS  Google Scholar 

  19. A. Sperl, J. Kroger, R. Berndt, A. Franke, E. Pehlke, Evolution of unoccupied resonance during the synthesis of a silver dimer on Ag(111). N. J. Phys. 11(6), 063020 (2009)

    Article  Google Scholar 

  20. A. Sperl, J. Kroger, N. Neel, H. Jensen, R. Berndt, A. Franke, E. Pehlke, Unoccupied states of individual silver clusters and chains on Ag(111). Phys. Rev. B 77(8), 085422–085427 (2008)

    Article  ADS  Google Scholar 

  21. C.Q. Sun, Atomic scale purification of electron spectroscopic information. USA patent: publication: 22 Dec 2011: WO 2011/159252), 2011: USA

    Google Scholar 

  22. C.Q. Sun, Y. Wang, Y.G. Nie, Y. Sun, J.S. Pan, L.K. Pan, Z. Sun, Adatoms-induced local bond contraction, quantum trap depression, and charge polarization at Pt and Rh surfaces. J. Chem. Phys. C 113(52), 21889–21894 (2009)

    Article  Google Scholar 

  23. Y. Wang, X. Zhang, Y. Nie, C.Q. Sun, Under-coordinated atoms induced local strain, quantum trap depression and valence charge polarization at W stepped surfaces. Physica B 407(1), 49–53 (2012)

    Article  ADS  Google Scholar 

  24. G.K. Wertheim, P.H. Citrin, Surface-atom core-level shifts of W(111). Phys. Rev. B 38(11), 7820–7823 (1988)

    Article  ADS  Google Scholar 

  25. A.M. Shikin, A. Varykhalov, G.V. Prudnikova, V.K. Adamchuk, W. Gudat, O. Rader, Photoemission from stepped W(110): initial or final state effect? Phys. Rev. Lett. 93(14), 146802 (2004)

    Article  ADS  Google Scholar 

  26. D.M. Riffe, B. Kim, J.L. Erskine, Surface core-level shifts and atomic coordination at a stepped W(110) surface. Phys. Rev. B 50(19), 14481–14488 (1994)

    Article  ADS  Google Scholar 

  27. K.G. Purcell, J. Jupille, G.P. Derby, D.A. King, Identification of underlayer components in the surface core-level spectra of W(111). Phys. Rev. B 36(2), 1288–1291 (1987)

    Article  ADS  Google Scholar 

  28. Y. Wang, X. Zhang, Y.G. Nie, C.Q. Sun, Under-coordinated atoms induced local strain, quantum trap depression and valence charge polarization at W stepped surfaces. Physica B-Condens. Matter 407(1), 49–53 (2012)

    Article  ADS  Google Scholar 

  29. J. Gustafson, M. Borg, A. Mikkelsen, S. Gorovikov, E. Lundgren, J.N. Andersen, Identification of step atoms by high resolution core level spectroscopy. Phys. Rev. Lett. 91(5), 056102 (2003)

    Article  ADS  Google Scholar 

  30. A. Baraldi, S. Lizzit, F. Bondino, G. Comelli, R. Rosei, C. Sbraccia, N. Bonini, S. Baroni, A. Mikkelsen, J.N. Andersen, Thermal stability of the Rh(110) missing-row reconstruction: combination of real-time core-level spectroscopy and ab initio modeling. Phys. Rev. B 72(7), 075417 (2005)

    Article  ADS  Google Scholar 

  31. O. Mironets, H.L. Meyerheim, C. Tusche, V.S. Stepanyuk, E. Soyka, P. Zschack, H. Hong, N. Jeutter, R. Felici, J. Kirschner, Direct evidence for mesoscopic relaxations in cobalt nanoislands on Cu(001). Phys. Rev. Lett. 100(9), 096103 (2008)

    Article  ADS  Google Scholar 

  32. M.V. Rastei, B. Heinrich, L. Limot, P.A. Ignatiev, V.S. Stepanyuk, P. Bruno, J.P. Bucher, Size-dependent surface states of strained cobalt nanoislands on Cu(111). Phys. Rev. Lett. 99(24), 246102–246104 (2007)

    Article  ADS  Google Scholar 

  33. A. Baraldi, E. Vesselli, L. Bianchettin, G. Comelli, S. Lizzit, L. Petaccia, S. de Gironcoli, A. Locatelli, T.O. Mentes, L. Aballe, J. Weissenrieder, J.N. Andersen, The (1 × 1)-> hexagonal structural transition on Pt(100) studied by high-energy resolution core level photoemission. J. Chem. Phys. 127(16), 164702 (2007)

    Article  ADS  Google Scholar 

  34. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  35. Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Edge state on hydrogen-terminated graphite edges investigated by scanning tunneling microscopy. Phys. Rev. B 73(12), 125415 (2006)

    Article  ADS  Google Scholar 

  36. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005)

    Article  ADS  Google Scholar 

  37. X. Du, I. Skachko, F. Duerr, A. Luican, E.Y. Andrei, Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462(7270), 192–195 (2009)

    Article  ADS  Google Scholar 

  38. K.I. Bolotin, F. Ghahari, M.D. Shulman, H.L. Stormer, P. Kim, Observation of the fractional quantum Hall effect in graphene. Nature 462(7270), 196–199 (2009)

    Article  ADS  Google Scholar 

  39. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum hall effect in graphene. Science 315(5817), 1379 (2007)

    Article  ADS  Google Scholar 

  40. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008)

    Article  ADS  Google Scholar 

  41. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907 (2008)

    Article  ADS  Google Scholar 

  42. T. Enoki, Y. Kobayashi, K.I. Fukui, Electronic structures of graphene edges and nanographene. Int. Rev. Phys. Chem. 26(4), 609–645 (2007)

    Article  Google Scholar 

  43. Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada, H. Fukuyama, Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges. Phys. Rev. B 73(8), 085421–085428 (2006)

    Article  ADS  Google Scholar 

  44. Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 71(19), 193406 (2005)

    Article  ADS  Google Scholar 

  45. M.M. Ugeda, I. Brihuega, F. Guinea, J.M. GĂłmez-RodrĂ­guez, Missing atom as a source of carbon magnetism. Phys. Rev. Lett. 104, 096804 (2010)

    Article  ADS  Google Scholar 

  46. C.O. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, C.H. Park, M.F. Crommie, M.L. Cohen, S.G. Louie, A. Zettl, Graphene at the edge: stability and dynamics. Science 323(5922), 1705–1708 (2009)

    Article  ADS  Google Scholar 

  47. C.Q. Sun, Y. Sun, Y.G. Nie, Y. Wang, J.S. Pan, G. Ouyang, L.K. Pan, Z. Sun, Coordination-resolved C–C bond length and the C1s binding energy of carbon allotropes and the effective atomic coordination of the few-layer graphene. J. Chem. Phys. C 113(37), 16464–16467 (2009)

    Article  Google Scholar 

  48. X.X. Yang, J.W. Li, Z.F. Zhou, Y. Wang, L.W. Yang, W.T. Zheng, C.Q. Sun, Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C–C bond in graphene. Nanoscale 4(2), 502–510 (2012)

    Article  ADS  Google Scholar 

  49. W.T. Zheng, C.Q. Sun, Underneath the fascinations of carbon nanotubes and graphene nanoribbons. Energy Environ. Sci. 4(3), 627–655 (2011)

    Article  Google Scholar 

  50. X. Zhang, Y.G. Nie, W.T. Zheng, J.L. Kuo, C.Q. Sun, Discriminative generation and hydrogen modulation of the Dirac–Fermi polarons at graphene edges and atomic vacancies. Carbon 49(11), 3615–3621 (2011)

    Article  Google Scholar 

  51. C.Q. Sun, Y. Nie, J. Pan, X. Zhang, S.Z. Ma, Y. Wang, W. Zheng, Zone-selective photoelectronic measurements of the local bonding and electronic dynamics associated with the monolayer skin and point defects of graphite. RSC Adv. 2(6), 2377–2383 (2012)

    Article  Google Scholar 

  52. K. Nakada, M. Fujita, K. Wakabayashi, K. Kusakabe. Localized electronic states on graphite edge. in 21st International Conference on Low Temperature Physics (LT 21). Prague, Czech Republic (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Q. Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Sun, C.Q. (2014). End and Edge States: Entrapment and Polarization. In: Relaxation of the Chemical Bond. Springer Series in Chemical Physics, vol 108. Springer, Singapore. https://doi.org/10.1007/978-981-4585-21-7_13

Download citation

Publish with us

Policies and ethics