Skip to main content

Grid Antenna Arrays

  • Reference work entry
  • First Online:
Handbook of Antenna Technologies
  • 13k Accesses

Abstract

Grid antenna array (GAA) is a kind of planar array antenna with multiple rectangular loops. It can flexibly function either as a traveling-wave or non-traveling-wave antenna. This chapter lists clearly the different variations of the GAA and reviews briefly its theory development as well as applications. With a focus of the resonant GAA for 60-GHz millimeter-wave applications, the basic theory and operation are explored for the basic single-feed, dual-feed, and sub-array structures. More importantly, the further integration of the GAA as an antenna-in-package (AiP) module is presented with the design, fabrication, and test details at 60 GHz. The chapter finally reviews the state-of-the-art GAA millimeter-wave applications showing that the GAA really has wide applications from low microwave frequencies even to 120-GHz millimeter-wave frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bauer F, Menzel W (2011) A 79 GHz microstrip grid array antenna using a laminated waveguide feed in LTCC. In: Proceedings IEEE symposium on antennas and propagation, Spokane, WA, USA, pp 2067–2070

    Google Scholar 

  • Bauer F et al (2013) A 79 GHz radar sensor in LTCC technology using grid array antennas. IEEE Trans Microw Theory Tech 61(6):2013–2521

    Article  Google Scholar 

  • Beer S et al (2013) D-band grid-array antenna integrated in the lid of a surface-mountable chip-package. In: Proceedings European conference on antennas and propagation, Gothenburg, Sweden, pp 1318–1322

    Google Scholar 

  • Budka TP (2001) Wide-bandwidth millimeter-wave bond-wire interconnects. IEEE Trans Microw Theory Tech 49(4):715–718

    Article  Google Scholar 

  • Conti R et al (1981) The wire-grid microstrip antenna. IEEE Trans Antennas Propag AP-29(1):157–166

    Article  Google Scholar 

  • Doan C et al (2004) Design considerations for 60 GHz CMOS radios. IEEE Commun Mag 42:132–140

    Article  Google Scholar 

  • Floyd B et al (2006) A silicon 60 GHz receiver and transmitter chipset for broadband communications. ISSCC digest of technical papers, San Francisco, pp 184–185

    Google Scholar 

  • Frei M et al (2011) A 79 GHz differentially fed grid array antenna. In: Proceedings European microwave conference, Manchester, UK, pp 1320–1323

    Google Scholar 

  • Gunnarsson SE et al (2005) Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology. IEEE J Solid-State Circ 40(11):2174–2186

    Article  Google Scholar 

  • Gunnarsson SE et al (2007) 60 GHz single-chip front-end MMICs and systems for multi-Gb/s wireless communication. IEEE J Solid-State Circ 42(5):1143–1157

    Article  Google Scholar 

  • He J, Zhang Y (2008) Design and analysis of SPST and SPDT switches for 60-GHz applications in 65-nmCMOS. In: Proceedings Asia-Pacific microwave conference, Hong Kong and Macau, China, pp 1–4

    Google Scholar 

  • Hildebrand L (1992) Then analysis of microstrip wire-grid antenna arrays. Master thesis

    Google Scholar 

  • Huang D et al (2006) A 60 GHz CMOS differential receiver front-end using on-chip transformer for 1.2 volt operation with enhanced gain and linearity. In: Proceedings symposium on VLSI Circuits, Honolulu, pp 144–145

    Google Scholar 

  • Iitsuka Y et al (2009a) Grid array antenna composed of V-shaped and rhombic elements for beam steering. In: Proceedings IEEE AP-S international symposium, Charleston, USA, pp 1–4

    Google Scholar 

  • Iitsuka Y et al (2009b) Circularly polarized spiral grid array antenna for beam scanning. Proceedings International Symposium on Antennas and Propagation, Bangkok, pp 5–8

    Google Scholar 

  • Iitsuka Y et al (2010) Circularly polarized grid array antenna composed of open-loop elements for beam steering. In: Proceedings IEEE AP-S international symposium, Toronto, pp 1–4

    Google Scholar 

  • Iitsuka Y et al (2012) Grid array antenna radiating a circularly polarized wave. In: Proceedings International Symposium on Antennas and Propagation, Nagoys, pp 130–133

    Google Scholar 

  • Kawano T, Nakano H (1998) Grid array antenna with c-figured elements. In: Proceedings IEEE Antennas and Propagation Society International Symposium, Atlanta, GA, USA, vol 2. pp 1154–1157

    Google Scholar 

  • Kawano T, Nakano H (1999) Cross-mesh array antennas for dual LP and CP waves. In: Proceedings IEEE Antennas and Propagation Society International Symposium, Orlando, FL, USA, vol 4. pp 2748–2751

    Google Scholar 

  • Kawano T, Nakano H (2000) Dual-polarized cross-mesh array antennas. In: Proceedings IEEE Antennas and Propagation Society International Symposium, Orlando, Salt Lake City, UT, USA, vol 2. pp 522–525

    Google Scholar 

  • Kraus J (1964a) A backward angle-fire array antenna. IEEE Trans Antennas Propag 12(1):48–50

    Article  Google Scholar 

  • Kraus J (1964b) Wave velocities on the grid structure backward angle-fire antenna. IEEE Trans Antennas Propag 12:509–510

    Article  Google Scholar 

  • Kraus J (1966) Backward angle non-resonant wire mesh antenna array. US Patent 3209688

    Google Scholar 

  • Lamminen AEI et al (2008) 60 GHz patch antennas and arrays on LTCC with embedded-cavity substrates. IEEE Trans Antennas Propag 56(9):2865–2874

    Article  Google Scholar 

  • Maruhashi K et al (2001) 60 GHz-band flip-chip MMIC modules for IEEE1394 wireless adapters. In: Proceedings 31th European microwave conference, London, England, pp 1–4

    Google Scholar 

  • Nakano H, Kawano T (1997) Grid array antennas. In: Proceedings IEEE Antennas and Propagation Society International Symposium, Montreal, Quebec, Canada, vol 1. pp 236–239

    Google Scholar 

  • Nakano H et al (1994) Numerical analysis of a grid array antenna. In: Proceedings international conference on communication system, Singapore, vol 2. pp 700–704

    Google Scholar 

  • Nakano H et al (1995) Center-fed grid array antennas. In: Proceedings IEEE Antennas and Propagation Society International Symposium, Newport Beach, CA, USA, vol 4. pp 2010–2013

    Google Scholar 

  • Nakano H et al (1996) Honeycomb wire antenna. Electron Lett 32(21):1937–1938

    Article  Google Scholar 

  • Nakano H et al (1997) The radiation characteristics of honeycomb antennas. In: Proceedings 10th international conference on antennas and propagation, Edinburgh, vol 1. pp 350–353

    Google Scholar 

  • Nakano H et al (1998a) Meander-line grid array antenna. IEE Proc Microw Antennas Propag 145(4):309–312

    Article  Google Scholar 

  • Nakano H et al (1998b) Numerical analysis of honeycomb antennas with an electromagnetic feed system. IEE Proc Microw Antennas Propag 145(1):99–103

    Article  MathSciNet  Google Scholar 

  • Nakano H et al (2001a) A cross-mesh array antenna. In: Proceedings 11th international conference on antennas and propagation, Manchester, vol 1. pp 327–330

    Google Scholar 

  • Nakano H et al (2001b) Mesh antennas for dual polarization. IEEE Trans Antennas Propag 49(5):715–723

    Article  Google Scholar 

  • Nakano H et al (2001c) Analysis of a printed grid array antenna by a fast MoM calculation technique. In: Proceedings 11th international conference on antennas and propagation, Manchester, vol 1. pp 302–305

    Google Scholar 

  • Nakano H et al (2005) A fast MoM calculation technique using sinusoidal basis and testing functions for a wire on a dielectric substrate and its application to meander loop and grid array antennas. IEEE Trans Antennas Propag 53(10):3300–3307

    Article  Google Scholar 

  • Nakano H et al (2007) A modified grid array antenna radiating a circularly polarized wave. In: Proceedings IEEE 2007 international symposium microwave antennas and propagation and EMC technologies for wireless communications, Hangzhou, pp 527–530

    Google Scholar 

  • Nakano H et al (2013a) Rhombic grid array antenna. IEEE Trans Antennas Propag 61(5):2482–2489

    Article  Google Scholar 

  • Nakano H et al (2013b) Loop-based circularly polarized grid array antenna with edge excitation. IEEE Trans Antennas Propag 61(8):4045–4053

    Article  Google Scholar 

  • Ohata K et al (2003) 1.25 Gbps wireless gigabit Ethernet link at 60 GHz-band. In: IEEE MTT-S international microwave symposium digest, Philadelphia, pp 373–376

    Google Scholar 

  • Palmer K, Cloete J (1997) Synthesis of the microstrip wire grid array. In: Proceedings 10th international conference on antennas and propagation, Edinburgh, vol 1. pp 114–118

    Google Scholar 

  • Pfeiffer U et al (2006) A chip-scale packaging technology for 60-GHz wireless chipsets. IEEE Trans Microw Theory Tech 56(8):3387–3397

    Article  Google Scholar 

  • Sun M, Zhang Y (2008) Design and integration of 60-GHz grid array antenna in chip package. In: Proceedings Asia-Pacific microwave conference, Macau, pp 1–4

    Google Scholar 

  • Sun Y et al (2006) An integrated 60 GHz transceiver front end for OFDM in SiGe: BiCMOS. Wireless World Research Forum 16, Shanghai

    Google Scholar 

  • Sun M et al (2008) Integration of Yagi antenna in LTCC package for differential 60-GHz radio. IEEE Trans Antennas Propag 56(8):2780–2783

    Article  Google Scholar 

  • Sun M et al (2009a) Integration of grid array antenna in chip package for highly integrated 60-GHz radios. IEEE Antennas Wirel Propag Lett 8:1364–1366

    Article  Google Scholar 

  • Sun M et al (2009b) A ball grid array package with a microstrip grid array antenna for a single-chip 60-GHz receiver. IEEE Trans Antennas Propag 59(6):2134–2140

    Article  Google Scholar 

  • Tanomura M et al (2008) TX and RX front-Ends for 60 GHz band in 90 nm standard bulk CMOS. ISSCC digest technical papers, San Francisco, pp 558–559

    Google Scholar 

  • Tiuri M et al (1974a) Chain antenna. In: Proceedings IEEE Antennas and Propagation Society International Symposium, Atlanta, Georgia, pp 274–277

    Google Scholar 

  • Tiuri M et al (1974b) Chain antenna. US Patent 3806946

    Google Scholar 

  • Tomkins A et al (2009) A zero-IF 60 Ghz 65 nm CMOS transceiver with direct BPSK modulation demonstrating up to 6 Gb/s data rates over a 2 m wireless link. IEEE J Solid-State Circ 44(8):2085–2099

    Article  Google Scholar 

  • Toth J et al (1983) Wire grid microstrip antenna. US Patent 4376938

    Google Scholar 

  • Zhang Y, Liu D (2009) Antenna-on-chip and antenna-in-package solutions to highly-integrated millimeter-wave devices for wireless communications. IEEE Trans Antennas Propag 57(10):2830–2841

    Article  Google Scholar 

  • Zhang Y, Sun M (2008) Grid array antennas and an integration structure. US Patent 20110241969

    Google Scholar 

  • Zhang B, Zhang Y (2010) A circularlypolarized microstrip grid array antenna for 60 GHz radios. In: Proceedings IEEE Asia-Pacific microwave conference, Yokohama, pp 2194–2197

    Google Scholar 

  • Zhang B, Zhang Y (2011) Analysis and synthesis of millimeter-wave microstrip grid array antennas. IEEE Antennas Propag Mag 53(6):42–55

    Article  Google Scholar 

  • Zhang B, Zhang Y (2012a) Grid array antennas with subarrays and multiple feeds for 60-GHz radios. IEEE Trans Antennas Propag 60(5):2270–2275

    Article  Google Scholar 

  • Zhang B, Zhang Y (2012b) A microstrip array antenna for 60-GHz applications. In: Proceedings IEEE Aisa-Pacific conference antennas and propagation, Singapore, pp 88–89

    Google Scholar 

  • Zhang B, Zhang Y (2013) A high-gain grid array antenna for 60-GHz antenna-in-package applications. In: Proceedings international symposium EM theory, Hiroshima, pp 195–198

    Google Scholar 

  • Zhang B, Zhang Y (2014) Grid array antennas. Wiley Encyclopedia of electrical and electronics engineering, John Wiley & Sons, New York

    Google Scholar 

  • Zhang Y et al (2008a) Integration of slot antenna in LTCC package for 60-GHz radios. Electron Lett 44(5):330–331

    Article  Google Scholar 

  • Zhang Y et al (2008b) Antenna and transmit/receive switch for single-chip radio transceivers of differential architecture. IEEE Trans Circ Syst I 55(11):3564–3570

    Article  MathSciNet  Google Scholar 

  • Zhang Y et al (2009) Antenna-in-package design for wirebond interconnection to highly-integrated 60-GHz radios. IEEE Trans Antennas Propag 57(10):2842–2852

    Article  Google Scholar 

  • Zhang B et al (2011a) Design of low cost linearly-polarized microstrip grid array antenna for 24 GHz Doppler sensors. In: Proceedings 2011 I.E. international topical meeting microwave photonics, Singapore, pp 93–96

    Google Scholar 

  • Zhang L et al (2011b) Microstrip grid and comb array antennas. IEEE Trans Antennas Propag 59(11):4077–4084

    Article  Google Scholar 

  • Zhang Y et al (2011c) Dual grid array antennas in a thin-profile package for flip-chip interconnection to highly integrated 60-GHz radios. IEEE Trans Antennas Propag 59(4):1191–1199

    Article  Google Scholar 

  • Zhang L et al (2012) A microstrip grid array antenna for 24 GHz Doppler sensors. In: Proceedings IEEE Asia-Pacific conference antennas and propagation, Singapore, pp 257–258

    Google Scholar 

  • Zhang B et al (2013a) Integration of quadruple linearly-polarized microstrip grid array antennas for 60-GHz antenna-in-package applications. IEEE Trans Comp Packag Manuf Technol 3(8):1293–1300

    Article  Google Scholar 

  • Zhang B et al (2013b) A circularly-polarized array antenna using linearly-polarized sub grid arrays for highly-integrated 60-GHz radio. IEEE Trans Antennas Propag 61(1):436–439

    Article  Google Scholar 

  • Zhang B et al (2013c) A high-gain microstrip grid array antenna on low temperature co-fired ceramic for 60-GHz applications. In: Proceedings European conference on antennas and propagation, Gothenburg, pp 103–107

    Google Scholar 

  • Zhang L et al (2013d) Integration of dual-band monopole and microstrip grid array for single-chip triband application. IEEE Trans Antennas Propag 61(1):439–443

    Article  Google Scholar 

  • Zwick T et al (2004) Probe based MMW antenna measurement setup. In: Proceedings IEEE Antennas and Propagation Society International Symposium, Monterey, California, USA, Vol 1. pp 747–750

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media Singapore

About this entry

Cite this entry

Sun, M., Zhang, Y.P. (2016). Grid Antenna Arrays. In: Chen, Z., Liu, D., Nakano, H., Qing, X., Zwick, T. (eds) Handbook of Antenna Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-4560-44-3_44

Download citation

Publish with us

Policies and ethics