Skip to main content

Flexible Fabric Strain Sensors

  • Reference work entry
  • First Online:
Handbook of Smart Textiles

Abstract

Sensors that can measure strain of flexible or soft materials especially clothing or skins have attracted increasing attention with the spread of widely accepted concept of wearable electronics, which can be applied in rehabilitation, sports and posture/gesture simulation, etc. To be compatible with the measured substrates, the strain sensors should be flexible and soft for themselves and fulfill some extra properties like low modulus, large working range, and good fatigue to long-term usage besides the necessary sensing performances as a strain sensor, like high accuracy, good linearity, good repeatability, quick responding, etc. Due to the flexibility in all directions and reliable repeatability under extension in elastic range, textile materials have been extensively studied as a component or substrate of flexible strain sensors in smart textiles. In this chapter, the previous studies on flexible fabric strain sensors were systematically classified and examined from the point view of sensing mechanism, materials, structures, and performances, and the advantages and disadvantages of them were compared for further optimization and suitable applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tao XM (2001) Smart fibres, fabrics and clothing. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  2. Neubert HKP (1975) Instrument transducers: an introduction to their performance and design. Clarendon Press, Oxford

    Google Scholar 

  3. De Rossi D, Della Santa A, Mazzoldi A (1997) Dressware: wearable piezo- and thermoresistive fabrics for ergonomics and rehabilitation. Engineering in medicine and biology society. In: Proceedings of the 19th annual international conference of the IEEE, Vol 5. IEEE, Chicago, IL, pp 1880–1883

    Google Scholar 

  4. Oh KW, Park HJ, Kim SH (2003) Stretchable conductive fabric for electrotherapy. J Appl Polym Sci 88(5):1225–1229

    Article  Google Scholar 

  5. Kim HA, Kim MS, Chun SY, Park YH, Jeon BS, Lee JY, Hong YK, Joo J, Kim SH (2002) Characteristics of electrically conducting polymer-coated textiles. In: 13th Korea-Japan joint forum on organic materials for electronics and photonics, Sendai

    Google Scholar 

  6. Tognetti A, Carpi F, Lorussi F, Mazzoldi A, Orsini P, Scilingo EP, Tesconi M, De Rossi D (2003) Wearable sensory-motor orthoses for tele-rehabilitation. In: 25th annual international conference of the IEEE-engineering-in-medicine-and-biology-society, Cancun

    Google Scholar 

  7. Lorussi F, Rocchia W, Scilingo EP, Tognetti A, De Rossi D (2004) Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture. IEEE Sens J 4(6):807–818

    Article  Google Scholar 

  8. Tsang J, Leung S, Tao X, Yuen MC, Xue P (2007) Effect of fabrication temperature on strain-sensing capacity of polypyrrole-coated conductive fabrics. Polym Int 56(7):827–833

    Article  Google Scholar 

  9. Campbell TE, Munro BJ, Wallace GG, Steele JR (2007) Can fabric sensors monitor breast motion? J Biomech 40(13):3056–3059

    Article  Google Scholar 

  10. Tjahyono AP, Aw KC, Travas-Sejdic J, Li KC (2010) Flexible strain sensor for air muscles using Polypyrrole coated rubber. In: BarCohen Y (ed) Electroactive polymer actuators and devices. SPIE, San Diego, California. doi:10.1117/12.847440

    Google Scholar 

  11. Xue P, Tao XM, Tsang HY, Leung MY (2006) PPy-coated electrically conducting fabrics with high strain sensitivity. In: Symposium on smart nanotextiles held at the 2006 MRS spring meeting, San Francisco

    Google Scholar 

  12. Wang JP, Xue P, Tao XM, Yu TX (2014) Strain sensing behavior and its mechanisms of electrically conductive PPy-coated fabric. Adv Eng Mater 16(5):565–570

    Article  Google Scholar 

  13. Kim MS, Kim HK, Byun SW, Jeong SH, Hong YK, Joo JS, Song KT, Kim JK, Lee CJ, Lee JY (2002) PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synth Met 126(2–3):233–239

    Article  Google Scholar 

  14. Harlin A, Nousiainen P, Puolakka A, Pelto J, Sarlin J (2005) Development of polyester and polyamide conductive fibre. J Mater Sci 40(20):5365–5371

    Article  Google Scholar 

  15. Xue P, Tao XM, Tsang HY (2007) In situ SEM studies on strain sensing mechanisms of PPy-coated electrically conducting fabrics. Appl Surf Sci 253(7):3387–3392

    Article  Google Scholar 

  16. Kim B, Koncar V, Dufour C (2006) Polyaniline-coated PET conductive yarns: study of electrical, mechanical, and electro-mechanical properties. J Appl Polym Sci 101(3):1252–1256

    Article  Google Scholar 

  17. Gibbs PT, Asada HH (2005) Wearable conductive fiber sensors for multi-axis human joint angle measurements. J NeuroEng Rehabil 2(7). doi:10.1186/1743-0003-2-7

    Google Scholar 

  18. Farringdon J, Moore AJ, Tilbury N, Church J, Biemond PD (1999) Wearable sensor badge and sensor jacket for context awareness. In: The 3rd international symposium on wearable computers, San Francisco

    Google Scholar 

  19. Yang B, Tao XM, Yu JY (2006) A study on the relation between resistance and strain based on stainless steel fabric. Rare Met Mater Eng 35(1):96–99

    Google Scholar 

  20. Zhang H, Tao XM, Wang SY, Yu TX (2005) Electro-mechanical properties of knitted fabric made from conductive multi-filament yarn under unidirectional extension. Textile Res J 75(8):598–606

    Article  Google Scholar 

  21. Zhang H, Tao XM, Yu TX, Wang SY (2006) Conductive knitted fabric as large-strain gauge under high temperature. Sens Actuators A 126(1):129–140

    Article  Google Scholar 

  22. Zhang H, Tao XM, Yu TX, Wang SY, Cheng XY (2006) A novel sensate ‘string’ for large-strain measurement at high temperature. Meas Sci Technol 17(2):450–458

    Article  Google Scholar 

  23. Xue P, Tao XM, Kwok KWY, Leung MY, Yu TX (2004) Electromechanical behavior of fibers coated with an electrically conductive polymer. Text Res J 74(10):929–936

    Article  Google Scholar 

  24. Atalay O, Kennon WR, Demirok E (2015) Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modeling. IEEE Sens J 15(1):110–122

    Article  Google Scholar 

  25. Wang F, Zhu B, Shu L, Tao XM (2014) Flexible pressure sensors for smart protective clothing against impact loading. Smart Mater Struct 23:015001. doi:10.1088/0964-1726/23/1/015001

    Google Scholar 

  26. Huang CT, Tang CF, Lee MC, Chang SH (2008) Parametric design of yarn-based piezoresistive sensors for smart textiles. Sens Actuators A 148(1):10–15

    Article  Google Scholar 

  27. Huang CT, Shen CL, Tang CF, Chang SH (2008) A wearable yarn-based piezo-resistive sensor. Sens Actuators A 141(2):396–403

    Article  Google Scholar 

  28. Riekeberg S, Buttner J, Muller J, IEEE (2010) A carbon nanotube based temperature independent strain sensor on a flexible polymer. In: Sensors, 2010 IEEE, Kona, HI, pp 647–651

    Google Scholar 

  29. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Najafabadi AI, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301

    Article  Google Scholar 

  30. Zhao HB, Zhang YY, Bradford PD, Zhou QA, Jia QX, Yuan FG, Zhu YT (2010) Carbon nanotube yarn strain sensors. Nanotechnology 21:305502. doi:10.1088/0957-4484/21/30/305502

    Google Scholar 

  31. Park JJ, Hyun WJ, Mun SC, Park YT, Park OO (2015) Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 7(11):6317–6324

    Article  Google Scholar 

  32. Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I (2014) Highly stretchable and sensitive strain sensor based on silver Nanowire–Elastomer nanocomposite. ACS Nano 8(5):5154–5163

    Article  Google Scholar 

  33. Beruto DT, Capurro M, Marro G (2005) Piezoresistance behavior of silicone-graphite composites in the proximity of the electric percolation threshold. Sens Actuators A 117(2):301–308

    Article  Google Scholar 

  34. Das NC, Chaki TK, Khastgir D (2002) Carbon fiber-filled conductive composites based on EVA, EPDM and their blends. J Polym Eng 22(2):115–136

    Article  Google Scholar 

  35. Kim JH, Kim YJ, Baek WK, Lim KT, Kang I (2010) Flexible strain sensor based on carbon nanotube rubber composites. In: Varadan VK (ed) Nanosensors, biosensors, and info-tech sensors and systems 2010. San Diego, California

    Google Scholar 

  36. Pham GT, Park YB, Liang Z, Zhang C, Wang B (2008) Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos Part B Eng 39(1):209–216

    Article  Google Scholar 

  37. Hu N, Karube Y, Arai M, Watanabe T, Yan C, Li Y, Liu YL, Fukunaga H (2010) Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48(3):680–687

    Article  Google Scholar 

  38. Yu T, Ni ZH, Du CL, You YM, Wang YY, Shen ZX (2008) Raman mapping investigation of graphene on transparent flexible substrate: the strain effect. J Phys Chem C 112(33):12602–12605

    Article  Google Scholar 

  39. Novak I, Krupa I, Janigova I (2005) Hybrid electro-conductive composites with improved toughness, filled by carbon black. Carbon 43(4):841–848

    Article  Google Scholar 

  40. Kost J, Narkis M, Foux A (1984) Resistivity behavior of carbon-black-filled silicone-rubber in cyclic loading experiments. J Appl Polym Sci 29(12):3937–3946

    Article  Google Scholar 

  41. Kost J, Narkis M, Foux A (1983) Effects of axial stretching on the resistivity of carbon-black filled silicone-rubber. Polym Eng Sci 23(10):567–571

    Article  Google Scholar 

  42. Kost J, Foux A, Narkis M (1994) Quantitative model relating electrical-resistance, strain, and time for carbon-black loaded silicone-rubber. Polym Eng Sci 34(21):1628–1634

    Article  Google Scholar 

  43. Flandin L, Chang A, Nazarenko S, Hiltner A, Baer E (2000) Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers. J Appl Polym Sci 76(6):894–905

    Article  Google Scholar 

  44. Flandin L, Hiltner A, Baer E (2001) Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene-octene elastomer. Polymer 42(2):827–838

    Article  Google Scholar 

  45. Yamaguchi K, Busfield JJC, Thomas AG (2003) Electrical and mechanical behavior of filled elastomers. I. The effect of strain. J Polym Sci B 41(17):2079–2089

    Article  Google Scholar 

  46. Xie ZM, Yum YJ, Lee CK (2007) Simulation of electrical resistivity of carbon black filled rubber under elongation. J Macromol Sci Part B Phys 46(3):561–567

    Article  Google Scholar 

  47. Sau KP, Chaki TK, Khastgir D (1998) The change in conductivity of a rubber carbon black composite subjected to different modes of pre-strain. Compos A Appl Sci Manuf 29(4):363–370

    Article  Google Scholar 

  48. Das NC, Chaki TK, Khastgir D (2002) Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites. Polym Int 51(2):156–163

    Article  Google Scholar 

  49. Das NC, Chaki TK, Khastgir D (2002) Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites. Carbon 40(6):807–816

    Article  Google Scholar 

  50. Knite M, Teteris V, Kiploka A, Klemenoks I (2004) Reversible tenso-resistance and piezo-resistance effects in conductive polymer-carbon nanocomposites. Adv Eng Mater 6(9):742–746

    Article  Google Scholar 

  51. Cochrane C, Koncar V, Lewandowski M, Dufour C (2007) Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors 7(4):473–492

    Article  Google Scholar 

  52. Scilingo EP, Gemignani A, Paradiso R, Taccini N, Ghelarducci B, De Rossi D. (2003) Performance evaluation of sensing fabrics for monitoring physiological and biomechanical variables. In: International workshop on new generation of smart wearable health systems and applications, Lucca

    Google Scholar 

  53. Tognetti A, Lorussi F, Tesconi M, De Rossi D. (2004) Strain sensing fabric characterization. In IEEE sensors 2004 conference, Vienna

    Google Scholar 

  54. Tognetti A, Lorussi F, Bartalesi R, Tesconi M, Zupone G, De Rossi D. (2005) Analysis and synthesis of human movements: wearable kinesthetic interfaces. In: IEEE 9th international conference on rehabilitation robotics, Chicago

    Google Scholar 

  55. Tognetti A, Carbonaro N, Pone GZ, De Rossi D (2006) Characterization of a novel data glove based on textile integrated sensors. In 28th annual international conference of the IEEE-engineering-in-medicine-and-biology-society, New York

    Google Scholar 

  56. Tognetti A, Bartalesi R, Lorussi F, De Rossi D (2007) Body segment position reconstruction and posture classification by smart textiles. Trans Inst Meas Control 29(3–4):215–253

    Article  Google Scholar 

  57. Koncar V, Cochrane C, Lewandowski M, Boussu F, Dufour C (2009) Electro-conductive sensors and heating elements based on conductive polymer composites. Int J Cloth Sci Technol 21(2/3):82–92

    Article  Google Scholar 

  58. Cochrane C, Lewandowski M, Koncar V (2010) A flexible strain sensor based on a conductive polymer composite for in situ measurement of parachute canopy deformation. Sensors 10(9):8291–8303

    Article  Google Scholar 

  59. Mattmann C, Clemens F, Troster G (2008) Sensor for measuring strain in textile. Sensors 8(6):3719–3732

    Article  Google Scholar 

  60. Dickey MD, Chiechi RC, Larsen RJ, Weiss EA, Weitz DA, Whitesides GM (2008) Eutectic Gallium-Indium (EGaIn): a liquid metal alloy for the formation of structures in microchannels at room temperature. Adv Funct Mater 18(7):1097–1104

    Article  Google Scholar 

  61. Menguc Y, Park YL, Martinez-Villalpando E, Aubin P, Zisook M, Stirling L, Wood RJ, Walsh CJ (2013) In: 2013 IEEE international conference on robotics and automation. IEEE, Karlsruhe, pp 5309–5316

    Google Scholar 

  62. Krause A, Siewiorek DP, Smailagic A, Farringdon J (2003) Unsupervised, dynamic identification of physiological and activity context in wearable computing. In: 7th international symposium on wearable computers, White Plains

    Google Scholar 

  63. Farringdon J, Nashold S (2005) Continuous body monitoring. In: Cai Y (ed) Ambient intelligence for scientific discovery: foundations, theories, and systems. Springer, Berlin, pp 202–223

    Chapter  Google Scholar 

  64. Yang B, Tao XM, Yu JY (2004) A study on textile structure used as strain sensor made of stainless steel fiber. In: 83rd textile-institute world conference, Shanghai

    Google Scholar 

  65. Zhang H, Tao XM, Wang SY (2004) Modeling of elecro-mechanical properties of conductive knitted fabrics under large uniaxial deformation. In: 83rd textile-institute world conference, Shanghai

    Google Scholar 

  66. Yang B, Tao XM, Cai JY, Yu TX (2007) Strain sensing behavior of textile structures made of stainless steel continuous filament yarns under uni-axial tensile loading. In: International conference on smart materials and nanotechnology in engineering, Harbin

    Google Scholar 

  67. Li Y, Cheng XY, Leung MY, Tsang J, Tao XM, Yuen MCW (2005) A flexible strain sensor from polypyrrole-coated fabrics. Synth Met 155(1):89–94

    Article  Google Scholar 

  68. Wang JP, Xue P, Tao XM (2011) Strain sensing behavior of electrically conductive fibers under large deformation. Mater Sci Eng A Struct Mater Prop Microstruct Process 528(6):2863–2869

    Article  Google Scholar 

  69. Yi W (2013) Fabric strain sensor integrated with CNPECs for repeated large deformation. Hong Kong Polytechnic University (Hong Kong), Ann Arbor, p 180

    Google Scholar 

  70. Yi WJ, Wang YY, Wang GF, Tao XM (2012) Investigation of carbon black/silicone elastomer/dimethylsilicone oil composites for flexible strain sensors. Polym Test 31(5):677–684

    Article  Google Scholar 

  71. Mattmann C, Amft O, Harms H, Troster G (2007) Recognizing upper body postures using textile strain sensors. In: 11th international symposium on wearable computers, Boston

    Google Scholar 

  72. Koncar V, Cochrane C, Lewandowski M, Boussu F, Dufour C (2007) Electro-conductive sensors and heating elements based on conductive polymer composites. In: 3rd international technical textiles congress, Istanbul

    Google Scholar 

  73. Lorussi F, Scilingo EP, Tesconi M, Tognetti A, De Rossi D (2003) Strain sensing fabric for hand posture and gesture monitoring. In: International workshop on new generation of smart wearable health systems and applications, Lucca

    Google Scholar 

  74. Bartalesi R, Lorussi F, Tesconi M, Tognetti A, Zupone G, De Rossi D (2005) Wearable kinesthetic system for capturing and classifying upper limb gesture. In: 1st joint eurohaptics conference/symposium on haptic interfaces for virtual environment and teleoperator systems, Pisa

    Google Scholar 

  75. Tognetti A, Lorussi F, Tesconi M, Bartalesi R, Zupone G, De Rossi D (2005) Wearable kinesthetic systems for capturing and classifying body posture and gesture. In: 27th annual international conference of the IEEE-Engineering-in-Medicine-and-Biology-Society, Shanghai

    Google Scholar 

  76. De Rossi D, Bartalesi R, Lorussi F, Tognetti A, Zupone G (2006) Body gesture and posture classification by smart clothes. In: 1st IEEE RAS-EMBS international conference on biomedical robotics and biomechatronics (BioRob 2006), Pisa

    Google Scholar 

  77. Ferro M, Pioggia G, Tognetti A, Carbonaro N, De Rossi D (2009) A sensing seat for human authentication. IEEE Trans Inf Forensics Secur 4(3):451–459

    Article  Google Scholar 

  78. Wijesiriwardana R, Dias T, Mukhopadhyay S (2003) Resistive fibre-meshed transducers. In: 7th international symposium on wearable computers, White Plains

    Google Scholar 

  79. Atalay O, Kennon WR, Husain MD (2013) Textile-based weft knitted strain sensors: effect of fabric parameters on sensor properties. Sensors 13(8):11114–11127

    Article  Google Scholar 

  80. Wang JF, Long HR, Soltanian S, Servati P, Ko F (2014) Electro-mechanical properties of knitted wearable sensors: part 2-Parametric study and experimental verification. Text Res J 84(2):200–213

    Article  Google Scholar 

  81. Ehrmann A, Heimlich F, Brucken A, Weber MO, Haug R (2014) Suitability of knitted fabrics as elongation sensors subject to structure, stitch dimension and elongation direction. Text Res J 84(18):2006–2012

    Article  Google Scholar 

  82. Wijesiriwardana R (2006) Inductive fiber-meshed strain and displacement transducers for respiratory measuring systems and motion capturing systems. IEEE Sens J 6(3):571–579

    Article  Google Scholar 

  83. Fernandez-Valdivielso C, Matias IR, Arregui FJ (2002) Simultaneous measurement of strain and temperature using a fiber Bragg grating and a thermochromic material. Sens Actuators A 101(1–2):107–116

    Article  Google Scholar 

  84. Tao XM, Tang LQ, Du WC, Choy CL (2000) Internal strain measurement by fiber Bragg grating sensors in textile composites. Compos Sci Technol 60(5):657–669

    Article  Google Scholar 

  85. Ying DQ, Tao XM, Zheng W, Wang GF (2013) Fabric strain sensor integrated with looped polymeric optical fiber with large angled V-shaped notches. Smart Mater Struct 22:015004. doi:10.1088/0964-1726/22/1/015004

    Google Scholar 

  86. Zheng W, Tao X, Zhu B, Wang G, Hui C (2014) Fabrication and evaluation of a notched polymer optical fiber fabric strain sensor and its application in human respiration monitoring. Text Res J 84(17):1791–1802

    Article  Google Scholar 

  87. Krehel M, Schmid M, Rossi RM, Boesel LF, Bona G-L, Scherer LJ (2014) An optical fibre-based sensor for respiratory monitoring. Sensors 14(7):13088–13101

    Article  Google Scholar 

  88. Tang LQ, Tao XM, Du WC, Choy CL (1998) Reliability of fiber Bragg grating sensors embedded in textile composites. In: 7th international conference on composite interfaces (ICCI-VII), Fujisawa

    Google Scholar 

  89. Witt J, Schukar M, Krebber K (2008) Medicinal textiles with integrated polymer-optical fibers for respiration monitoring. Tech Mess 75(12):670–677

    Article  Google Scholar 

  90. Yang CM, Huang WT, Yang TL, Hsieh MC, Liu CT (2008) Textiles digital sensors for detecting breathing frequency. In: 5th international summer school and symposium on medical devices and biosensors, Hong Kong

    Google Scholar 

  91. Yuan SF, Huang R, Rao YJ (2004) Internal strain measurement in 3D braided composites using co-braided optical fiber sensors. J Mater Sci Technol 20(2):199–202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijing Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this entry

Cite this entry

Yi, W. (2015). Flexible Fabric Strain Sensors. In: Tao, X. (eds) Handbook of Smart Textiles. Springer, Singapore. https://doi.org/10.1007/978-981-4451-45-1_22

Download citation

Publish with us

Policies and ethics