Skip to main content

Impact of Reactive Nitrogen and Nitrogen Footprint

  • Chapter
  • First Online:
Ecological Risk Management

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

  • 549 Accesses

Abstract

Nitrogen is essential for all lives since reactive nitrogen (all nitrogen except for nitrogen gas) constitutes protein and nucleic acid. Synthesized ammonia, chiefly used for nitrogen fertilizers, greatly supports human food production for the growing population. The growing use of synthetic fertilizers and fossil fuels has increased reactive nitrogen emissions to the environment, leading to adverse effects on human and ecosystem health. This global issue of maximizing the benefits of reactive nitrogen while minimizing nitrogen pollution is one of the key issues for the twenty-first century. To communicate this nitrogen issue to stakeholders in different industries including farmers and consumers, the nitrogen footprint (NF) has been developed as an indicator to quantify direct and indirect reactive nitrogen emissions throughout the lifecycle of goods and services of our consumption. We introduce methodologies of the NF models in relation to other environmental footprints and demonstrate three applications of nitrogen footprint models. The feed-sensitive NF model has been developed as a bottom-up approach and applied to fish and seafood analysis with two sets of parameters called virtual nitrogen factors (VNFs) for the world and Japan. Using the Japanese VNFs, effects of dietary changes to the food NF of Japan and possible reduction scenarios for our food choice were assessed. The global NF model has been constructed as a top-down approach and applied to assess 188 countries in 2010 using multi-region input–output analysis to trace international supply chains. These NF models contribute to the development of sustainable food systems and integrated nutrient management addressing trade-offs between different nitrogen pollutants and other environmental issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Castner EA, Leach AM, Leary N, Baron J, Compton JE, Galloway JN et al (2017) The nitrogen footprint tool network: a multi-institution program to reduce nitrogen pollution. Sustain J Rec 10(2):79–88

    Google Scholar 

  • Cattell Noll L, Leach AM, Seufert V, Galloway JN, Atwell B, Erisman JW, Shade J (2020) The nitrogen footprint of organic food in the United States. Environ Res Lett 15(4):045004

    Google Scholar 

  • Compton JE, Harrison JA, Dennis RL, Greaver TL, Hill BH, Jordan SJ et al (2011) Ecosystem services altered by human changes in the nitrogen cycle: a new perspective for US decision making. Ecol Lett 14(8):804–815

    PubMed  Google Scholar 

  • Compton JE, Leach AM, Castner EA, Galloway JN (2017) Assessing the social and environmental costs of institution nitrogen footprints. Sustain J Rec 10(2):114–122

    Google Scholar 

  • Čuček L, Klemeš JJ, Kravanja Z (2012) A review of footprint analysis tools for monitoring impacts on sustainability. J Clean Prod 34:9–20

    Google Scholar 

  • Cui S, Shi Y, Malik A, Lenzen M, Gao B, Huang W (2016) A hybrid method for quantifying China’s nitrogen footprint during urbanisation from 1990 to 2009. Environ Int 97:137–145

    CAS  PubMed  Google Scholar 

  • Davidson EA, Suddick EC, Rice CW, Prokopy LS (2015) More food, low pollution (Mo Fo Lo Po): a grand challenge for the 21st century. J Environ Qual 44(2):305–311

    CAS  PubMed  Google Scholar 

  • De Vries W, Kros J, Kroeze C, Seitzinger SP (2013) Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr Opin Environ Sustain 5(3–4):392–402

    Google Scholar 

  • Dukes ESM, Galloway J, Band LE, Cattaneo L, Groffman PM, Leach AM, Castner EA (2020) A community nitrogen footprint analysis of Baltimore City, Maryland. Environ Res Lett 15:075007

    CAS  Google Scholar 

  • Eguchi S, Hirano N (2019) Mitigation potential of reactive nitrogen loss to the environment by improving Japanese consumers’ dietary life and future predictions along with the United Nations SDGs scenario. Jpn J Soil Sci Plant Nutr 90:32–46. (In Japanese with English summary)

    Google Scholar 

  • Einarsson R, Cederberg C (2019) Is the nitrogen footprint fit for purpose? An assessment of models and proposed uses. J Environ Manag 240:198–208

    CAS  Google Scholar 

  • Elrys AS, Raza S, Abdo AI, Liu Z, Chen Z, Zhou J (2019) Budgeting nitrogen flows and the food nitrogen footprint of Egypt during the past half century: challenges and opportunities. Environ Int 130:104895

    CAS  PubMed  Google Scholar 

  • Elrys AS, Desoky E-SM, Ali A, Zhang J, Cai Z, Cheng Y (2021) Sub-Saharan Africa’s food nitrogen and phosphorus footprints: a scenario analysis for 2050. Sci Total Environ 752:141964

    CAS  PubMed  Google Scholar 

  • Erisman JW, Leach A, Bleeker A, Atwell B, Cattaneo L, Galloway J (2018) An integrated approach to a nitrogen use efficiency (NUE) Indicator for the food production–consumption chain. Sustainability 10(4):925

    Google Scholar 

  • Fang K, Heijungs R (2015) Investigating the inventory and characterization aspects of footprinting methods: lessons for the classification and integration of footprints. J Clean Prod 108:1028–1036

    Google Scholar 

  • Fang K, Heijungs R, de Snoo GR (2014) Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: overview of a footprint family. Ecol Indic 36:508–518

    Google Scholar 

  • Feng K, Chapagain A, Suh S, Pfister S, Hubacek K (2011) Comparison of bottom-up and top-down approaches to calculating the water footprints of nations. Econ Syst Res 23(4):371–385

    Google Scholar 

  • Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S et al (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc Lond Ser B Biol Sci 368(1621):20130164

    Google Scholar 

  • Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing B, Giljum S (2012) Integrating ecological, carbon and water footprint into a “footprint family” of indicators: definition and role in tracking human pressure on the planet. Ecol Indic 16:100–112

    Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31(2):64–71

    PubMed  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen Cascade. Bioscience 53(4):341–356

    Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    CAS  PubMed  Google Scholar 

  • Galloway JN, Leach AM, Bleeker A, Erisman JW (2013) A chronology of human understanding of the nitrogen cycle. Philos Trans R Soc Lond Ser B Biol Sci 368(1621):20130120–20130120

    Google Scholar 

  • Galloway JN, Winiwarter W, Leip A, Leach AM, Bleeker A, Erisman JW (2014) Nitrogen footprints: past, present and future. Environ Res Lett 9(11):115003

    Google Scholar 

  • Global Footprint Network (2009) Ecological footprint standards 2009. Global Footprint Network. Available online at www.footprintstandards.org

  • Gu B, Chang J, Min Y, Ge Y, Zhu Q, Galloway JN, Peng C (2013) The role of industrial nitrogen in the global nitrogen biogeochemical cycle. Sci Rep 3(1):2579

    PubMed  PubMed Central  Google Scholar 

  • Guinée JB, Lindeijer E (eds) (2002) Handbook on life cycle assessment: operational guide to the ISO standards, vol 7. Springer Science & Business Media, Berlin, p 692

    Google Scholar 

  • Guinée JB, Heijungs R, Huppes G, Zamagni A, Masoni P, Buonamici R et al (2011) Life cycle assessment: past, present, and future †. Environ Sci Technol 45(1):90–96

    PubMed  Google Scholar 

  • Guo M, Chen X, Bai Z, Jiang R, Galloway JN, Leach AM et al (2017) How China’s nitrogen footprint of food has changed from 1961 to 2010. Environ Res Lett 12(10):104006

    Google Scholar 

  • Hamilton HA, Ivanova D, Stadler K, Merciai S, Schmidt J, van Zelm R et al (2018) Trade and the role of non-food commodities for global eutrophication. Nat Sustain 1(6):314–321

    Google Scholar 

  • Hayashi K, Oita A, Lassaletta L, Shindo J, Shibata H, Sakurai G, Eguchi S (2018) Reducing nitrogen footprints of consumer-level food loss and protein overconsumption in Japan, considering gender and age differences. Environ Res Lett 13(12):124027

    CAS  Google Scholar 

  • Hayashi K, Oita A, Nishina K (2020) Concealed nitrogen footprint in protein-free foods: an empirical example using oil palm products. Environ Res Lett 15(3):035006

    CAS  Google Scholar 

  • Heffer P (2013) Assessment of fertilizer use by crop at the global level 2010–2010/11. https://www.ifastat.org/plant-nutrition

  • Hertwich EG, Peters GP (2009) Carbon footprint of nations: a global, trade-linked analysis. Environ Sci Technol 43(16):6414–6420. https://doi.org/10.1021/es803496a

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra AY, Hung PQ (2002) Virtual water trade: a quantification of virtual waterflows between nations in relation to international crop trade, Value of water research report series, vol 11. UNESCO-IHE, Delft

    Google Scholar 

  • Høgevold NM (2011) A corporate effort towards a sustainable business model. Eur Bus Rev 23(4):392–400

    Google Scholar 

  • Houlton BZ, Almaraz M, Aneja V, Austin AT, Bai E, Cassman KG et al (2019) A world of Cobenefits: solving the global nitrogen challenge. Earth’s Future 7(8):865–872

    Google Scholar 

  • Hutton MO, Leach AM, Leip A, Galloway JN, Bekunda M, Sullivan C, Lesschen JP (2017) Toward a nitrogen footprint calculator for Tanzania. Environ Res Lett 12(3):034016

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2006) In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) 2006 IPCC guidelines for national greenhouse gas inventories, prepared by the national greenhouse gas inventories programme. IPCC, Geneva. http://www.ipcc-nggip.iges.or.jp/public/2006gl/

    Google Scholar 

  • Kido Y, Shizuka F, Shimomura Y, Sugiyama T (2012) Dietary reference intakes for Japanese 2010: protein. J Nutr Sci Vitaminol 59(supplement):S36–S43

    Google Scholar 

  • Kitzes J, Galli A, Bagliani M, Barrett J, Dige G, Ede S et al (2009) A research agenda for improving national ecological footprint accounts. Ecol Econ 68(7):1991–2007

    Google Scholar 

  • Lassaletta L, Billen G, Grizzetti B, Garnier J, Leach AM, Galloway JN (2014) Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118(1–3):225–241

    Google Scholar 

  • Leach AM, Galloway JN, Bleeker A, Erisman JW, Kohn R, Kitzes J (2012) A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ Dev 1(1):40–66

    Google Scholar 

  • Leach AM, Majidi AN, Galloway JN, Greene AJ (2013) Toward institutional sustainability: a nitrogen footprint model for a university. Sustain J Rec 6(4):211–219

    Google Scholar 

  • Leach AM, Emery KA, Gephart J, Davis KF, Erisman JW, Leip A et al (2016) Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy 61:213–223

    Google Scholar 

  • Leach AM, Galloway JN, Castner EA, Andrews J, Leary N, Aber JD (2017) An integrated tool for calculating and reducing institution carbon and nitrogen footprints. Sustain J Rec 10(2):140–148

    Google Scholar 

  • Leip A, Leach A, Musinguzi P, Tumwesigye T, Olupot G, Tenywa JS et al (2014) Nitrogen-neutrality: a step towards sustainability. Environ Res Lett 9(11):115001

    Google Scholar 

  • Lenzen M (2008) Double-counting in life cycle calculations. J Ind Ecol 12(4):583–599

    CAS  Google Scholar 

  • Lenzen M, Crawford R (2009) The path exchange method for hybrid LCA. Environ Sci Technol 43(21):8251–8256

    CAS  PubMed  Google Scholar 

  • Lenzen M, Moran D, Kanemoto K, Foran B, Lobefaro L, Geschke A (2012) International trade drives biodiversity threats in developing nations. Nature 486(7401):109–112

    CAS  PubMed  Google Scholar 

  • Liang X, Leach AM, Galloway JN, Gu B, Lam SK, Chen D (2016) Beef and coal are key drivers of Australia’s high nitrogen footprint. Sci Rep 6(1):39644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Lam SK, Gu B, Galloway JN, Leach AM, Chen D (2018) Reactive nitrogen spatial intensity (NrSI): a new indicator for environmental sustainability. Glob Environ Chang 52(December 2017):101–107

    Google Scholar 

  • Lin D, Hanscom L, Murthy A, Galli A, Evans M, Neill E et al (2018) Ecological footprint accounting for countries: updates and results of the National Footprint Accounts, 2012–2018. Resources 7(3):58

    Google Scholar 

  • Liu C, Kroeze C, Hoekstra AY, Gerbens-Leenes W (2012) Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol Indic 18:42–49

    Google Scholar 

  • Metson GS, MacDonald GK, Leach AM, Compton JE, Harrison JA, Galloway JN (2020) The U.S. consumer phosphorus footprint: where do nitrogen and phosphorus diverge? Environ Res Lett 15:105022

    CAS  Google Scholar 

  • Miller RE, Blair PD (2009) Input-output analysis: foundations and extensions. Cambridge University Press, New York

    Google Scholar 

  • Minx JC, Wiedmann T, Wood R, Peters GP, Lenzen M, Owen A et al (2009) Input–output analysis and carbon footprinting: an overview of applications. Econ Syst Res 21(3):187–216

    Google Scholar 

  • Mueller ND, Gerber JS, Johnston M, Ray DK, Ramankutty N, Foley JA (2012) Closing yield gaps through nutrient and water management. Nature 490(7419):254

    CAS  PubMed  Google Scholar 

  • Oita A, Malik A, Kanemoto K, Geschke A, Nishijima S, Lenzen M (2016a) Substantial nitrogen pollution embedded in international trade. Nat Geosci 9(2):111–115

    CAS  Google Scholar 

  • Oita A, Nagano I, Matsuda H (2016b) An improved methodology for calculating the nitrogen footprint of seafood. Ecol Indic 60:1091–1103

    CAS  Google Scholar 

  • Oita A, Nagano I, Matsuda H (2018) Food nitrogen footprint reductions related to a balanced Japanese diet. Ambio 47(3):318–326

    CAS  PubMed  Google Scholar 

  • Oita A, Wirasenjaya F, Liu J, Webeck E, Matsubae K (2020) Trends in the food nitrogen and phosphorus footprints for Asia’s giants: China, India, and Japan. Resour Conserv Recycl 157:104752

    Google Scholar 

  • Rees WE (1992) Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environ Urban 4(2):121–130

    Google Scholar 

  • Ridoutt BG, Pfister S (2010) A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Glob Environ Chang 20(1):113–120

    Google Scholar 

  • Rockström J, Steffen W, Noone K, Persson Å, Chapin FS, Lambin EF et al (2009) A safe operating space for humanity. Nature 461(7263):472–475

    PubMed  Google Scholar 

  • San Martín W (2020) Global nitrogen in sustainable development: four challenges at the Interface of science and policy. In: Filho WL, Azul AM, Brandli L, Salvia AL, Wall T (eds) Life on land. Springer, Cham, pp 1–16

    Google Scholar 

  • Shibata H, Cattaneo LR, Leach AM, Galloway JN (2014) First approach to the Japanese nitrogen footprint model to predict the loss of nitrogen to the environment. Environ Res Lett 9(11):115013

    Google Scholar 

  • Shibata H, Galloway JN, Leach AM, Cattaneo LR, Cattell Noll L, Erisman JW et al (2017) Nitrogen footprints: regional realities and options to reduce nitrogen loss to the environment. Ambio 46(2):129–142

    CAS  PubMed  Google Scholar 

  • Shindo J, Yanagawa A (2017) Top-down approach to estimating the nitrogen footprint of food in Japan. Ecol Indic 78:502–511

    CAS  Google Scholar 

  • Sinclair TR, Rufty TW (2012) Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Glob Food Sec 1(2):94–98

    Google Scholar 

  • Smith BD (2005) Reassessing Coxcatlan cave and the early history of domesticated plants in Mesoamerica. Proc Natl Acad Sci 102(27):9438–9445

    CAS  PubMed  Google Scholar 

  • Springmann M, Clark M, Mason-D’Croz D, Wiebe K, Bodirsky BL, Lassaletta L et al (2018) Options for keeping the food system within environmental limits. Nature 562(7728):519–525

    CAS  PubMed  Google Scholar 

  • Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347(6223):1259855

    PubMed  Google Scholar 

  • Strømman AH, Peters GP, Hertwich EG (2009) Approaches to correct for double counting in tiered hybrid life cycle inventories. J Clean Prod 17(2):248–254

    Google Scholar 

  • Sutton MA, Howard CM, Erisman JW, Billen G, Bleeker A, Grennfelt P et al (eds) (2011) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, Cambridge

    Google Scholar 

  • Sutton MA, Bleeker A, Howard CM, Bekunda M, Grizzetti B, de Vries W et al (2013) Our nutrient world: the challenge to produce more food and energy with less pollution. In: Global overview of nutrient management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative, Edinburgh

    Google Scholar 

  • Sutton MA, Howard CM, Adhya TK, Baker E, Baron J, Basir A, et al. (2019a) Nitrogen - grasping the challenge. A manifesto for science-in-action through the international nitrogen management system report, Edinburgh

    Google Scholar 

  • Sutton M, Raghuram N, Kumar Adhya T, Baron J, Cox C, de Vries W et al (2019b) The nitrogen fix: from nitrogen cycle pollution to nitrogen circular economy. In: Frontiers 2018/19: emerging issues of environmental concern. United Nations Environment Programme, Nairobi, pp 52–64

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677

    CAS  PubMed  Google Scholar 

  • United Nations Environment Programme (UNEP) (2014) Excess nitrogen in the environment. In: UNEP, UNEP year book 2014: emerging issues in our global environment. Nairobi: UNEP, pp 7–11. Available online at www.unep.org/yearbook/2014/

  • United Nations Environment Programme (UNEP) (2019) Resolution adopted by the United Nations Environment Assembly on 15 March 2019 on Sustainable nitrogen management. UNEP/EA.4/Res.14. United Nations Environment Programme, Nairobi

    Google Scholar 

  • Uwizeye A, Gerber PJ, Schulte RPO, de Boer IJM (2016) A comprehensive framework to assess the sustainability of nutrient use in global livestock supply chains. J Clean Prod 129:647–658

    Google Scholar 

  • Uwizeye A, de Boer IJM, Opio CI, Schulte RPO, Falcucci A, Tempio G et al (2020) Nitrogen emissions along global livestock supply chains. Nat Food 1(7):437–446

    Google Scholar 

  • Vanham D, Leip A, Galli A, Kastner T, Bruckner M, Uwizeye A et al (2019) Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Sci Total Environ 693:133642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wackernagel M, Rees W (1996) Our ecological footprint: reducing human impact on the earth. New Society Publishers, Gabriola Island

    Google Scholar 

  • Xia Y, Liao C, Wu D, Liu Y (2020) Dynamic analysis and prediction of food nitrogen footprint of urban and rural residents in Shanghai. Int J Environ Res Public Health 17(5):1760

    CAS  PubMed Central  Google Scholar 

  • Xue X, Landis AE (2010) Eutrophication potential of food consumption patterns. Environ Sci Technol 44(16):6450–6456

    CAS  PubMed  Google Scholar 

  • Zhang Y, Liu Y, Shibata H, Gu B, Wang Y (2018) Virtual nitrogen factors and nitrogen footprints associated with nitrogen loss and food wastage of China’s main food crops. Environ Res Lett 13(1):014017

    Google Scholar 

  • Zhang X, Davidson EA, Zou T, Lassaletta L, Quan Z, Li T, Zhang W (2020) Quantifying nutrient budgets for sustainable nutrient management. Glob Biogeochem Cycles 34(3):60–71

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Environment Research and Technology Development Fund (S-9 and S-14), Ministry of the Environment, Japan and JSPS KAKENHI Grant No. JP 19 K20496.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azusa Oita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oita, A., Nagano, I., Matsuda, H. (2021). Impact of Reactive Nitrogen and Nitrogen Footprint. In: Matsuda, H. (eds) Ecological Risk Management. Ecological Research Monographs. Springer, Singapore. https://doi.org/10.1007/978-981-33-6934-4_5

Download citation

Publish with us

Policies and ethics