Skip to main content

Plant-Based Chemical Moieties for Targeting Chronic Respiratory Diseases

  • Chapter
  • First Online:
Targeting Cellular Signalling Pathways in Lung Diseases

Abstract

The World Health Organization (WHO) has reported that chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease, interstitial lung disease, and lung cancer are among the major chronic human diseases that posed a huge challenge to public health and socioeconomic growth. Pharmacotherapy is crucial in the management of these diseases; however, the utilization of conventional treatments is found to be futile, as most patients remained poorly controlled with low quality of life. This has prompted the discovery and development of novel therapeutic agents to improve treatment outcomes. Over the years, researchers have studied a vast range of natural products for their potential in managing chronic respiratory diseases. It has been demonstrated that chemical moieties obtained from plant sources improved pharmacokinetic and toxicological profiles, with a robust multi-prolonged action. Hence, they are held in high regard as possible replacements to address the limitations faced by current therapies. In this chapter, such a phytochemical approach with respect to their molecular mechanisms targeting signalling pathways involved in various chronic respiratory diseases will be discussed. We have also summarized some of the experimental evidence that supports the use of plant-based chemical moieties in chronic respiratory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prasher P, Sharma M, Mehta M, Paudel KR, Satija S, Chellappan DK, Dureja H, Gupta G, Tambuwala MM, Negi P, Wich PR, Hansbro NG, Hansbro PM, Dua K (2020) Plants derived therapeutic strategies targeting chronic respiratory diseases: chemical and immunological perspective. Chem Biol Interact 325:109125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ambrosino N, Bertella E (2018) Lifestyle interventions in prevention and comprehensive management of COPD. Breathe 14:186–194

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barnes PJ, Bonini S, Seeger W, Belvisi MG, Ward B, Holmes A (2015) Barriers to new drug development in respiratory disease. Eur Respir J 45:1197–1207

    Article  PubMed  Google Scholar 

  4. World Health Organization Chronic respiratory diseases. https://www.who.int/health-topics/chronic-respiratory-diseases#tab=tab_1. Accessed 15 Oct 2020

  5. Duncan D (2016) Chronic obstructive pulmonary disease: an overview. Br J Nurs 25:360–366. https://doi.org/10.12968/bjon.2016.25.7.360

    Article  PubMed  Google Scholar 

  6. Burney P (2017) Chronic respiratory disease—the acceptable epidemic? Clin Med J R Coll Phys Lond 17:29–32

    Google Scholar 

  7. Hatipoglu U (2018) Chronic obstructive pulmonary disease: more than meets the eye. Ann Thorac Med 13:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lin BF, Chiang BL, Ma Y, Lin JY, Chen ML (2015) Traditional herbal medicine and allergic asthma. Evid Based Complement Altern Med 2015:510989

    Article  Google Scholar 

  9. Santana FPR, Pinheiro NM, Mernak MIB, Righetti RF, Martins MA, Lago JHG, Lopes FDTQDS, Tibério IFLC, Prado CM (2016) Evidences of herbal medicine-derived natural products effects in inflammatory lung diseases. Mediat Inflamm 2016:2348968

    Article  CAS  Google Scholar 

  10. Liu F, Xuan NX, Ying SM, Li W, Chen ZH, Shen HH (2016) Herbal medicines for asthmatic inflammation: from basic researches to clinical applications. Mediat Inflamm 2016:6943135

    Article  Google Scholar 

  11. Yu J (2008) Inflammatory mechanisms in the lung. J Inflamm Res 2:1. https://doi.org/10.2147/jir.s4385

    Article  PubMed  PubMed Central  Google Scholar 

  12. Durham AL, Caramori G, Chung KF, Adcock IM (2016) Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease. Transl Res 167:192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gross NJ, Barnes PJ (2017) New therapies for asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 195:159–166

    Article  CAS  PubMed  Google Scholar 

  14. Kim HP, Lim H, Kwon YS (2017) Therapeutic potential of medicinal plants and their constituents on lung inflammatory disorders. Biomol Ther 25:91–104

    Article  CAS  Google Scholar 

  15. Ng SW, Chan Y, Chellappan DK, Madheswaran T, Zeeshan F, Chan YL, Collet T, Gupta G, Oliver BG, Wark P, Hansbro N, Hsu A, Hansbro PM, Dua K, Panneerselvam J (2019) Molecular modulators of celastrol as the keystones for its diverse pharmacological activities. Biomed Pharmacother 109:1785–1792

    Article  CAS  PubMed  Google Scholar 

  16. Chan Y, Ng SW, Xin Tan JZ, Gupta G, Tambuwala MM, Bakshi HA, Dureja H, Dua K, Ishaq M, Caruso V, Chellappan DK (2020) Emerging therapeutic potential of the iridoid molecule, asperuloside: a snapshot of its underlying molecular mechanisms. Chem Biol Interact 315:108911

    Article  CAS  PubMed  Google Scholar 

  17. Alamgeer YW, Asif H, Sharif A, Riaz H, Bukhari IA, Assiri AM (2018) Traditional medicinal plants used for respiratory disorders in Pakistan: a review of the ethno-medicinal and pharmacological evidence Milen Georgiev, Ruibing Wang. Chin Med (United Kingdom) 13:1–29

    Google Scholar 

  18. Chan Y, Ng SW, Chellappan DK, Madheswaran T, Zeeshan F, Kumar P, Pillay V, Gupta G, Wadhwa R, Mehta M, Wark P, Hsu A, Hansbro NG, Hansbro PM, Dua K, Panneerselvam J (2020) Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. Int J Polym Mater Polym Biomater. https://doi.org/10.1080/00914037.2020.1765350

  19. Shukla SD, Swaroop Vanka K, Chavelier A, Shastri MD, Tambuwala MM, Bakshi HA, Pabreja K, Mahmood MQ, O’Toole RF (2020) Chronic respiratory diseases: an introduction and need for novel drug delivery approaches. In: Targeting chronic inflammatory lung diseases using advanced drug delivery systems. Elsevier, San Diego, pp 1–31

    Google Scholar 

  20. Sadikot RT (2018) The potential role of nanomedicine in lung diseases. Med Res Arch 6:1–9. https://doi.org/10.18103/MRA.V6I5.1723

    Article  Google Scholar 

  21. Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 3:200–201

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thomford NE, Senthebane DA, Rowe A, Munro D, Seele P, Maroyi A, Dzobo K (2018) Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int J Mol Sci 19:1578

    Article  PubMed Central  CAS  Google Scholar 

  23. Wright GD (2019) Unlocking the potential of natural products in drug discovery. Microb Biotechnol 12:55–57. https://doi.org/10.1111/1751-7915.13351

    Article  CAS  PubMed  Google Scholar 

  24. Falzon CC, Balabanova A (2017) Phytotherapy: an introduction to herbal medicine. Prim Care Clin Off Pract 44:217–227

    Article  Google Scholar 

  25. Karunamoorthi K, Jegajeevanram K, Vijayalakshmi J, Mengistie E (2013) Traditional medicinal plants: a source of phytotherapeutic modality in resource-constrained health care settings. J Evid Based Complement Altern Med 18:67–74. https://doi.org/10.1177/2156587212460241

    Article  Google Scholar 

  26. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nderitu KW, Mwenda NS, Macharia NJ, Barasa SS, Ngugi MP (2017) Antiobesity activities of methanolic extracts of Amaranthus dubius, Cucurbita pepo, and Vigna unguiculata in progesterone-induced obese mice. Evid Based Complement Altern Med 2017:4317321. https://doi.org/10.1155/2017/4317321

    Article  Google Scholar 

  28. Sun NN, Wu TY, Chau CF (2016) Natural dietary and herbal products in anti-obesity treatment. Molecules 21:1351

    Article  PubMed Central  CAS  Google Scholar 

  29. Horak F, Doberer D, Eber E, Horak E, Pohl W, Riedler J, Szépfalusi Z, Wantke F, Zacharasiewicz A, Studnicka M (2016) Diagnosis and management of asthma—statement on the 2015 GINA Guidelines. Wien Klin Wochenschr 128:541–554. https://doi.org/10.1007/s00508-016-1019-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Castillo JR, Peters SP, Busse WW (2017) Asthma exacerbations: pathogenesis, prevention, and treatment. J Allergy Clin Immunol Pract 5:918–927. https://doi.org/10.1016/j.jaip.2017.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ray A, Oriss TB, Wenzel SE (2015) Emerging molecular phenotypes of asthma. Am J Physiol Lung Cell Mol Physiol 308:L130–L140

    Article  CAS  PubMed  Google Scholar 

  32. Pavord ID, Beasley R, Agusti A, Anderson GP, Bel E, Brusselle G, Cullinan P, Custovic A, Ducharme FM, Fahy JV, Frey U, Gibson P, Heaney LG, Holt PG, Humbert M, Lloyd CM, Marks G, Martinez FD, Sly PD, von Mutius E, Wenzel S, Zar HJ, Bush A (2018) After asthma: redefining airways diseases. Lancet 391:350–400

    Article  PubMed  Google Scholar 

  33. Broide DH (2008) Immunologic and inflammatory mechanisms that drive asthma progression to remodeling. J Allergy Clin Immunol 121:560–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holgate ST (2013) Mechanisms of asthma and implications for its prevention and treatment: a personal journey. Allergy Asthma Immunol Res 5:343–347

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fahy JV (2015) Type 2 inflammation in asthma-present in most, absent in many. Nat Rev Immunol 15:57–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zoratti EM, O’Connor GT (2020) New therapeutic strategies for asthma. JAMA J Am Med Assoc 323:517–518

    Article  Google Scholar 

  37. Agbetile J, Green R (2011) New therapies and management strategies in the treatment of asthma: patient-focused developments. J. Asthma Allergy 4:1–12

    Google Scholar 

  38. Agrawal DK, Shao Z (2010) Pathogenesis of allergic airway inflammation. Curr Allergy Asthma Rep 10:39–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van Rijt L, von Richthofen H, van Ree R (2016) Type 2 innate lymphoid cells: at the cross-roads in allergic asthma. Semin Immunopathol 38:483–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Jin H, Wang L, Xu C, Li B, Luo Q, Wu J, Lv Y, Wang G, Dong J (2014) Effects of Psoraleae fructus and its major component psoralen on Th2 response in allergic asthma. Am J Chin Med 42:665–678. https://doi.org/10.1142/S0192415X14500438

    Article  CAS  PubMed  Google Scholar 

  41. Ryu EK, Kim TH, Jang EJ, Choi YS, Kim ST, Hahm KB, Lee HJ (2015) Wogonin, a plant flavone from Scutellariae radix, attenuated ovalbumin-induced airway inflammation in mouse model of asthma via the suppression of IL-4/STAT6 signaling. J Clin Biochem Nutr 57:105–112. https://doi.org/10.3164/JCBN.15-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arthur JSC, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13:679–692

    Article  CAS  PubMed  Google Scholar 

  43. Gras D, Chanez P, Vachier I, Petit A, Bourdin A (2013) Bronchial epithelium as a target for innovative treatments in asthma. Pharmacol Ther 140:290–305

    Article  CAS  PubMed  Google Scholar 

  44. Chauhan PS, Singh DK, Dash D, Singh R (2018) Intranasal curcumin regulates chronic asthma in mice by modulating NF-ĸB activation and MAPK signaling. Phytomedicine 51:29–38. https://doi.org/10.1016/j.phymed.2018.06.022

    Article  CAS  PubMed  Google Scholar 

  45. Lee JW, Min JH, Kim MG, Kim SM, Kwon OK, Oh TK, Lee JK, Kim TY, Lee SW, Choi S, Li WY, Ryu HW, Ahn KS, Oh SR (2019) Pistacia weinmannifolia root exerts a protective role in ovalbumin-induced lung inflammation in a mouse allergic asthma model. Int J Mol Med 44:2171–2180. https://doi.org/10.3892/ijmm.2019.4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ramsdell F, Ziegler SF (2014) FOXP3 and scurfy: how it all began. Nat Rev Immunol 14:343–349

    Article  CAS  PubMed  Google Scholar 

  47. Josefowicz SZ, Lu LF, Rudensky AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30:531–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ohkura N, Kitagawa Y, Sakaguchi S (2013) Development and maintenance of regulatory T cells. Immunity 38:414–423

    Article  CAS  PubMed  Google Scholar 

  49. Chung KF (2015) Targeting the interleukin pathway in the treatment of asthma. Lancet 386:1086–1096

    Article  CAS  PubMed  Google Scholar 

  50. Ji NF, Xie YC, Zhang MS, Zhao X, Cheng H, Wang H, Yin KS, Huang M (2014) Ligustrazine corrects Th1/Th2 and Treg/Th17 imbalance in a mouse asthma model. Int Immunopharmacol 21:76–81. https://doi.org/10.1016/j.intimp.2014.04.015

    Article  CAS  PubMed  Google Scholar 

  51. Choi YW, Lee KP, Kim JM, Kang S, Park SJ, Lee JM, Moon HR, Jung JH, Lee YG, Im DS (2016) Petatewalide B, a novel compound from Petasites japonicus with anti-allergic activity. J Ethnopharmacol 178:17–24. https://doi.org/10.1016/j.jep.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  52. Krystel-Whittemore M, Dileepan KN, Wood JG (2016) Mast cell: a multi-functional master cell. Front Immunol 6:620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mokhtari-Zaer A, Khazdair MR, Boskabady MH (2015) Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms. Avicenna J Phytomed 5:365–375

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Xu S, Tian BP, Zhang LH, Hua W, Xia LX, Chen ZH, Li W, Shen HH (2013) Prevention of allergic airway hyperresponsiveness and remodeling in mice by Astragaliradix Antiasthmatic decoction. BMC Complement Altern Med 13:369. https://doi.org/10.1186/1472-6882-13-369

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jang HY, Ahn KS, Park MJ, Kwon OK, Lee HK, Oh SR (2012) Skullcapflavone II inhibits ovalbumin-induced airway inflammation in a mouse model of asthma. Int Immunopharmacol 12:666–674. https://doi.org/10.1016/j.intimp.2012.01.010

    Article  CAS  PubMed  Google Scholar 

  56. Qureshi H, Sharafkhaneh A, Hanania NA (2014) Chronic obstructive pulmonary disease exacerbations: latest evidence and clinical implications. Ther Adv Chronic Dis 5:212–227

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vijayan VK (2013) Chronic obstructive pulmonary disease. Indian J Med Res 137:251–269

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhou HX, Ou XM, Tang YJ, Wang L, Feng YL (2015) Advanced chronic obstructive pulmonary disease: innovative and integrated management approaches. Chin Med J 128:2952–2959

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ram A, Balachandar S, Vijayananth P, Singh VP (2011) Medicinal plants useful for treating chronic obstructive pulmonary disease (COPD): current status and future perspectives. Fitoterapia 82:141–151

    Article  PubMed  Google Scholar 

  60. Suissa S, Dell’Aniello S, Ernst P (2012) Long-term natural history of chronic obstructive pulmonary disease: severe exacerbations and mortality. Thorax 67:957–963. https://doi.org/10.1136/thoraxjnl-2011-201518

    Article  PubMed  Google Scholar 

  61. Boukhenouna S, Wilson MA, Bahmed K, Kosmider B (2018) Reactive oxygen species in chronic obstructive pulmonary disease. Oxidative Med Cell Longev 2018:5730395

    Article  CAS  Google Scholar 

  62. Wadhwa R, Shukla SD, Chellappan DK, Gupta G, Collet T, Hansbro N, Oliver B, Williams K, Hansbro PM, Dua K, Maurya PK (2019) Phytotherapy in inflammatory lung diseases: an emerging therapeutic interventional approach. In: Phytochemistry: an in-silico and in-vitro update. Springer, Singapore, pp 331–347

    Chapter  Google Scholar 

  63. Barnes PJ (2017) Cellular and molecular mechanisms of asthma and COPD. Clin Sci 131:1541–1558

    Article  CAS  Google Scholar 

  64. Gonçalves PB, Romeiro NC (2019) Multi-target natural products as alternatives against oxidative stress in Chronic Obstructive Pulmonary Disease (COPD). Eur J Med Chem 163:911–931

    Article  PubMed  CAS  Google Scholar 

  65. Barnes PJ (2013) New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov 12:543–559

    Article  PubMed  CAS  Google Scholar 

  66. Barnes PJ (2015) Identifying molecular targets for new drug development for chronic obstructive pulmonary disease: what does the future hold? Semin Respir Crit Care Med 36:508–522. https://doi.org/10.1055/s-0035-1555611

    Article  PubMed  Google Scholar 

  67. Boutten A, Goven D, Artaud-Macari E, Boczkowski J, Bonay M (2011) NRF2 targeting: a promising therapeutic strategy in chronic obstructive pulmonary disease. Trends Mol Med 17:363–371

    Article  CAS  PubMed  Google Scholar 

  68. Zhou MX, Li GH, Sun B, Xu YW, Li AL, Li YR, Ren DM, Wang XN, Wen XS, Lou HX, Shen T (2018) Identification of novel Nrf2 activators from Cinnamomum chartophyllum H.W. Li and their potential application of preventing oxidative insults in human lung epithelial cells. Redox Biol 14:154–163. https://doi.org/10.1016/j.redox.2017.09.004

    Article  CAS  PubMed  Google Scholar 

  69. Cheng L, Li F, Ma R, Hu X (2015) Forsythiaside inhibits cigarette smoke-induced lung inflammation by activation of Nrf2 and inhibition of NF-κB. Int Immunopharmacol 28:494–499. https://doi.org/10.1016/j.intimp.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  70. Kelsen SG (2016) The unfolded protein response in chronic obstructive pulmonary disease. In: Annals of the American Thoracic Society. American Thoracic Society, New York, pp S138–S145

    Google Scholar 

  71. Pathinayake PS, Hsu ACY, Waters DW, Hansbro PM, Wood LG, Wark PAB (2018) Understanding the unfolded protein response in the pathogenesis of asthma. Front Immunol 9:1

    Article  CAS  Google Scholar 

  72. Hetz C, Chevet E, Oakes SA (2015) Proteostasis control by the unfolded protein response. Nat Cell Biol 17:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brewer JW (2014) Regulatory crosstalk within the mammalian unfolded protein response. Cell Mol Life Sci 71:1067–1079

    Article  CAS  PubMed  Google Scholar 

  74. Gan G, Hu R, Dai A, Tan S, Ouyang Q, Fu D, Jiang D (2011) The role of endoplasmic reticulum stress in emphysema results from cigarette smoke exposure. Cell Physiol Biochem 28:725–732. https://doi.org/10.1159/000335766

    Article  CAS  PubMed  Google Scholar 

  75. Chang J, Wang H, Wang X, Zhao Y, Zhao D, Wang C, Li Y, Yang Z, Lu S, Zeng Q, Zimmerman J, Shi Q, Wang Y, Yang Y (2015) Molecular mechanisms of polyphyllin I-induced apoptosis and reversal of the epithelial-mesenchymal transition in human osteosarcoma cells. J Ethnopharmacol 170:117–127. https://doi.org/10.1016/j.jep.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  76. Lin L, Yin Y, Hou G, Han D, Kang J, Wang Q (2017) Ursolic acid attenuates cigarette smoke-induced emphysema in rats by regulating PERK and Nrf2 pathways. Pulm Pharmacol Ther 44:111–121. https://doi.org/10.1016/j.pupt.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  77. Churg A, Zhou S, Wright JL (2012) Matrix metalloproteinases in COPD. Eur Respir J 39:197–209

    Article  CAS  PubMed  Google Scholar 

  78. Yanagisawa S, Papaioannou AI, Papaporfyriou A, Baker JR, Vuppusetty C, Loukides S, Barnes PJ, Ito K (2017) Decreased serum sirtuin-1 in COPD. Chest 152:343–352. https://doi.org/10.1016/j.chest.2017.05.004

    Article  PubMed  Google Scholar 

  79. Ganesan S, Faris AN, Comstock AT, Chattoraj SS, Chattoraj A, Burgess JR, Curtis JL, Martinez FJ, Zick S, Hershenson MB, Sajjan US (2010) Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir Res 11:131. https://doi.org/10.1186/1465-9921-11-131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mårdh CK, Root J, Uddin M, Stenvall K, Malmgren A, Karabelas K, Thomas M (2017) Targets of neutrophil influx and weaponry: therapeutic opportunities for chronic obstructive airway disease. J Immunol Res 2017:5273201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Barnes PJ (2016) Kinases as novel therapeutic targets in asthma and chronic obstructive pulmonary disease. Pharmacol Rev 68:788–815. https://doi.org/10.1124/pr.116.012518

    Article  CAS  PubMed  Google Scholar 

  82. Lee SU, Ryu HW, Lee S, Shin IS, Choi JH, Lee JW, Lee J, Kim MO, Lee HJ, Ahn KS, Hong ST, Oh SR (2018) Lignans isolated from flower buds of Magnolia fargesii attenuate airway inflammation induced by cigarette smoke in vitro and in vivo. Front Pharmacol 9. https://doi.org/10.3389/fphar.2018.00970

  83. Liou CJ, Huang WC (2017) Casticin inhibits interleukin-1β-induced ICAM-1 and MUC5AC expression by blocking NF-κB, PI3K-Akt, and MAPK signaling in human lung epithelial cells. Oncotarget 8:101175–101188. https://doi.org/10.18632/oncotarget.20933

    Article  PubMed  PubMed Central  Google Scholar 

  84. De Sousa Monteiro L, Bastos KX, Barbosa-Filho JM, De Athayde-Filho PF, De Fátima Formiga Melo Diniz M, Sobral MV (2014) Medicinal plants and other living organisms with antitumor potential against lung cancer. Evid Based Complement Altern Med 2014:604152

    Google Scholar 

  85. Alberg AJ, Brock MV, Ford JG, Samet JM, Spivack SD (2013) Epidemiology of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143. https://doi.org/10.1378/chest.12-2345

  86. Matsuda T, Machii R (2015) Morphological distribution of lung cancer from cancer incidence in five continents vol. x. Jpn J Clin Oncol 45:404. https://doi.org/10.1093/jjco/hyv041

    Article  PubMed  Google Scholar 

  87. Iglesias VS, Giuranno L, Dubois LJ, Theys J, Vooijs M (2018) Drug resistance in non-small cell lung cancer: a potential for NOTCH targeting? Front Oncol 8:267

    Article  Google Scholar 

  88. Sharma P, Mehta M, Dhanjal DS, Kaur S, Gupta G, Singh H, Thangavelu L, Rajeshkumar S, Tambuwala M, Bakshi HA, Chellappan DK, Dua K, Satija S (2019) Emerging trends in the novel drug delivery approaches for the treatment of lung cancer. Chem Biol Interact 309:108720

    Article  CAS  PubMed  Google Scholar 

  89. Gariani J, Martin SP, Hachulla AL, Karenovics W, Adler D, Soccal PM, Becker CD, Montet X (2018) Noninvasive pulmonary nodule characterization using transcutaneous bioconductance: preliminary results of an observational study. Medicine (United States) 97:e11924. https://doi.org/10.1097/MD.0000000000011924

    Article  Google Scholar 

  90. Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380. https://doi.org/10.1056/NEJMra0802714

    Article  CAS  PubMed  Google Scholar 

  91. Mulvihill MS, Kratz JR, Pham P, Jablons DM, He B (2013) The role of stem cells in airway repair: implications for the origins of lung cancer. Chin J Cancer 32:71–74

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Li G, Gao Y, Cui Y, Zhang T, Cui R, Jiang Y, Shi J (2016) Overexpression of CD44 is associated with the occurrence and migration of non-small cell lung cancer. Mol Med Rep 14:3159–3167. https://doi.org/10.3892/mmr.2016.5636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Overview of the initial treatment and prognosis of lung cancer—UpToDate

    Google Scholar 

  94. Khan AM, Shahzad M, Raza Asim MB, Imran M, Shabbir A (2015) Zingiber officinale ameliorates allergic asthma via suppression of Th2-mediated immune response. Pharm Biol 53:359–367. https://doi.org/10.3109/13880209.2014.920396

    Article  PubMed  Google Scholar 

  95. Alasvand M, Assadollahi V, Ambra R, Hedayati E, Kooti W, Peluso I (2019) Antiangiogenic effect of alkaloids. Oxidative Med Cell Longev 2019:9475908

    Article  CAS  Google Scholar 

  96. Zhong W, Qin Y, Chen S, Sun T (2017) Antitumor effect of natural product molecules against lung cancer. In: A global scientific vision—prevention, diagnosis, and treatment of lung cancer. InTech, Rijeka

    Google Scholar 

  97. Xu J-Y, Meng Q-H, Chong Y, Jiao Y, Zhao L, Rosen EM, Fan S (2013) Sanguinarine is a novel VEGF inhibitor involved in the suppression of angiogenesis and cell migration. Mol Clin Oncol 1:331–336. https://doi.org/10.3892/mco.2012.41

    Article  PubMed  Google Scholar 

  98. Chakraborty S, Adhikary A, Mazumdar M, Mukherjee S, Bhattacharjee P, Guha D, Choudhuri T, Chattopadhyay S, Sa G, Sen A, Das T (2014) Capsaicin-induced activation of p53-SMAR1 auto-regulatory loop down-regulates VEGF in non-small cell lung cancer to restrain angiogenesis. PLoS One 9:e99743. https://doi.org/10.1371/journal.pone.0099743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Haura EB, Cress WD, Chellappan S, Zheng Z, Bepler G (2004) Antiapoptotic signaling pathways in non-small-cell lung cancer: biology and therapeutic strategies. Clin Lung Cancer 6:113–122. https://doi.org/10.3816/CLC.2004.n.025

    Article  CAS  PubMed  Google Scholar 

  100. Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, Ross Buchan J, Cho WC (2017) Role of autophagy and apoptosis in non-small-cell lung cancer. Int J Mol Sci 18:367

    Article  PubMed Central  CAS  Google Scholar 

  101. Han B, Wu J, Huang L (2020) Induction of apoptosis in lung cancer cells by viburnum grandiflorum via mitochondrial pathway. Med Sci Monit 26:e920265-1. https://doi.org/10.12659/MSM.920265

    Article  Google Scholar 

  102. Xie JH, Lai ZQ, Zheng XH, Xian YF, Li Q, Ip SP, Xie YL, Chen JN, Su ZR, Lin ZX, Yang XB (2019) Apoptosis induced by bruceine D in human non-small-cell lung cancer cells involves mitochondrial ROS-mediated death signaling. Int J Mol Med 44:2015–2026. https://doi.org/10.3892/ijmm.2019.4363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Capelletto E, Novello S (2012) Emerging new agents for the management of patients with non-small cell lung cancer. Drugs 72:37–52

    Article  CAS  PubMed  Google Scholar 

  104. Ansari J, Shackelford RE, El-Osta H (2016) Epigenetics in non-small cell lung cancer: from basics to therapeutics. Transl Lung Cancer Res 5:155–171. https://doi.org/10.21037/tlcr.2016.02.02

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mamdani H, Jalal SI (2020) Histone deacetylase inhibition in non-small cell lung cancer: hype or hope? Front Cell Dev Biol 8:1126. https://doi.org/10.3389/fcell.2020.582370

    Article  Google Scholar 

  106. Liu Y, Tong Y, Yang X, Li F, Zheng L, Liu W, Wu J, Ou R, Zhang G, Hu M, Liu Z, Lu L (2016) Novel histone deacetylase inhibitors derived from Magnolia officinalis significantly enhance TRAIL-induced apoptosis in non-small cell lung cancer. Pharmacol Res 111:113–125. https://doi.org/10.1016/j.phrs.2016.05.028

    Article  CAS  PubMed  Google Scholar 

  107. Fulda S (2012) Histone deacetylase (HDAC) inhibitors and regulation of TRAIL-induced apoptosis. Exp Cell Res 318:1208–1212

    Article  CAS  PubMed  Google Scholar 

  108. Singh T, Prasad R, Katiyar SK (2016) Therapeutic intervention of silymarin on the migration of non-small cell lung cancer cells is associated with the axis of multiple molecular targets including class 1 HDACs, ZEB1 expression, and restoration of miR-203 and E-cadherin expression. Am J Cancer Res 6:1287–1301

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu Y, Li A, Feng X, Sun X, Zhu X, Zhao Z (2018) Pharmacological investigation of the anti-inflammation and anti-oxidation activities of diallyl disulfide in a rat emphysema model induced by cigarette smoke extract. Nutrients 10:79. https://doi.org/10.3390/nu10010079

    Article  CAS  PubMed Central  Google Scholar 

  110. Zhao YL, Shang JH, Pu SB, Wang HS, Wang B, Liu L, Liu YP, Hong-Mei S, Luo XD (2016) Effect of total alkaloids from Alstonia scholaris on airway inflammation in rats. J Ethnopharmacol 178:258–265. https://doi.org/10.1016/j.jep.2015.12.022

    Article  CAS  PubMed  Google Scholar 

  111. Tan WSD, Peh HY, Liao W, Pang CH, Chan TK, Lau SH, Chow VT, Wong WSF (2016) Cigarette smoke-induced lung disease predisposes to more severe infection with nontypeable haemophilus influenzae: protective effects of andrographolide. J Nat Prod 79:1308–1315. https://doi.org/10.1021/acs.jnatprod.5b01006

    Article  CAS  PubMed  Google Scholar 

  112. Rassias DJ, Weathers PJ (2019) Dried leaf artemisia annua efficacy against non-small cell lung cancer. Phytomedicine 52:247–253. https://doi.org/10.1016/j.phymed.2018.09.167

    Article  CAS  PubMed  Google Scholar 

  113. Yang ZC, Qu ZH, Yi MJ, Wang C, Ran N, Xie N, Fu P, Feng XY, Lv ZD, Xu L (2013) Astragalus extract attenuates allergic airway inflammation and inhibits nuclear factor κb expression in asthmatic mice. Am J Med Sci 346:390–395. https://doi.org/10.1097/MAJ.0b013e3182753175

    Article  PubMed  Google Scholar 

  114. Qiu YY, Zhu JX, Bian T, Gao F, Qian XF, Du Q, Yuan MY, Sun H, Shi LZ, Yu MH (2014) Protective effects of astragaloside IV against ovalbumin-induced lung inflammation are regulated/mediated by T-bet/GATA-3. Pharmacology 94:51–59. https://doi.org/10.1159/000362843

    Article  CAS  PubMed  Google Scholar 

  115. Koul A, Kapoor N, Bharati S (2012) Histopathological, enzymatic, and molecular alterations induced by cigarette smoke inhalation in the pulmonary tissue of mice and its amelioration by aqueous azadirachta indica leaf extract. J Environ Pathol Toxicol Oncol 31:7–15. https://doi.org/10.1615/JEnvironPatholToxicolOncol.v31.i1.20

    Article  PubMed  Google Scholar 

  116. Xu D, Wan C, Wang T, Tian P, Li D, Wu Y, Fan S, Chen L, Shen Y, Wen F (2015) Berberine attenuates cigarette smoke-induced airway inflammation and mucus hypersecretion in mice. Int J Clin Exp Med 8:8641–8647

    PubMed  PubMed Central  Google Scholar 

  117. Lee JW, Shin NR, Park JW, Park SY, Kwon OK, Lee HS, Hee Kim J, Lee HJ, Lee J, Zhang ZY, Oh SR, Ahn KS (2015) Callicarpa japonica Thunb. attenuates cigarette smoke-induced neutrophil inflammation and mucus secretion. J Ethnopharmacol 175:1–8. https://doi.org/10.1016/j.jep.2015.08.056

    Article  PubMed  Google Scholar 

  118. Hwang YP, Jin SW, Choi JH, Choi CY, Kim HG, Kim SJ, Kim Y, Lee KJ, Chung YC, Jeong HG (2017) Inhibitory effects of L-theanine on airway inflammation in ovalbumin-induced allergic asthma. Food Chem Toxicol 99:162–169. https://doi.org/10.1016/j.fct.2016.11.032

    Article  CAS  PubMed  Google Scholar 

  119. Khoi PN, Park JS, Kim JH, Xia Y, Kim NH, Kim KK, Do JY (2013) (−)-Epigallocatechin-3-gallate blocks nicotine-induced matrix metalloproteinase-9 expression and invasiveness via suppression of NF-κB and AP-1 in endothelial cells. Int J Oncol 43:868–876. https://doi.org/10.3892/ijo.2013.2006

    Article  CAS  PubMed  Google Scholar 

  120. Lee JW, Park HA, Kwon OK, Jang YG, Kim JY, Choi BK, Lee HJHJ, Lee S, Paik JH, Oh SR, Ahn KS, Lee HJHJ (2016) Asiatic acid inhibits pulmonary inflammation induced by cigarette smoke. Int Immunopharmacol 39:208–217. https://doi.org/10.1016/j.intimp.2016.07.010

    Article  CAS  PubMed  Google Scholar 

  121. Chin LH, Hon CM, Chellappan DK, Chellian J, Madheswaran T, Zeeshan F, Awasthi R, Aljabali AA, Tambuwala MM, Dureja H, Negi P, Kapoor DN, Goyal R, Paudel KR, Satija S, Gupta G, Hsu A, Wark P, Mehta M, Wadhwa R, Hansbro PM, Dua K (2020) Molecular mechanisms of action of naringenin in chronic airway diseases. Eur J Pharmacol 879:173139

    Article  CAS  PubMed  Google Scholar 

  122. Bui TT, Piao CH, Kim SM, Song CH, Shin HS, Lee CH, Chai OH (2017) Citrus tachibana leaves ethanol extract alleviates airway inflammation by the modulation of Th1/Th2 imbalance via inhibiting NF-κB signaling and histamine secretion in a mouse model of allergic asthma. J Med Food 20:676–684. https://doi.org/10.1089/jmf.2016.3853

    Article  CAS  PubMed  Google Scholar 

  123. Chiu PR, Te Lee W, Te Chu Y, Lee MS, Jong YJ, Hung CH (2008) Effect of the Chinese herb extract osthol on IL-4-induced eotaxin expression in BEAS-2B cells. Pediatr Neonatol 49:135–140. https://doi.org/10.1016/S1875-9572(08)60028-5

    Article  PubMed  Google Scholar 

  124. Wang A, Wang J, Zhang S, Zhang H, Xu Z, Li X (2017) Curcumin inhibits the development of non-small cell lung cancer by inhibiting autophagy and apoptosis. Exp Ther Med 14:5075–5080. https://doi.org/10.3892/etm.2017.5172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhang M, Tang J, Li Y, Xie Y, Shan H, Chen M, Zhang J, Yang X, Zhang Q, Yang X (2017) Curcumin attenuates skeletal muscle mitochondrial impairment in COPD rats: PGC-1α/SIRT3 pathway involved. Chem Biol Interact 277:168–175. https://doi.org/10.1016/j.cbi.2017.09.018

    Article  CAS  PubMed  Google Scholar 

  126. Aydemir E, Simsek E, Imir N, Göktürk R, Yesilada E, Fiskin K (2015) Cytotoxic and apoptotic effects of Ebenus boissieri Barbey on human lung cancer cell line A549. Pharmacogn Mag 11:37. https://doi.org/10.4103/0973-1296.157679

    Article  CAS  Google Scholar 

  127. Šutovská M, Capek P, Kazimierová I, Pappová L, Jošková M, Matulová M, Fraňová S, Pawlaczyk I, Gancarz R (2015) Echinacea complex—chemical view and anti-asthmatic profile. J Ethnopharmacol 175:163–171. https://doi.org/10.1016/j.jep.2015.09.007

    Article  CAS  PubMed  Google Scholar 

  128. Avisetti DR, Babu KS, Kalivendi SV (2014) Activation of p38/JNK pathway is responsible for embelin induced apoptosis in lung cancer cells: transitional role of reactive oxygen species. PLoS One 9:e87050. https://doi.org/10.1371/journal.pone.0087050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kennedy-Feitosa E, Okuro RT, Pinho Ribeiro V, Lanzetti M, Barroso MV, Zin WA, Porto LC, Brito-Gitirana L, Valenca SS (2016) Eucalyptol attenuates cigarette smoke-induced acute lung inflammation and oxidative stress in the mouse. Pulm Pharmacol Ther 41:11–18. https://doi.org/10.1016/j.pupt.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  130. De Moura RS, Ferreira TS, Lopes AA, Pires KMP, Nesi RT, Resende AC, Souza PJC, Da Silva AJR, Borges RM, Porto LC, Valenca SS (2012) Effects of Euterpe oleracea Mart. (AÇAÍ) extract in acute lung inflammation induced by cigarette smoke in the mouse. Phytomedicine 19:262–269. https://doi.org/10.1016/j.phymed.2011.11.004

    Article  PubMed  Google Scholar 

  131. Yang X, Yao J, Luo Y, Han Y, Wang Z, Du L (2013) P38 MAP kinase mediates apoptosis after genipin treatment in non-small-cell lung cancer H1299 cells via a mitochondrial apoptotic cascade. J Pharmacol Sci 121:272–281. https://doi.org/10.1254/jphs.12234FP

    Article  CAS  PubMed  Google Scholar 

  132. Huang CH, Yang ML, Tsai CH, Li YC, Lin YJ, Kuan YH (2013) Ginkgo biloba leaves extract (EGb 761) attenuates lipopolysaccharide-induced acute lung injury via inhibition of oxidative stress and NF-κB-dependent matrix metalloproteinase-9 pathway. Phytomedicine 20:303–309. https://doi.org/10.1016/j.phymed.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  133. Hsu HF, Houng JY, Kuo CF, Tsao N, Wu YC (2008) Glossogin, a novel phenylpropanoid from Glossogyne tenuifolia, induced apoptosis in A549 lung cancer cells. Food Chem Toxicol 46:3785–3791. https://doi.org/10.1016/j.fct.2008.09.068

    Article  CAS  PubMed  Google Scholar 

  134. Peh HY, Tan WSD, Chan TKK, Pow CW, Foster PS, Wong WSF (2017) Vitamin E isoform γ-tocotrienol protects against emphysema in cigarette smoke-induced COPD. Free Radic Biol Med 110:332–344. https://doi.org/10.1016/j.freeradbiomed.2017.06.023

    Article  CAS  PubMed  Google Scholar 

  135. Jiang R, Hu C, Li Q, Cheng Z, Gu L, Li H, Guo Y, Li Q, Lu Y, Li K, Chen M, Zhang X (2019) Sodium new houttuyfonate suppresses metastasis in NSCLC cells through the Linc00668/miR-147a/slug axis. J Exp Clin Cancer Res 38. https://doi.org/10.1186/s13046-019-1152-9

  136. Fu L, Chen W, Guo W, Wang J, Tian Y, Shi D, Zhang X, Qiu H, Xiao X, Kang T, Huang W, Wang S, Deng W (2013) Berberine targets AP-2/hTERT, NF-κB/COX-2, HIF-1α/VEGF and cytochrome-c/caspase signaling to suppress human cancer cell growth. PLoS One 8:e69240. https://doi.org/10.1371/journal.pone.0069240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Alfaifi MY (2016) Kanahia Laniflora methanolic extract suppressed proliferation of human non-small cell lung cancer A549 cells. Asian Pac J Cancer Prev 17:4755. https://doi.org/10.22034/APJCP.2016.17.10.4755

    Article  PubMed  PubMed Central  Google Scholar 

  138. Mahajan SG, Mehta AA (2011) Suppression of ovalbumin-induced Th2-driven airway inflammation by β-sitosterol in a guinea pig model of asthma. Eur J Pharmacol 650:458–464. https://doi.org/10.1016/j.ejphar.2010.09.075

    Article  CAS  PubMed  Google Scholar 

  139. Lim YJ, Na HS, Yun YS, Choi IS, Oh JS, Rhee JH, Cho BH, Lee HC (2009) Suppressive effects of ginsan on the development of allergic reaction in murine asthmatic model. Int Arch Allergy Immunol 150:32–42. https://doi.org/10.1159/000210378

    Article  CAS  PubMed  Google Scholar 

  140. Gao W, Guo Y, Yang H (2017) Platycodin D protects against cigarette smoke-induced lung inflammation in mice. Int Immunopharmacol 47:53–58. https://doi.org/10.1016/j.intimp.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  141. Guan Z, Shen L, Liang H, Yu H, Hei B, Meng X, Yang L (2017) Resveratrol inhibits hypoxia-induced proliferation and migration of pulmonary artery vascular smooth muscle cells by inhibiting the phosphoinositide 3-kinase/protein kinase B signaling pathway. Mol Med Rep 16:1653–1660. https://doi.org/10.3892/mmr.2017.6814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Park K, Lee JS, Choi JS, Nam YJ, Han JH, Byun HD, Song MJ, Oh JS, Kim SG, Choi Y (2016) Identification and characterization of baicalin as a phosphodiesterase 4 inhibitor. Phytother Res 30:144–151. https://doi.org/10.1002/ptr.5515

    Article  CAS  PubMed  Google Scholar 

  143. Lee SU, Lee S, Ro H, Choi JH, Ryu HW, Kim MO, Yuk HJ, Lee J, Hong ST, Oh SR (2018) Piscroside C inhibits TNF-α/NF-κB pathway by the suppression of PKCδ activity for TNF-RSC formation in human airway epithelial cells. Phytomedicine 40:148–157. https://doi.org/10.1016/j.phymed.2018.01.012

    Article  CAS  PubMed  Google Scholar 

  144. Ryu HW, Lee SU, Lee S, Song HH, Son TH, Kim YU, Yuk HJ, Ro H, Lee CK, Hong ST, Oh SR (2017) 3-Methoxy-catalposide inhibits inflammatory effects in lipopolysaccharide-stimulated RAW264.7 macrophages. Cytokine 91:57–64. https://doi.org/10.1016/j.cyto.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  145. Chen X, Wen T, Wei J, Wu Z, Wang P, Hong Z, Zhao L, Wang B, Flavell R, Gao S, Wang M, Yin Z (2013) Treatment of allergic inflammation and hyperresponsiveness by a simple compound, Bavachinin, isolated from Chinese herbs. Cell Mol Immunol 10:497–505. https://doi.org/10.1038/cmi.2013.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Li S, Shi D, Zhang L, Yang F, Cheng G (2018) Oridonin enhances the radiosensitivity of lung cancer cells by upregulating bax and downregulating bcl-2. Exp Ther Med 16:4859–4864. https://doi.org/10.3892/etm.2018.6803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lu W, Dai B, Ma W, Zhang Y (2012) A novel taspine analog, HMQ1611, inhibits growth of non-small cell lung cancer by inhibiting angiogenesis. Oncol Lett 4:1109–1113. https://doi.org/10.3892/ol.2012.855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Luo F, Liu J, Yan T, Miao M (2017) Salidroside alleviates cigarette smoke-induced COPD in mice. Biomed Pharmacother 86:155–161. https://doi.org/10.1016/j.biopha.2016.12.032

    Article  CAS  PubMed  Google Scholar 

  149. Lee H, Yu SR, Lim D, Lee H, Jin EY, Jang YP, Kim J (2015) Galla Chinensis attenuates cigarette smoke-associated lung injury by inhibiting recruitment of inflammatory cells into the lung. Basic Clin Pharmacol Toxicol 116:222–228. https://doi.org/10.1111/bcpt.12308

    Article  CAS  PubMed  Google Scholar 

  150. Li D, Wang J, Sun D, Gong X, Jiang H, Shu J, Wang Z, Long Z, Chen Y, Zhang Z, Yuan L, Guan R, Liang X, Li Z, Yao H, Zhong N, Lu W (2018) Tanshinone IIA sulfonate protects against cigarette smoke-induced COPD and down-regulation of CFTR in mice. Sci Rep 8:376. https://doi.org/10.1038/s41598-017-18745-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang DF, Zhang J, Li R (2015) Salvianolic acid B attenuates lung inflammation induced by cigarette smoke in mice. Eur J Pharmacol 761:174–179. https://doi.org/10.1016/j.ejphar.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  152. Song JW, Seo CS, Cho ES, Kim TI, Won YS, Kwon HJ, Son JK, Son HY (2016) Meso-dihydroguaiaretic acid attenuates airway inflammation and mucus hypersecretion in an ovalbumin-induced murine model of asthma. Int Immunopharmacol 31:239–247. https://doi.org/10.1016/j.intimp.2015.12.033

    Article  CAS  PubMed  Google Scholar 

  153. Zhong S, Nie YC, Gan ZY, Liu XD, Fang ZF, Zhong BN, Tian J, Huang CQ, Lai KF, Zhong NS (2015) Effects of Schisandra chinensis extracts on cough and pulmonary inflammation in a cough hypersensitivity guinea pig model induced by cigarette smoke exposure. J Ethnopharmacol 165:73–82. https://doi.org/10.1016/j.jep.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  154. Zhou DG, Diao BZ, Zhou W, Feng JL (2016) Oroxylin A inhibits allergic airway inflammation in ovalbumin (OVA)-induced asthma murine model. Inflammation 39:867–872. https://doi.org/10.1007/s10753-016-0317-3

    Article  CAS  PubMed  Google Scholar 

  155. Li D, Xu D, Wang T, Shen Y, Guo S, Zhang X, Guo L, Li X, Liu L, Wen F (2015) Silymarin attenuates airway inflammation induced by cigarette smoke in mice. Inflammation 38:871–878. https://doi.org/10.1007/s10753-014-9996-9

    Article  CAS  PubMed  Google Scholar 

  156. Tyagi A, Singh RP, Ramasamy K, Raina K, Redente EF, Dwyer-Nield LD, Radcliffe RA, Malkinson AM, Agarwal R (2009) Growth inhibition and regression of lung tumors by silibinin: modulation of angiogenesis by macrophage-associated cytokines and nuclear factor-κB and signal transducers and activators of transcription 3. Cancer Prev Res 2:74–83. https://doi.org/10.1158/1940-6207.CAPR-08-0095

    Article  CAS  Google Scholar 

  157. Huang WC, Chan CC, Wu SJ, Chen LC, Shen JJ, Kuo ML, Chen MC, Liou CJ (2014) Matrine attenuates allergic airway inflammation and eosinophil infiltration by suppressing eotaxin and Th2 cytokine production in asthmatic mice. J Ethnopharmacol 151:470–477. https://doi.org/10.1016/j.jep.2013.10.065

    Article  CAS  PubMed  Google Scholar 

  158. Lee H, Jung KH, Park S, Kil YS, Chung EY, Jang YP, Seo EK, Bae H (2014) Inhibitory effects of Stemona tuberosa on lung inflammation in a subacute cigarette smokeinduced mouse model. BMC Complemnt Altern Med 14. https://doi.org/10.1186/1472-6882-14-513

  159. Zhang X, Liu J, Xiong H, Cheng Y, Cui C, Zhang X, Xu L (2013) Effects of taraxasterol on ovalbumin-induced allergic asthma in mice. J Ethnopharmacol 148:787–793. https://doi.org/10.1016/j.jep.2013.05.006

    Article  CAS  PubMed  Google Scholar 

  160. Ni L, Zhu X, Gong C, Luo Y, Wang L, Zhou W, Zhu S, Li Y (2015) Trichosanthes kirilowii fruits inhibit non-small cell lung cancer cell growth through mitotic cell-cycle arrest. Am J Chin Med 43:349–364. https://doi.org/10.1142/S0192415X15500238

    Article  PubMed  Google Scholar 

  161. Liu LL, Zhang Y, Zhang XF, Li FH (2018) Influence of rutin on the effects of neonatal cigarette smoke exposure-induced exacerbated MMP-9 expression, Th17 cytokines and NF-kB/iNOS-mediated inflammatory responses in asthmatic mice model. Korean J Physiol Pharmacol 22:481–491. https://doi.org/10.4196/kjpp.2018.22.5.481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Dong Y, Yang J, Yang L, Li P (2020) Quercetin inhibits the proliferation and metastasis of human non-small cell lung cancer cell line: the key role of Src-mediated fibroblast growth factor-inducible 14 (Fn14)/nuclear factor kappa B (NF-κB) pathway. Med Sci Monit 26:e920537-1. https://doi.org/10.12659/MSM.920537

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chan, Y., Ng, S.W., Dua, K., Chellappan, D.K. (2021). Plant-Based Chemical Moieties for Targeting Chronic Respiratory Diseases. In: Dua, K., Löbenberg, R., Malheiros Luzo, Â.C., Shukla, S., Satija, S. (eds) Targeting Cellular Signalling Pathways in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6827-9_34

Download citation

Publish with us

Policies and ethics