Skip to main content

Understanding the Biology of Non-typeable Haemophilus influenzae in Chronic Obstructive Pulmonary Disease Through the Lens of Genomics

  • Chapter
  • First Online:
Targeting Cellular Signalling Pathways in Lung Diseases

Abstract

The genus Haemophilus contains a number of species of medical importance. In particular, Haemophilus influenzae causes a range of invasive diseases including meningitis, septicaemia, epiglottis, cellulitis and arthritis, as well as non-invasive infections that can present as sinusitis, otitis media, chronic bronchitis and pneumonia. Conventional laboratory biotyping and genotyping lack the resolution required to distinguish between isolates of across these different clinical phenotypes. However, advancements in whole-genome sequencing have made it possible to detect subtle differences in the bacterium’s genome content. In this chapter, we explore the potential that genomics and bioinformatics offer to the management of H. influenzae infection. In particular, we discuss specific examples of their application in the study of COPD-related infections caused by non-typeable strains of H. influenzae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ChoP:

Phosphorylcholine

COPD:

Chronic obstructive pulmonary disease

DNA:

Deoxyribonucleic acid

HGT:

Horizontal gene transfer

LOS:

Lipooligosaccharide

MLEE:

Multilocus enzyme electrophoresis

MLST:

Multilocus sequence typing

NTHi:

Non-typeable Haemophilus influenzae

PAFR:

Platelet-activating factor receptor

pan-GWAS:

Pan-genome-wide association studies

REA:

Restriction endonuclease analysis

SNPs:

Single-nucleotide polymorphisms

WGS:

Whole-genome sequencing

References

  1. Pfeiffer R (1893) Die aetiologie der influenza. Z Hyg Infekt 13:357–386

    Article  Google Scholar 

  2. Kilian M (2015) Haemophilus. Bergey’s manual of systematics of archaea and bacteria. 1–47

    Google Scholar 

  3. NØrskov-Lauritsen N (2014) Classification, identification, and clinical significance of Haemophilus and Aggregatibacter species with host specificity for humans. Clin Microbiol Rev 27:214–240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. High NJ (2002) Haemophilus influenzae. Molecular medical microbiology. Elsevier, Amsterdam

    Google Scholar 

  5. McConnell A, Tan B, Scheifele D, Halperin S, Vaudry W, Law B, Embree J (2007) Invasive infections caused by Haemophilus influenzae serotypes in twelve Canadian IMPACT centers, 1996–2001. Pediatr Infect Dis J 26:1025–1031

    Article  PubMed  Google Scholar 

  6. Robbins JB, Schneerson R, Anderson P, Smith DH (1996) The 1996 Albert Lasker Medical Research Awards. Prevention of systemic infections, especially meningitis, caused by Haemophilus influenzae type b. Impact on public health and implications for other polysaccharide-based vaccines. JAMA 276:1181–1185

    Article  CAS  PubMed  Google Scholar 

  7. Campos J, Hernando M, Román F, PÉrez-VÁzquez M, Aracil B, Oteo J, LÁzaro E, De Abajo F (2004) Analysis of invasive Haemophilus influenzae infections after extensive vaccination against H. influenzae type b. J Clin Microbiol 42:524–529

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barbosa SF, Hoshino-Shimizu S, Alkmin MDGA, Goto H (2003) Implications of Haemophilus influenzae biogroup aegyptius hemagglutinins in the pathogenesis of Brazilian purpuric fever. J Infect Dis 188:74–80

    Article  PubMed  Google Scholar 

  9. Bengtson IA (1933) Seasonal acute conjunctivitis occurring in the southern states. Public Health Reports 1896–1970:917–926

    Article  Google Scholar 

  10. Anderson R, Wang X, Briere EC, Katz LS, Cohn AC, Clark TA, Messonnier NE, Mayer LW (2012) Haemophilus haemolyticus isolates causing clinical disease. J Clin Microbiol 50:2462–2465

    Article  PubMed  PubMed Central  Google Scholar 

  11. Morton DJ, Hempel RJ, Whitby PW, Seale TW, Stull TL (2012) An invasive Haemophilus haemolyticus isolate. J Clin Microbiol 50:1502–1503

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cardines R, Giufrè M, Ciofi Degli Atti M, Accogli M, Mastrantonio P, Cerquetti M (2009) Haemophilus parainfluenzae meningitis in an adult associated with acute otitis media. New Microbiol 32:213

    PubMed  Google Scholar 

  13. Chattopadhyay B, Silverstone P, Winwood R (1983) Liver abscess caused by Haemophilus parainfluenzae. Postgrad Med J 59:788–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chunn CJ, Jones SR, Mccutchan JA, Young EJ, Gilbert DN (1977) Haemophilus parainfluenzae infective endocarditis. Medicine 56:99–113

    Article  CAS  PubMed  Google Scholar 

  15. Khor B-S, Liaw S-J, Liao H-C, Yang C-C, Lee M-H (2007) Bone and joint infections caused byHaemophilus parainfluenzae: report of two cases and literature review. Infect Dis Clin Pract 15:206–208

    Article  Google Scholar 

  16. Chen CC, Wang SJ, Fuh JL (2001) Isolation of Haemophilus parahaemolyticus in a patient with cryptogenic brain abscess. Scand J Infect Dis 33:385–386

    Article  CAS  PubMed  Google Scholar 

  17. Le Floch AS, Cassir N, Hraiech S, Guervilly C, Papazian L, Rolain JM (2013) Haemophilus parahaemolyticus septic shock after aspiration pneumonia, France. Emerg Infect Dis 19:1694–1695

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pittman M (1953) A classification of the hemolytic bacteria of the genus haemophilus: haemophilus haemolyticus Bergey et al. and Haemophilus parahaemolyticus nov spec. J Bacteriol 65:750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boucher MB, Bedotto M, Couderc C, Gomez C, Reynaud-Gaubert M, Drancourt M (2012) Haemophilus pittmaniae respiratory infection in a patient with siderosis: a case report. J Med Case Rep 6:120

    Article  PubMed  PubMed Central  Google Scholar 

  20. Douglas GW, Buck LL, Rosen C (1979) Liver abscess caused by Haemophilus paraphrohaemolyticus. J Clin Microbiol 9:299–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nørskov-Lauritsen N, Bruun B, Andersen C, Kilian M (2012) Identification of haemolytic Haemophilus species isolated from human clinical specimens and description of Haemophilus sputorum sp. nov. Int J Med Microbiol 302:78–83

    Article  PubMed  CAS  Google Scholar 

  22. Trees DL, Morse SA (1995) Chancroid and Haemophilus ducreyi: an update. Clin Microbiol Rev 8:357–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mitjà O, Lukehart SA, Pokowas G, Moses P, Kapa A, Godornes C, Robson J, Cherian S, Houinei W, Kazadi W (2014) Haemophilus ducreyi as a cause of skin ulcers in children from a yaws-endemic area of Papua New Guinea: a prospective cohort study. Lancet Glob Health 2:e235–e241

    Article  PubMed  Google Scholar 

  24. Faden H, Bernstein J, Brodsky L, Stanievich J, Krystofik D, Shuff C, Hong JJ, Ogra PL (1989) Otitis media in children. I. The systemic immune response to nontypable Haemophilus influenzae. J Infect Dis 160:999–1004

    Article  CAS  PubMed  Google Scholar 

  25. Groenewegen KH, Wouters EF (2003) Bacterial infections in patients requiring admission for an acute exacerbation of COPD; a 1-year prospective study. Respir Med 97:770–777

    Article  PubMed  Google Scholar 

  26. Murphy T, Brauer AL, Schiffmacher AT, Sethi S (2004) Persistent colonization by Haemophilus influenzae in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 170:266–272

    Article  PubMed  Google Scholar 

  27. Sunakawa K, Takeuchi Y, Iwata S (2011) Nontypeable Haemophilus influenzae (NTHi) epidemiology. Kansenshogaku Zasshi 85:227–237

    Article  PubMed  Google Scholar 

  28. Langereis JD, De Jonge IM (2015) Invasive disease caused by nontypeable Haemophilus influenzae. Emerg Infect Dis 21:1711

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moxon ER, Vaughn KA (1981) The type b capsular polysaccharide as a virulence determinant of Haemophilus influenzae: studies using clinical isolates and laboratory transformants. J Infect Dis 143:517–524

    Article  CAS  PubMed  Google Scholar 

  30. Kc R, Shukla SD, Walters EH, O’Toole RF (2017) Temporal upregulation of host surface receptors provides a window of opportunity for bacterial adhesion and disease. Microbiology 163:421–430

    Article  CAS  PubMed  Google Scholar 

  31. Rodriguez CA, Avadhanula V, Buscher A, Smith AL, Geme JW ST 3rd, Adderson EE (2003) Prevalence and distribution of adhesins in invasive non-type b encapsulated Haemophilus influenzae. Infect Immun 71:1635–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krasan G, Cutter D, Block SL, Geme JWS (1999) Adhesin expression in matched nasopharyngeal and middle ear isolates of nontypeable Haemophilus influenzae from children with acute otitis media. Infect Immun 67:449–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vuong J, Wang X, Theodore JM, Whitmon J, De Leon PG, Mayer LW, Carlone GM, Romero-Steiner S (2013) Absence of high molecular weight proteins 1 and/or 2 is associated with decreased adherence among non-typeable Haemophilus influenzae clinical isolates. J Med Microbiol 62:1649–1656

    Article  CAS  PubMed  Google Scholar 

  34. St Geme JW 3rd (2002) Molecular and cellular determinants of non-typeable Haemophilus influenzae adherence and invasion. Cell Microbiol 4:191–200

    Article  CAS  PubMed  Google Scholar 

  35. Reddy MS, Bernstein JM, Murphy TF, Faden HS (1996) Binding between outer membrane proteins of nontypeable Haemophilus influenzae and human nasopharyngeal mucin. Infect Immun 64:1477–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Punturieri A, Copper P, Polak T, Christensen PJ, Curtis JL (2006) Conserved nontypeable Haemophilus influenzae-derived TLR2-binding lipopeptides synergize with IFN-beta to increase cytokine production by resident murine and human alveolar macrophages. J Immunol 177:673–680

    Article  CAS  PubMed  Google Scholar 

  37. Ikeda M, Enomoto N, Hashimoto D, Fujisawa T, Inui N, Nakamura Y, Suda T, Nagata T (2015) Nontypeable Haemophilus influenzae exploits the interaction between protein-E and vitronectin for the adherence and invasion to bronchial epithelial cells. BMC Microbiol 15:1–11

    Article  CAS  Google Scholar 

  38. Swords WE, Buscher BA, Ver Steeg II K, Preston A, Nichols WA, Weiser JN, Gibson BW, Apicella MA (2000) Non-typeable Haemophilus influenzae adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor. Mol Microbiol 37:13–27

    Article  CAS  PubMed  Google Scholar 

  39. Erwin AL, Smith AL (2007) Nontypeable Haemophilus influenzae: understanding virulence and commensal behavior. Trends Microbiol 15:355–362

    Article  CAS  PubMed  Google Scholar 

  40. Sonego M, Pellegrin MC, Becker G, Lazzerini M (2015) Risk factors for mortality from acute lower respiratory infections (ALRI) in children under five years of age in low and middle-income countries: a systematic review and meta-analysis of observational studies. PLoS One 10:e0116380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Trosini-Desert V, Germaud P, Dautzenberg B (2004) Tobacco smoke and risk of bacterial infection. Rev Mal Respir 21:539–547

    Article  CAS  PubMed  Google Scholar 

  42. Zalacain R, Sobradillo V, Amilibia J, Barrón J, Achótegui V, Pijoan JI, Llorente JL (1999) Predisposing factors to bacterial colonization in chronic obstructive pulmonary disease. Eur Respir J 13:343–348

    Article  CAS  PubMed  Google Scholar 

  43. Phipps JC, Aronoff D, Curtis JL, Goel D, O'brien E, Mancuso P (2010) Cigarette smoke exposure impairs pulmonary bacterial clearance and alveolar macrophage complement-mediated phagocytosis of Streptococcus pneumoniae. Infect Immun 78:1214–1220

    Article  CAS  PubMed  Google Scholar 

  44. Rylance J, Fullerton DG, Scriven J, Aljurayyan A, Mzinza D, Barrett S, Wright AKA, Wootton DG, Glennie SJ, Baple K, Knott A, Mortimer K, Russell DG, Heyderman RS, Gordon SB (2015) Household air pollution causes dose-dependent inflammation and altered phagocytosis in human macrophages. Am J Respir Cell Mol Biol 52:584–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Der Vaart H, Postma DS, Timens W, Ten Hacken NHT (2004) Acute effects of cigarette smoke on inflammation and oxidative stress: a review. Thorax 59:713–721

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kc R, Hyland IK, Smith JA, Shukla SD, Hansbro PM, Zosky GR, Karupiah G, O’toole RF (2020) Cow dung biomass smoke exposure increases adherence of respiratory pathogen nontypeable Haemophilus influenzae to human bronchial epithelial cells. Exposure Health 2020:1–13

    Google Scholar 

  47. Kc R, Zosky GR, Shukla SD, O’toole RF (2018) A cost-effective technique for generating preservable biomass smoke extract and measuring its effect on cell receptor expression in human bronchial epithelial cells. Biol Methods Protocols 3:bpy010

    Article  CAS  Google Scholar 

  48. O’Toole RF, Shukla SD, Walters EH (2016) Does upregulated host cell receptor expression provide a link between bacterial adhesion and chronic respiratory disease? J Transl Med 14:304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Shukla SD, Fairbairn RL, Gell DA, Latham RD, Sohal SS, Walters EH, O’Toole RF (2016) An antagonist of the platelet-activating factor receptor inhibits adherence of both nontypeable Haemophilus influenzae and Streptococcus pneumoniae to cultured human bronchial epithelial cells exposed to cigarette smoke. Int J Chron Obstruct Pulmon Dis 11:1647–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shukla SD, Muller HK, Latham R, Sohal SS, Walters EH (2016) Platelet-activating factor receptor (PAFr) is upregulated in small airways and alveoli of smokers and COPD patients. Respirology 21:504–510

    Article  PubMed  Google Scholar 

  51. Erwin AL, Nelson KL, Mhlanga-Mutangadura T, Bonthuis PJ, Geelhood JL, Morlin G, Unrath WC, Campos J, Crook DW, Farley MM, Henderson FW, Jacobs RF, Muhlemann K, Satola SW, Van Alphen L, Golomb M, Smith AL (2005) Characterization of genetic and phenotypic diversity of invasive nontypeable Haemophilus influenzae. Infect Immun 73:5853–5863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Farjo RS, Foxman B, Patel MJ, Zhang L, Pettigrew MM, McCoy SI, Marrs CF, Gilsdorf JR (2004) Diversity and sharing of Haemophilus influenzae strains colonizing healthy children attending day-care centers. Pediatr Infect Dis J 23:41–46

    Article  PubMed  Google Scholar 

  53. Shen K, Antalis P, Gladitz J, Sayeed S, Ahmed A, Yu S, Hayes J, Johnson S, Dice B, Dopico R, Keefe R, Janto B, Chong W, Goodwin J, Wadowsky RM, Erdos G, Post JC, Ehrlich GD, Hu FZ (2005) Identification, distribution, and expression of novel genes in 10 clinical isolates of nontypeable Haemophilus influenzae. Infect Immun 73:3479–3491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hogg JS, Hu FZ, Janto B, Boissy R, Hayes J, Keefe R, Post JC, Ehrlich GD (2007) Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol 8:R103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Dutta C, Pan A (2002) Horizontal gene transfer and bacterial diversity. J Biosci 27:27–33

    Article  PubMed  Google Scholar 

  56. Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    Article  CAS  PubMed  Google Scholar 

  57. Murphy TF, Sethi S, Klingman KL, Brueggemann AB, Doern G (1999) Simultaneous respiratory tract colonization by multiple strains of nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease: implications for antibiotic therapy. J Infect Dis 180:404–409

    Article  CAS  PubMed  Google Scholar 

  58. Lozupone C, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barenkamp SJ, Munson RS, Granoff D (1982) Outer membrane protein and biotype analysis of pathogenic nontypable Haemophilus influenzae. Infect Immun 36:535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kilian M (1976) A taxonomic study of the genus Haemophilus, with the proposal of a new species. J Gen Microbiol 93:9–62

    Article  CAS  PubMed  Google Scholar 

  61. Demaria TF, Lim DJ, Barnishan J, Ayers LW, Birck HG (1984) Biotypes of serologically nontypable Haemophilus influenzae isolated from the middle ears and nasopharynges of patients with otitis media with effusion. J Clin Microbiol 20:1102–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Long SS, Teter MJ, Gilligan PH (1983) Biotype of Haemophilus influenzae: correlation with virulence and ampicillin resistance. J Infect Dis 147:800–806

    Article  CAS  PubMed  Google Scholar 

  63. Wallace Jr R, Musher D, Septimus E, McGowan Jr J, Quinones F, Wiss K, Vance P, Trier P (1981) Haemophilus influenzae infections in adults: characterization of strains by serotypes, biotypes, and β-lactamase production. J Infect Dis 144:101–106

    Article  CAS  Google Scholar 

  64. Chin CL, Manzel L, Lehman EE, Humlicek A, Shi L, Starner TD, Denning GM, Murphy TF, Sethi S, Look DC (2005) Haemophilus influenzae from patients with chronic obstructive pulmonary disease exacerbation induce more inflammation than colonizers. Am J Respir Crit Care Med 172:85–91

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bresser P, Van Alphen L, Habets FJ, Hart AA, Dankert J, Jansen HM, Lutter R (1997) Persisting Haemophilus influenzae strains induce lower levels of interleukin-6 and interleukin-8 in H292 lung epithelial cells than nonpersisting strains. Eur Respir J 10:2319–2326

    Article  CAS  PubMed  Google Scholar 

  66. Bresser P, Out TA, Van Alphen L, Jansen HM, Lutter R (2000) Airway inflammation in nonobstructive and obstructive chronic bronchitis with chronic haemophilus influenzae airway infection. Comparison with noninfected patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 162:947–952

    Article  CAS  PubMed  Google Scholar 

  67. Power PM, Sweetman W, Gallacher N, Woodhall M, Kumar G, Moxon E, Hood D (2009) Simple sequence repeats in Haemophilus influenzae. Infect Genet Evol 9:216–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bruce KD, Jordens J (1991) Characterization of noncapsulate Haemophilus influenzae by whole-cell polypeptide profiles, restriction endonuclease analysis, and rRNA gene restriction patterns. J Clin Microbiol 29:291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meats E, Feil EJ, Stringer S, Cody AJ, Goldstein R, Kroll JS, Popovic T, Spratt BG (2003) Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol 41:1623–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Van Alphen L, Caugant DA, Duim B, O’Rourke M, Bowler LD (1997) Differences in genetic diversity of nonencapsulated Haemophilus influenzae from various diseases. Microbiology 143:1423–1431

    Article  CAS  PubMed  Google Scholar 

  71. Maslow JN, Mulligan ME, Arbeit RD (1993) Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. Clin Infect Dis 17:153–162. quiz 163-4

    Article  CAS  PubMed  Google Scholar 

  72. Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS (1986) Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol 51:873–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ibarz Pavón BA, Maiden MCJ (2009) Multilocus sequence typing. Methods Mol Biol (Clifton, NJ) 551:129–140

    Article  CAS  Google Scholar 

  74. Maiden MCJ, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci 95:3140–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Boers SA, Van Der Reijden WA, Jansen R (2012) High-throughput multilocus sequence typing: bringing molecular typing to the next level. PLoS One 7:e39630–e39630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. De Chiara M, Hood D, Muzzi A, Pickard DJ, Perkins T, Pizza M, Dougan G, Rappuoli R, Moxon E, Soriani M, Donati C (2014) Genome sequencing of disease and carriage isolates of nontypeable Haemophilus influenzae identifies discrete population structure. Proc Natl Acad Sci U S A 111:5439–5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kc R, Leong KWC, Harkness NM, Lachowicz J, Gautam SS, Cooley LA, McEwan B, Petrovski S, Karupiah G, O'toole RF (2020) Whole-genome analyses reveal gene content differences between nontypeable Haemophilus influenzae isolates from chronic obstructive pulmonary disease compared to other clinical phenotypes. Microb Genom 6. https://doi.org/10.1099/mgen.0.000405

  78. Pettigrew MM, Ahearn CP, Gent JF, Kong Y, Gallo MC, Munro JB, D’Mello A, Sethi S, Tettelin H, Murphy TF (2018) Haemophilus influenzae genome evolution during persistence in the human airways in chronic obstructive pulmonary disease. Proc Natl Acad Sci U S A 115:E3256–e3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Salipante SJ, Sengupta DJ, Cummings LA, Land TA, Hoogestraat DR, Cookson BT (2015) Application of whole-genome sequencing for bacterial strain typing in molecular epidemiology. J Clin Microbiol 53:1072–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  CAS  PubMed  Google Scholar 

  81. Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, Abdelalim A (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392:1736–1788

    Article  Google Scholar 

  82. Moghaddam SJ, Ochoa CE, Sethi S, Dickey BF (2011) Nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease and lung cancer. Int J Chron Obstruct Pulmon Dis 6:113

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sriram KB, Cox AJ, Clancy RL, Slack MPE, Cripps AW (2018) Nontypeable Haemophilus influenzae and chronic obstructive pulmonary disease: a review for clinicians. Crit Rev Microbiol 44:125–142

    Article  CAS  PubMed  Google Scholar 

  84. Clancy RL, Dunkley M (2011) Acute exacerbations in COPD and their control with oral immunization with non-typeable Haemophilus influenzae. Front Immunol 2:7–7

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sethi S, Murphy TF (2001) Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 14:336–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moleres J, Fernandez-Calvet A, Ehrlich RL, Marti S, Perez-Regidor L, Euba B, Rodriguez-Arce I, Balashov S, Cuevas E, Linares J, Ardanuy C, Martin-Santamaria S, Ehrlich GD, Mell JC, Garmendia J (2018) Antagonistic pleiotropy in the bifunctional surface protein FadL (OmpP1) during adaptation of Haemophilus influenzae to chronic lung infection associated with chronic obstructive pulmonary disease. MBio 9

    Google Scholar 

  87. Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW (2012) Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 13:601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kao R, Haydon D, Lycett SJ, Murcia PR (2014) Supersize me: how whole-genome sequencing and big data are transforming epidemiology. Trends Microbiol 22:282–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kwong J, McCallum N, Sintchenko V, Howden BP (2015) Whole genome sequencing in clinical and public health microbiology. Pathology 47:199–210

    Article  CAS  PubMed  Google Scholar 

  90. Hurst JR, Vestbo J, Anzueto A, Locantore N, Müllerova H, Tal-Singer R, Miller B, Lomas DA, Agusti A, Macnee W, Calverley P, Rennard S, Wouters EF, Wedzicha JA (2010) Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med 363:1128–1138

    Article  CAS  PubMed  Google Scholar 

  91. Kaur R, Casey JR, Pichichero ME (2013) Relationship with original pathogen in recurrence of acute otitis media after completion of amoxicillin/clavulanate: bacterial relapse or new pathogen. Pediatr Infect Dis J 32:1159–1162

    Article  PubMed  Google Scholar 

  92. Harrison A, Hardison RL, Fullen AR, Wallace RM, Gordon DM, White P, Jennings RN, Justice SS, Mason KM (2020) Continuous microevolution accelerates disease progression during sequential episodes of infection. Cell Rep 30(e3):2978–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Beceiro A, Tomás M, Bou G (2013) Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 26:185–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Competing Interests

The authors declare that they have no financial or other conflicts of interest.

Ethical Approval

Not required.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronan F. O’Toole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

KC, R., O’Toole, R.F. (2021). Understanding the Biology of Non-typeable Haemophilus influenzae in Chronic Obstructive Pulmonary Disease Through the Lens of Genomics. In: Dua, K., Löbenberg, R., Malheiros Luzo, Â.C., Shukla, S., Satija, S. (eds) Targeting Cellular Signalling Pathways in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6827-9_21

Download citation

Publish with us

Policies and ethics