Skip to main content

Targeting Host and Bacterial Signaling Pathways in Tuberculosis: An Effective Strategy for the Development of Novel Anti-tubercular Therapies

  • Chapter
  • First Online:
Targeting Cellular Signalling Pathways in Lung Diseases

Abstract

Tuberculosis (TB) is a pandemic disease caused by an obligate intracellular pathogen Mycobacterium tuberculosis (M.tb). The current TB therapy, Directly Observed Treatment Short-Course (DOTS), consists of the prolonged use of four antibiotics (Rifampicin, Isoniazid, Pyrazinamide, and Ethambutol) that must be administered alone or in combination for at least 6 months to patients affected by drug-sensitive pulmonary TB. Although this therapy is efficient in eliminating M.tb, it has numerous side effects such as liver toxicity, poor compliance, and development of multidrug-resistant strains. Therefore, there is an urgent need for the development of new drug targets for the effective management of the disease and to also ensure the prevention of reinfection and reactivation of the disease. Here, in this chapter, we have discussed the presently available drugs and their mechanism of action for the treatment of TB as well as various other drugs, which have been repurposed and deployed for the treatment against drug-sensitive and drug-resistant TB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO Report, 2019

    Google Scholar 

  2. Schlesinger LS (1993) Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150:2920–2930

    Article  CAS  PubMed  Google Scholar 

  3. Fatima S, Kamble SS, Dwivedi VP et al (2020) Mycobacterium tuberculosis programs mesenchymal stem cells to establish dormancy and persistence. J Clin Invest 130(2):655–661

    Article  CAS  PubMed  Google Scholar 

  4. Stutz MD, Clark MP, Doerflinger M, Pellegrini M (2018) Mycobacterium tuberculosis: rewiring host cell signaling to promote infection. J Leukoc Biol 103(2):259–268

    Article  CAS  PubMed  Google Scholar 

  5. D’Ambrosio L, Centis R, Tiberi S et al (2017) Delamanid and bedaquiline to treat multidrug-resistant and extensively drug-resistant tuberculosis in children: a systematic review. J Thorac Dis 9(7):2093–2101

    Article  PubMed  PubMed Central  Google Scholar 

  6. Smith I (2003) Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin Microbiol Rev 16(3):463–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bloom BR, Atun R, Cohen T et al (2017) Chapter 11: Tuberculosis. In: Holmes KK, Bertozzi S, Bloom BR et al (eds) Major infectious diseases, 3rd edn. The International Bank for Reconstruction and Development/The World Bank, Washington, DC

    Google Scholar 

  8. Guirado E, Schlesinger LS, Kaplan G (2013) Macrophages in tuberculosis: friend or foe. Semin Immunopathol 35(5):563–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ernst JD (1998) Macrophage receptors for Mycobacterium tuberculosis. Infect Immun 66(4):1277–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sia JK, Rengarajan J (2019) Immunology of Mycobacterium tuberculosis infections. Microbiol Spectr 7(4). https://doi.org/10.1128/microbiolspec.GPP3-0022-2018

  11. Zhai W, Wu F, Zhang Y, Fu Y, Liu Z (2019) The immune escape mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci 20(2):340

    Article  PubMed Central  CAS  Google Scholar 

  12. Ndlovu H, Marakalala MJ (2016) Granulomas and inflammation: host-directed therapies for tuberculosis. Front Immunol 7:434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fattorini L, Piccaro G, Mustazzolu A, Giannoni F (2013) Targeting dormant bacilli to fight tuberculosis. Mediterr J Hematol Infect Dis 5(1):e2013072

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sotgiu G, Centis R, D’ambrosio L, Migliori GB (2015) Tuberculosis treatment and drug regimens. Cold Spring Harb Perspect Med 5(5):a017822

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Meena LS (2015) An overview to understand the role of PE_PGRS family proteins in Mycobacterium tuberculosis H37 Rv and their potential as new drug targets. Biotechnol Appl Biochem 62(2):145–153

    Article  CAS  PubMed  Google Scholar 

  17. Bachhawat N, Singh B (2007) Mycobacterial PE_PGRS proteins contain calcium-binding motifs with parallel beta-roll folds. Geno Prot Bioinfo 5:236–241

    Article  CAS  Google Scholar 

  18. Tian C, Jian-Ping X (2010) Roles of PE_PGRS family in Mycobacterium tuberculosis pathogenesis and novel measures against tuberculosis. Microb Pathog 49:311–314

    Article  PubMed  CAS  Google Scholar 

  19. Koul A, Choidas A, Treder M et al (2000) Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J Bacteriol 182(19):5425–5432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y (2008) Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3(5):316–322

    Article  CAS  PubMed  Google Scholar 

  21. Beresford N, Patel S, Armstrong J, Szöor B, Fordham-Skelton AP, Tabernero L (2007) MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem J 406(1):13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koch MA, Waldmann H (2005) Protein structure similarity clustering and natural product structure as guiding principles in drug discovery. Drug Discov Today 10(7):471–483

    Article  CAS  PubMed  Google Scholar 

  23. Beresford NJ, Mulhearn D, Szczepankiewicz B et al (2009) Inhibition of MptpB phosphatase from Mycobacterium tuberculosis impairs mycobacterial survival in macrophages. J Antimicrob Chemother 63(5):928–936

    Article  CAS  PubMed  Google Scholar 

  24. Nören-Müller A, Reis-Corrêa I Jr, Prinz H et al (2006) Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis. Proc Natl Acad Sci U S A 103(28):10606–10611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chow K, Ng D, Stokes R, Johnson P (1994) Protein tyrosine phosphorylation in Mycobacterium tuberculosis. FEMS Microbiol Lett 124:203–207

    Article  CAS  PubMed  Google Scholar 

  26. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1(8):945–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bach H, Wong D, Av-Gay Y (2009) Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem J 20(2):155–160

    Article  CAS  Google Scholar 

  28. Sajid A, Arora G, Gupta M, Upadhyay S, Nandicoori VK, Singh Y (2011) Phosphorylation of Mycobacterium tuberculosis Ser/Thr phosphatase by PknA and PknB. PLoS One 6(3):e17871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boitel B, Ortiz-Lombardía M, Durán R et al (2003) PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol Microbiol 49(6):1493–1508

    Article  CAS  PubMed  Google Scholar 

  30. Molle V, Brown AK, Besra GS, Cozzone AJ, Kremer L (2006) The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation. J Biol Chem 281(40):30094–30103

    Article  CAS  PubMed  Google Scholar 

  31. Wehenkel A, Bellinzoni M, Grana M, Duran R, Villarino A et al (2008) Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential. Biochim. Biophys Acta 1784:193–202

    CAS  Google Scholar 

  32. Fernandez P, Saint-Joanis B, Barilone N et al (2006) The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. J Bacteriol 188(22):7778–7784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thakur M, Chaba R, Mondal AK, Chakraborti PK (2008) Interdomain interaction reconstitutes the functionality of PknA, a eukaryotic type Ser/Thr kinase from Mycobacterium tuberculosis. J Biol Chem 283(12):8023–8033

    Article  CAS  PubMed  Google Scholar 

  34. Thakur M, Chakraborti PK (2008) Ability of PknA, a mycobacterial eukaryotic-type serine/threonine kinase, to transphosphorylate MurD, a ligase involved in the process of peptidoglycan biosynthesis. Biochem J 415(1):27–33

    Article  CAS  PubMed  Google Scholar 

  35. Khan S, Nagarajan SN, Parikh A et al (2010) Phosphorylation of enoyl-acyl carrier protein reductase InhA impacts mycobacterial growth and survival. J Biol Chem 285(48):37860–37871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parikh A, Verma SK, Khan S, Prakash B, Nandicoori VK (2009) PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity. J Mol Biol 386(2):451–464

    Article  CAS  PubMed  Google Scholar 

  37. Veyron-Churlet R, Molle V, Taylor RC et al (2009) The Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein synthase III activity is inhibited by phosphorylation on a single threonine residue. J Biol Chem 284(10):6414–6424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Veyron-Churlet R, Zanella-Cléon I, Cohen-Gonsaud M, Molle V, Kremer L (2010) Phosphorylation of the Mycobacterium tuberculosis β-ketoacyl-acyl carrier protein reductase MabA regulates mycolic acid biosynthesis. J Biol Chem 285(17):12714–12725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sureka K, Hossain T, Mukherjee P et al (2010) Novel role of phosphorylation-dependent interaction between FtsZ and FipA in mycobacterial cell division. PLoS One 5(1):e8590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Wehenkel A, Fernandez P, Bellinzoni M et al (2006) The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria. FEBS Lett 580(13):3018–3022

    Article  CAS  PubMed  Google Scholar 

  41. Hatzios SK, Baer CE, Rustad TR, Siegrist MS, Pang JM et al (2013) Osmosensory signaling in Mycobacterium tuberculosis mediated by a eukaryotic-like Ser/Thr protein kinase. Proc Natl Acad Sci 110:E5069–E5077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Greenstein AE, Echols N, Lombana TN, King DS, Alber T (2007) Allosteric activation by dimerization of the PknD receptor Ser/Thr protein kinase from Mycobacterium tuberculosis. J Biol Chem 282(15):11427–11435

    Article  CAS  PubMed  Google Scholar 

  43. Vanzembergh F, Peirs P, Lefevre P et al (2010) Effect of PstS sub-units or PknD deficiency on the survival of Mycobacterium tuberculosis. Tuberculosis (Edinb) 90(6):338–345

    Article  CAS  Google Scholar 

  44. Be NA, Bishai WR, Jain SK (2012) Role of Mycobacterium tuberculosis pknD in the pathogenesis of central nervous system tuberculosis. BMC Microbiol 12:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jayakumar D, Jacobs WR Jr, Narayanan S (2008) Protein kinase E of Mycobacterium tuberculosis has a role in the nitric oxide stress response and apoptosis in a human macrophage model of infection. Cell Microbiol 10(2):365–374

    CAS  PubMed  Google Scholar 

  46. Walburger A, Koul A, Ferrari G et al (2004) Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304(5678):1800–1804

    Article  CAS  PubMed  Google Scholar 

  47. Houben EN, Walburger A, Ferrari G et al (2009) Differential expression of a virulence factor in pathogenic and non-pathogenic mycobacteria. Mol Microbiol 72(1):41–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Av-Gay Y, Everett M (2000) The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol 8(5):238–244

    Article  CAS  PubMed  Google Scholar 

  49. Scherr N, Honnappa S, Kunz G et al (2007) Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc Natl Acad Sci 104(29):12151–12156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tiwari D, Singh RK, Goswami K, Verma SK, Prakash B, Nandicoori VK (2009) Key residues in Mycobacterium tuberculosis protein kinase G play a role in regulating kinase activity and survival in the host. J Biol Chem 284(40):27467–27479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scherr N, Müller P, Perisa D, Combaluzier B, Jenö P, Pieters J (2009) Survival of pathogenic mycobacteria in macrophages is mediated through autophosphorylation of protein kinase G. J Bacteriol 191(14):4546–4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Santhi N, Aishwarya S (2011) Insights from the molecular docking of withanolide derivatives to the target protein PknG from Mycobacterium tuberculosis. Bioinformation 7(1):1–4

    Article  PubMed  PubMed Central  Google Scholar 

  53. Molle V, Reynolds RC, Alderwick LJ et al (2008) EmbR2, a structural homologue of EmbR, inhibits the Mycobacterium tuberculosis kinase/substrate pair PknH/EmbR. Biochem J 410(2):309–317

    Article  CAS  PubMed  Google Scholar 

  54. Malhotra V, Arteaga-Cortés LT, Clay G, Clark-Curtiss JE (2010) Mycobacterium tuberculosis protein kinase K confers survival advantage during early infection in mice and regulates growth in culture and during persistent infection: implications for immune modulation. Microbiology (Reading, Engl) 156(9):2829–2841

    Article  CAS  Google Scholar 

  55. Napier RJ, Rafi W, Cheruvu M et al (2011) Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 10(5):475–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Saleh MT, Belisle JT (2000) Secretion of an acid phosphatase (SapM) by Mycobacterium tuberculosis that is similar to eukaryotic acid phosphatases. J Bacteriol 182(23):6850–6853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V (2005) Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 102(11):4033–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vergne I et al (2005) Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 102:4033–4038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brodin P, Rosenkrands I, Andersen P, Cole ST, Brosch R (2004) ESAT-6 proteins: protective antigens and virulence factors? Trends Microbiol 12(11):500–508

    Article  CAS  PubMed  Google Scholar 

  60. van der Wel N, Hava D, Houben D et al (2007) M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129(7):1287–1298

    Article  PubMed  CAS  Google Scholar 

  61. Volkman HE, Pozos TC, Zheng J, Davis JM, Rawls JF, Ramakrishnan L (2010) Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327(5964):466–469

    Article  CAS  PubMed  Google Scholar 

  62. Sullivan JT, Young EF, McCann JR, Braunstein M (2012) The Mycobacterium tuberculosis SecA2 system subverts phagosome maturation to promote growth in macrophages. Infect Immun 80(3):996–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dilks K, Rose RW, Hartmann E, Pohlschröder M (2003) Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185(4):1478–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Becker SH, Jastrab JB, Dhabaria A, Chaton CT, Rush JS, Korotkov KV, Ueberheide B, Darwin KH (2019) The Mycobacterium tuberculosis pup-proteasome system regulates nitrate metabolism through an essential protein quality control pathway. Proc Natl Acad Sci U S A 116(8):3202–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cromm PM, Crews CM (2017) The proteasome in modern drug discovery: second life of a highly valuable drug target. ACS Cent Sci 3(8):830–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lin G, Li D, de Carvalho LP et al (2009) Inhibitors selective for mycobacterial versus human proteasomes. Nature 461(7264):621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheng Y, Pieters J (2010) Novel proteasome inhibitors as potential drugs to combat tuberculosis. J Mol Cell Biol 2(4):173–175

    Article  CAS  PubMed  Google Scholar 

  68. Shenoy AR, Visweswariah SS (2006) New messages from old messengers: cAMP and mycobacteria. Trends Microbiol 14(12):543–550

    Article  CAS  PubMed  Google Scholar 

  69. Agarwal N, Lamichhane G, Gupta R, Nolan S, Bishai WR (2009) Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 460(7251):98–102

    Article  CAS  PubMed  Google Scholar 

  70. Rohde K, Yates RM, Purdy GE, Russell DG (2007) Mycobacterium tuberculosis and the environment within the phagosome. Immunol Rev 219:37–54

    Article  CAS  PubMed  Google Scholar 

  71. Pieters J (2008) Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3:399–407

    Article  CAS  PubMed  Google Scholar 

  72. Warner DF, Mizrahi V (2007) The survival kit of Mycobacterium tuberculosis. Nat Med 13:282–284

    Article  CAS  PubMed  Google Scholar 

  73. Eckert C, Hammesfahr B, Kollmar M (2011) A holistic phylogeny of the coronin gene family reveals an ancient origin of the tandem-coronin, defines a new subfamily, and predicts protein function. BMC Evol Biol 11:268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pieters J, Muller P, Jayachandran R (2013) On guard: coronin proteins in innate and adaptive immunity. Nat Rev Immunol 13:510–518

    Article  CAS  PubMed  Google Scholar 

  75. Jayachandran R, Sundaramurthy V, Combaluzier B, Mueller P, Korf H, Huygen K et al (2007) Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 130:37–50

    Article  CAS  PubMed  Google Scholar 

  76. Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371(6495):297–300

    Article  CAS  PubMed  Google Scholar 

  77. Ferrari G, Langen H, Naito M, Pieters J (1999) A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97:435–447

    Article  CAS  PubMed  Google Scholar 

  78. Winslow MM, Neilson JR, Crabtree GR (2003) Calcium signalling in lymphocytes. Curr Opin Immunol 15(3):299–307

    Article  CAS  PubMed  Google Scholar 

  79. Wiley JS, Sluyter R, Gu BJ, Stokes L, Fuller SJ (2011) The human P2X7 receptor and its role in innate immunity. Tissue Antigens 78:321e32

    Article  CAS  Google Scholar 

  80. Song L, Cui R, Yang Y, Wu X (2015) Role of calcium channels in cellular antituberculosis effects: potential of voltage-gated calcium-channel blockers in tuberculosis therapy. J Microbiol Immunol Infect 48(5):471–476

    Article  CAS  PubMed  Google Scholar 

  81. Gupta S, Salam N, Srivastava V, Singla R, Behera D, Khayyam KU et al (2009) Voltage gated calcium channels negatively regulate protective immunity to Mycobacterium tuberculosis. PLoS One 4:e5305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Lammas DA, Stober C, Harvey CJ, Kendrick N, Panchalingam S, Kumararatne DS (1997) ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7:433e44

    Article  Google Scholar 

  83. Adams KN, Szumowski JD, Ramakrishnan L (2014) Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple antitubercular drugs. J Infect Dis 210:456e66

    Article  CAS  Google Scholar 

  84. Sharma D, Tiwari BK, Mehto S et al (2016) Suppression of protective responses upon activation of L-type voltage gated calcium channel in macrophages during Mycobacterium bovis BCG infection. PLoS One 11(10):e0163845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Gupta S, Tyagi S, Almeida DV, Maiga MC, Ammerman NC, Bishai WR (2013) Acceleration of tuberculosis treatment by adjunctive therapy with verapamil as an efflux inhibitor. Am J Respir Crit Care Med 188:600e7

    Article  Google Scholar 

  86. Chen C, Gardete S, Jansen RS et al (2018) Verapamil Targets Membrane Energetics in Mycobacterium tuberculosis. Antimicrob Agents Chemother 62(5):e02107–e02117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Caseley EA, Muench SP, Roger S, Mao HJ, Baldwin SA, Jiang LH (2014) Non-synonymous single nucleotide polymorphisms in the P2X receptor genes: association with diseases, impact on receptor functions and potential use as diagnosis biomarkers. Int J Mol Sci 15(8):13344–13371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tominaga K, Yoshimoto T, Torigoe K, Kurimoto M, Matsui K, Hada T et al (2000) IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells. Int Immunol 12:151–160

    Article  CAS  PubMed  Google Scholar 

  89. Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R (2018) The P2X7 receptor in inflammatory diseases: angel or demon? Front Pharmacol 9:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Carrithers LM, Hulseberg P, Sandor M, Carrithers MD (2011) The human macrophage sodium channel NaV1.5 regulates mycobacteria processing through organelle polarization and localized calcium oscillations. FEMS Immunol Med Microbiol 63(3):319–327

    Article  CAS  PubMed  Google Scholar 

  91. Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8(12):982–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gilly M, Wall R (1992) The IRG-47 gene is IFN-γ induced in B cells and encodes a protein with GTP-binding motifs. J Immunol 148(10):3275–3281

    Article  CAS  PubMed  Google Scholar 

  93. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119(6):753–766

    Article  CAS  PubMed  Google Scholar 

  94. Singh SB, Ornatowski W, Vergne I et al (2010) Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat Cell Biol 12(12):1154–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Petkova DS, Viret C, Faure M (2013) IRGM in autophagy and viral infections. Front Immunol 3:426

    Article  PubMed  PubMed Central  Google Scholar 

  96. McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A, Goyette P et al (2008) Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet 40:1107–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lapaquette P, Glasser AL, Huett A, Xavier RJ, Darfeuille-Michaud A (2010) Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol 12(1):99–113

    Article  CAS  PubMed  Google Scholar 

  98. Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V et al (2011) A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet 43:242–245

    Article  CAS  PubMed  Google Scholar 

  99. Gregoire IP, Rabourdin-Combe C, Faure M (2012) Autophagy and RNA virus interactomes reveal IRGM as a common target. Autophagy 8:1136–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Matsuzawa T, Kim BH, Shenoy AR, Kamitani S, Miyake M, Macmicking JD (2012) IFN-gamma elicits macrophage autophagy via the p38 MAPK signaling pathway. J Immunol 189:813–818

    Article  CAS  PubMed  Google Scholar 

  101. MacMicking JD, Taylor GA, McKinney JD (2003) Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302(5645):654–659

    Article  CAS  PubMed  Google Scholar 

  102. Lee YV, Wahab HA, Choong YS (2015) Potential inhibitors for isocitrate lyase of Mycobacterium tuberculosis and non-M. tuberculosis: a summary. Biomed Res Int 2015:895453

    PubMed  PubMed Central  Google Scholar 

  103. Bishai W (2000) Lipid lunch for persistent pathogen. Nature 406(6797):683–685

    Article  CAS  PubMed  Google Scholar 

  104. Muñoz-Elías EJ, McKinney JD (2005) Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11(6):638–644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Stamm CE, Collins AC, Shiloh MU (2015) Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol Rev 264(1):204–219

    Article  PubMed  PubMed Central  Google Scholar 

  106. Basu J, Shin DM, Jo EK (2012) Mycobacterial signaling through toll-like receptors. Front Cell Infect Microbiol 2:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ved Prakash Dwivedi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fatima, S., Bhardwaj, B., Dwivedi, V.P. (2021). Targeting Host and Bacterial Signaling Pathways in Tuberculosis: An Effective Strategy for the Development of Novel Anti-tubercular Therapies. In: Dua, K., Löbenberg, R., Malheiros Luzo, Â.C., Shukla, S., Satija, S. (eds) Targeting Cellular Signalling Pathways in Lung Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-33-6827-9_16

Download citation

Publish with us

Policies and ethics