Skip to main content

Thyroid Cancer and SNPs

  • Chapter
  • First Online:
Genetic Polymorphism and cancer susceptibility
  • 399 Accesses

Abstract

Thyroid cancer (TC) is the most common endocrine malignancy especially in women with papillary thyroid carcinoma (PTC) being the most prevalent type of endocrine cancer whose incidence is growing. Despite the favorable outcome and long survival rates of most patients, some tumors display an aggressive behavior and may progress to the highly aggressive and lethal, anaplastic thyroid carcinoma. In recent years, several progresses have been made on the molecular characterization of TC. The large number of single nucleotide polymorphism (SNP) markers available in the public databases makes studies of association and fine mapping of disease loci very practical. In this chapter we have summarized the genetic characterization of TC, giving a particular emphasis to SNPs, their diagnostic importance in the risk stratification of TC and their therapeutic value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFIP:

Armed Forces Institute of Pathology

AJCC:

The American Joint Committee on Cancer

ATC:

Anaplastic TC

BTD:

Benign thyroid disease

DNA:

Deoxyribonucleic acid

DTC:

Differentiated thyroid carcinoma

ERCC2:

Excision repair cross-complementation group 2

FTC:

Follicular TC

HCC:

Hürthle cell cancer

HRAS:

Harvey rat sarcoma

HSCR:

Hirschsprung disease

MALT:

Mucosa-associated lymphoid tissue

MTC:

Medullary TC

OS:

Oxidative stress

PDTC:

Poorly differentiated thyroid carcinoma

PTC:

Papillary TC

RET:

Rearranged during transfection

RNA:

Ribonucleic acid

TC:

Thyroid cancer

TP53:

Tumor protein 53

TSH:

Thyroid-stimulating hormone

TSHR:

Thyroid-stimulating hormone receptor

XPD:

Xeroderma pigmentosum group D

XRCC1:

X-ray repair cross-complementing protein 1

XRCC3:

X-ray repair cross-complementing protein 3

References

  • Akulevich NM, Saenko VA, Rogounovitch TI, Drozd VM, Lushnikov EF, Ivanov VK et al (2009) Polymorphisms of DNA damage response genes in radiation-related and sporadic papillary thyroid carcinoma. Endocr Relat Cancer 16:491–503

    Article  CAS  PubMed  Google Scholar 

  • Alessandro A, Clodoveo F, Silvia MF, Marco S, Michele C, Ilaria R et al (2010) New targeted molecular therapies for dedifferentiated thyroid cancer. J Oncol 2010:921682

    Google Scholar 

  • Allgeier A, Offermanns S, Van Sande J, Spicher K, Schultz G, Dumont JE (1994) The human thyrotropin receptor activates G-proteins Gs and Gq/11. J Biol Chem 269:13733–13735

    Article  CAS  PubMed  Google Scholar 

  • Andreas M, Karin FR, Kerstin L, Susanne R, Friedhelm R, Henning D (2012) Clinical relevance of RET variants G691S, L769L, S836S and S904S to sporadic medullary thyroid cancer. Clin Endocrinol (Oxf) 76:691–697

    Article  CAS  Google Scholar 

  • Andrion A, Gaglio A, Dogliani N, Bosco E, Mazzucco G (1991) Liposarcoma of the thyroid gland, fine needle aspiration cytology, immunohistology and ultrastructure. Am J Clin Pathol 95:675–679

    Article  CAS  PubMed  Google Scholar 

  • Athena M, Nancy H, Sanjay P, Kiersten H (2004) Risk of non-medullary thyroid cancer influenced by polymorphic variation in the thyroglobulin gene. Carcinogenesis 25:369–373

    Google Scholar 

  • Auranen A, Song H, Waterfall C, Dicioccio RA, Kuschel B, Kjaer SK et al (2005) Polymorphisms in DNA repair genes and epithelial ovarian cancer risk. Int J Cancer 117:611–618

    Article  CAS  PubMed  Google Scholar 

  • Auricchio F, Migliaccio A, Castoria G, Domenico M, Bilancio A, Rotondi A et al (1996) Protein tyrosine phosphorylation and estradiol action. Ann N Y Acad Sci 784:149–172

    Article  CAS  PubMed  Google Scholar 

  • Baloch ZW, LiVolsi VA (2002) Pathology of thyroid gland. In: LiVolsi VA, Asa SL (eds) Endocrine pathology. Churchill Livingstone, New York, pp 61–101

    Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bastos HN, Antão MR, Silva SN, Azevedo AP, Manita I, Teixeira V et al (2009) Association of polymorphisms in genes of the homologous recombination DNA repair pathway and thyroid cancer risk. Thyroid 19:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Beckman G, Birgander R, Sjalander A, Saha N, Holmberg PA, Kivela A et al (1994) Is p53 polymorphism maintained by natural selection? Hum Hered 44:266–270

    Article  CAS  PubMed  Google Scholar 

  • Bekker-Jensen S, Fugger K, Danielsen JR, Gromova I, Sehested M, Celis J et al (2007) Human Xip1 (C2orf13) is a novel regulator of cellular responses to DNA strand breaks. J Biol Chem 282:19638–11963

    Article  CAS  PubMed  Google Scholar 

  • Belfiore A, Rosa GL, Porta GA, Giuffrida D, Milazzo G, Lupo L et al (1992) Cancer risk in patients with cold thyroid nodules: relevance of iodine intake, sex, age, and multinodularity. Am J Med 93:363–369

    Article  CAS  PubMed  Google Scholar 

  • Benchimol S, Lamb P, Crawford LV, Sheer D, Shows TB, Bruns GA et al (1985) Somat Cell Mol Genet 1:505–510

    Article  Google Scholar 

  • Benhamou S, Sarasin A (2002) ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis 17:463–469

    Article  CAS  PubMed  Google Scholar 

  • Boelaert K, Horacek J, Holder RL, Watkinson JC, Sheppard MC, Franklyn JA (2006) Serum thyrotropin concentration as a novel predictor of malignancy in thyroid nodules investigated by fine-needle aspiration. J Clin Endocrinol Metab 91:4295–4301

    Article  CAS  PubMed  Google Scholar 

  • Boltze C, RoessnerLandt AO, Szibor PB, Schneider-stock R (2002) Homozygous proline at codon 72 of p53 as a potential risk factor favouring the development of undifferentiated thyroid carcinoma. Int J Cancer 21:1151–1154

    CAS  Google Scholar 

  • Borrego S, Saez ME, Ruiz A, Gimm O, Lopez-Alonso M, Antiñolo G et al (1999) Specific polymorphisms in the RET proto-oncogene are over-represented in patients with Hirschsprung disease and may represent loci modifying phenotypic expression. J Med Genet 36:771–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrego S, Ruiz A, Saez ME, Gimm O, Gao X, Lopez-Alonso M et al (2000) RET genotypes comprising specific haplotypes of polymorphic variants predispose to isolated Hirschsprung disease. J Med Genet 37:572–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bounacer A, Wicker R, Caillou B, Cailleux AF, Sarasin A, Schlumberger M et al (1997) High prevalence of activating ret proto-oncogene rearrangements in thyroid tumors from patients who had received external radiation. Oncogene 15:1263–1273

    Article  CAS  PubMed  Google Scholar 

  • Brenneman MA, Wagener BM, Miller CA, Allen C, Nickoloff JA (2002) XRCC3 controls the fidelity of homologous recombination, roles for XRCC3 in late stages of recombination. Mol Cell 10:387–395

    Article  CAS  PubMed  Google Scholar 

  • Breslin C, Mani RS, Fanta M, Hoch N, Weinfeld M, Caldecott KW (2017) The RIR motif in the scaffold protein XRCC1 mediates a low-affinity interaction with polynucleotide kinase/phosphatase (PNKP) during DNA single-strand break repair. J Biol Chem 292:16024–16031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brian E, Henderson RKR, Malcolm CP, John T (1982) Endogenous hormones as a major factor in human cancer. Cancer Res 42:3232–3239

    Google Scholar 

  • Buch TR, Biebermann H, Kalwa H, Pinkenburg O, Hager D, Barth H et al (2008) G13-dependent activation of MAPK by thyrotropin. J Biol Chem 283:20330–20341

    Article  PubMed  CAS  Google Scholar 

  • Butkiewicz D, Rusin M, Enewold L, Shields PG, Chorazy M, Harris CC (2001) Genetic polymorphisms in DNA repair genes and risk of lung cancer. Carcinogenesis 22:593–597

    Article  CAS  PubMed  Google Scholar 

  • Caldecott KW, McKeown CK, Tucker JD, Ljungquist S, Thompson LH (1994) An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol Cell Biol 14:68–76

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caldecott KW, Aoufouchi S, Johnson P, Shall S (1996) XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular “nick-sensor” in vitro. Nucleic Acids Res 24:4387–4394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameroni E, Stettler K, Suter B (2010) On the traces of XPD: cell cycle matters—untangling the genotype-phenotype relationship of XPD mutations. Cell Div 5:1186

    Article  CAS  Google Scholar 

  • Capon D, Chen EY, Levinson AD, Seeburg PH, Goeddel DV et al (1983) Complete nucleotide sequences of the T24 human bladder carcinoma oncogene and its normal homologue. Nature 302:33–37

    Article  CAS  PubMed  Google Scholar 

  • Carson-Jurica MA, Schrader WT, O Malley BW (1990) Steroid receptor family: structure and functions. Endocr Rev 11:201–220

    Article  CAS  PubMed  Google Scholar 

  • Castro P, Soares P, Gusma L, Seruca R, Sobrinho-Simo M (2006) H-RAS 81 polymorphism is significantly associated with aneuploidy in follicular tumors of the thyroid. Oncogene 25:4620–4627

    Article  CAS  PubMed  Google Scholar 

  • Catela IT, Loncar B, Spaventi R, Kapitanovic S (2009) Association of H-ras polymorphisms and susceptibility to sporadic colon cancer. Int J Oncol 35:1169–1173

    Google Scholar 

  • Chen YC, Xu L, Guo YL, Su HJ, Hsueh YM, Smith TJ et al (2003a) p53 Arg72Pro polymorphism and risk of basal cell carcinoma: a meta analysis. J Environ Sci Health A Tox Hazard Subst Environ Eng 38:201–211

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Larochelle S, Li X, Suter B (2003b) Xpd/Ercc2 regulates CAK activity and mitotic progression. Nature 424:228–232

    Article  CAS  PubMed  Google Scholar 

  • Chiang FY, Wu CW, Hsiao PJ, Kuo WR, Lee KW, Lin JC et al (2008) Association between polymorphisms in DNA base excision repair genes XRCC1, APE1, and ADPRT and differentiated thyroid carcinoma. Clin Cancer Res 14:5919–5924

    Article  CAS  PubMed  Google Scholar 

  • Chrisoula DS (2004) Histopathology of thyroid tumors: an overview. Hormones 3:1–10

    Google Scholar 

  • Ciampi R, Knauf JA, Kerler R, Gandhi M, Zhu Z, Nikiforova MN et al (2005) Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest 115:94–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coin F, Marinoni JC, Rodolfo C, Fribourg S, Pedrini AM, Egly JM (1998) Mutations in the XPD helicase gene result in XP and TTD phenotypes, preventing interaction between XPD and the p44 subunit of TFIIH. Nat Genet 20:184–188

    Article  CAS  PubMed  Google Scholar 

  • Coin F, Bergmann E, Tremeau-Bravard A, Egly JM (1999) Mutations in XPB and XPD helicases found in xeroderma pigmentosum patients impair the transcription function of TFIIH. EMBO J 18:1357–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coin F, Oksenych V, Egly JM (2007) Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol Cell 26:245–256

    Article  CAS  PubMed  Google Scholar 

  • Crue G (1966) Endocrine dependency of papillary carcinomas of the thyroid. JAMA 795:721–724

    Google Scholar 

  • Cuddihy RM, Bryant WP, Bahn RS (1995) Normal function in vivo of a homozygotic polymorphism in the human thyrotropin receptor. Thyroid 5:255–257

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Wang K, Zhang J, Lv Q, Wu X, Wang W (2009) XRCC1 gene polymorphisms and esophageal squamous cell carcinoma risk in Chinese population: a meta-analysis of case-control studies. Int J Cancer 125:1102–1109

    Article  CAS  PubMed  Google Scholar 

  • David AK, Daniel B, Michael JC, David H (1995) Human DNA polymorphism. N Engl J Med 332:318–320

    Article  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  • De Oliveira WR, Rady PL, Grady J, Hughes TK, Neto CF, Rivitti EA et al (2004) Association of p53 arginine polymorphism with skin cancer. Int J Dermatol 43:489–493

    Article  PubMed  Google Scholar 

  • Diana M, Beatrice S, Gosnell B, Adams E, Derwahl M et al (2001) Estrogen promotes growth of human thyroid tumor cells by different molecular mechanisms. J Clin Endocrinol Metabol 86:120–129

    Google Scholar 

  • Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22

    Article  CAS  PubMed  Google Scholar 

  • Dumont P, Leu JI, Della AC, Pietra T, George DL, Murphy M (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33:357–365

    Article  CAS  PubMed  Google Scholar 

  • Duprez L, Parma J, Van Sande J, Rodien P, Dumont JE, Vassart G et al (1998) TSH receptor mutations and thyroid disease. Trends Endocrinol Metab 9:133–140

    Article  CAS  PubMed  Google Scholar 

  • Dybdahl M, Vogel U, Frentz G, Wallin H, Nexo BA (1999) Polymorphisms in the DNA repair gene XPD: correlations with risk and age at onset of basal cell carcinoma. Cancer Epidemiol Biomarkers Prev 8:77–81

    CAS  PubMed  Google Scholar 

  • Elaine Yutan OHC (2001) Hürthle cell carcinoma. Curr Treat Options Oncol 2:331–335

    Article  Google Scholar 

  • Elisabeth A, Martin S, Florent de V (2009) Germ-line DNA polymorphisms and susceptibility to differentiated thyroid cancer. Lancet Oncol 10:181–190

    Article  CAS  Google Scholar 

  • Elisei R, Cosci B, Romei C, Bottici V, Sculli M, Lari R et al (2004) RET exon 11 (G691S) polymorphism is significantly more frequent in sporadic medullary thyroid carcinoma than in the general population. J Clin Endocrinol Metab 89:3579–3584

    Article  CAS  PubMed  Google Scholar 

  • Erich MS, Chong Z, Rong Z, Qingyi W (2005) Radiation response genotype and risk of differentiated thyroid cancer: a case-control analysis. Laryngoscope 115:938–945

    Article  Google Scholar 

  • Esteban LM, Vicario-Abejon C, Fernandez-Salguero P, Fernández-Medarde A, Swaminathan N, Yienger K et al (2001) Targeted genomic disruption of H-ras and N-ras, individually or in combination reveals the dispensability of both loci for mouse growth and development. Mol Cell Biol 21:1444–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabien N, Paulin C, Santoro M, Berger N, Grieco M, Galvain D et al (1992) Detection of RET oncogene activation in human papillary thyroid carcinomas by in situ hybridisation. Br J Cancer 66:1094–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farbota LM, Calandra DB, Lawrence AM, Paloyan E (1985) Thyroid carcinoma in graves’ disease. Surgery 98:1148–1153

    CAS  PubMed  Google Scholar 

  • Fard-Esfahani P, Fard-Esfahani A, Fayaz S, Ghanbarzadeh B, Saidi P, Mohabati R et al (2011) Association of Arg194Trp, Arg280His and Arg399Gln polymorphisms in X-ray repair cross-complementing group 1 gene and risk of differentiated thyroid carcinoma in Iran. Iran Biomed J 15:73–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felley-Bosco E, Weston A, Cawley HM, Bennett WP, Harris CC (1993) Functional studies of a germ-line polymorphism at codon 47 within the p53 gene. Am J Hum Genet 3:752–759

    Google Scholar 

  • Fitze G, Schreiber M, Kuhlisch E, Schackert HK, Roesner D (1999) Association of RET protooncogene codon 45 polymorphism with Hirschsprung disease. Am J Hum Genet 65:1469–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fluge O, Haugen DR, Akslen LA, Marstad A, Santoro M, Fusco A et al (2001) Expression and alternative splicing of c-ret RNA in papillary thyroid carcinomas. Oncogene 20:885–892

    Article  CAS  PubMed  Google Scholar 

  • Foster JS, Wimalasena J (1996) Estrogen regulates activity of cyclin-dependent kinases and retinoblastoma protein phosphorylation in breast cancer cells. Mol Endocrinol 10:488–498

    CAS  PubMed  Google Scholar 

  • Franceschi S, Preston-Martin S, Dal Maso L, Negri E, La Vecchia C, Mack WJ et al (1999) A pooled analysis of case-control studies of thyroid cancer IV Benign thyroid diseases. Cancer Causes Control 10:583–595

    Article  CAS  PubMed  Google Scholar 

  • Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  CAS  PubMed  Google Scholar 

  • Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein- coupled receptors in the human genome from five main families; phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  CAS  PubMed  Google Scholar 

  • Gabriel EM, Bergert ER, Grant CS, van Heerden JA, Thompson GB, Morris JC (1999) Germline polymorphism of codon 727 of human thyroid-stimulating hormone receptor is associated with toxic multinodular goiter. J Clin Endocrinol Metab 84:3328–3335

    CAS  PubMed  Google Scholar 

  • Garcia-Barcelo M, Ganster RW, Lui VC, Leon TY, So MT, Lau AM et al (2005) TTF-1 and RET promoter SNPs: regulation of RET transcription in Hirschsprung’s disease. Hum Mol Genet 14:191–204

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Quispes WA, Perez-Machado G, Akdi A, Pastor S, Galofre P, Biarnés F et al (2011) Association studies of OGG1, XRCC1, XRCC2 and XRCC3 polymorphisms with differentiated thyroid cancer. Mutat Res 709-710:67–72

    Article  CAS  PubMed  Google Scholar 

  • Gershengorn MC, Glinoer D, Robbins J (1980) Transport and metabolism of thyroid hormones. In: DeVisscher M (ed) The thyroid gland, pp 81–62

    Google Scholar 

  • Giuseppe B, Mauro U, Piera M, Pierotti MA, Bongarzone I (2000) RET receptor expression in thyroid follicular epithelial cell-derived tumors. Cancer Res 60:2845–2849

    Google Scholar 

  • Goldberg Aaron D, David Allis C, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:512–525

    Google Scholar 

  • Granja F, Moraria J, Elaine C, Moraria M, Luiz A, Correab GB et al (2004) Proline homozygosity in codon 72 of p53 is a factor of susceptibility for thyroid cancer. Cancer Lett 210:151–157

    Article  CAS  PubMed  Google Scholar 

  • Han J, Hankinson SE, Ranu H, De Vivo I, Hunter DJ (2004) Polymorphisms in DNA double-strand break repair genes and breast cancer risk in the nurses’ health study. Carcinogenesis 25:189–195

    Article  CAS  PubMed  Google Scholar 

  • Han S, Zhang HT, Wang Z, Xie Y, Tang R, Mao Y et al (2006) DNA repair gene XRCC3 polymorphisms and cancer risk: a meta-analysis of 48 case–control studies. Eur J Hum Genet 14:1136–1144

    Article  CAS  PubMed  Google Scholar 

  • Hanson GA, Komorowski RA, Cerletty JM, Wilson SD (1983) Thyroid gland morphology in young adults: normal subjects versus those with prior low-dose neck irradiation in childhood. Surgery 94:984–988

    CAS  PubMed  Google Scholar 

  • Har-El G, Hadar T, Segal K, Levy R, Sidi J (1986) Hürthle cell carcinoma of the thyroid gland: a tumor of moderate malignancy. Cancer 57:1613–1617

    Article  CAS  PubMed  Google Scholar 

  • Haymart MR, Repplinger DJ, Leverson GE, Elson DF, Sippel RS, Jaume JC et al (2008) Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage. J Clin Endocrinol Metab 93:809–814

    Article  CAS  PubMed  Google Scholar 

  • He XF, Wei W, Su J, Yang ZX, Liu Y, Zhang Y et al (2012) Association between the XRCC3 polymorphisms and breast cancer risk: meta-analysis based on case–control studies. Mol Biol Rep 39:5125–5134

    Article  CAS  PubMed  Google Scholar 

  • Hedinger C, Williams E, Sobin L (1988) Histological typing of thyroid tumors. In: World Health Organization international histological classification of tumors. Springer, Berlin

    Google Scholar 

  • Henner WD, Evans AJ, Hough KM, Harris EL, Lowe BA, Beer TM (2001) Association of codon 72 polymorphism of p53 with lower prostate cancer risk. Prostate 49:263–266

    Article  CAS  PubMed  Google Scholar 

  • Ho T, Li G, Lu J, Zhao C, Wei Q, Sturgis EM (2009) Association of XRCC1 polymorphisms and risk of differentiated thyroid carcinoma: a case-control analysis. Thyroid 19:129–135

    Article  CAS  PubMed  Google Scholar 

  • Holm R, Sobrinho-Simões M, Nesland JM, Sambade C, Johannessen JV (1987) Medullary thyroid carcinoma with thyroglobulin immunoreactivity: a special entity. Lab Invest 57:258–268

    CAS  PubMed  Google Scholar 

  • Horacio GS (1998) Genetic alterations in human epithelial thyroid tumours. Clin Endocrinol (Oxf) 48:531–546

    Article  Google Scholar 

  • Hou SM, Falt S, Angelini S, Yang K, Nyberg F, Lambert B et al (2002) The XPD variant alleles are associated with increased aromatic DNA adduct level and lung cancer risk. Carcinogenesis 23:599–603

    Article  CAS  PubMed  Google Scholar 

  • Houten BV, Kuper J, Kisker C (2016) Role of XPD in cellular functions: to TFIIH and beyond. DNA Repair (Amst) 44:136–142

    Article  CAS  Google Scholar 

  • Ingbar SH, Woeber KA (1974) Textbook of endocrinology. Igaku Shoin, Tokyo, pp 95–232

    Google Scholar 

  • Ito T, Seyama T, Mizuno T, Tsuyama N, Hayashi Y, Dohi K et al (1993) Genetic alterations in thyroid tumor progression: association with p53 gene mutations. Jpn J Cancer Res 84:526–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivan P, Bond JA, Prat M, Comoglio PM, Wynford-Thomas D (1997) Activated ras and ret oncogenes induce over-expression of cmet (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene 14:2417–2423

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen NR, Raaschou-Nielsen O, Nexo B, Wallin H, Overvad K, Tjønneland A et al (2004) XRCC3 polymorphisms and risk of lung cancer. Cancer Lett 213:67–72

    Article  CAS  PubMed  Google Scholar 

  • Jatin PS, Pablo HM (2018) New AJCC/UICC staging system for head and neck, and thyroid cancer. Revista Médica Clínica Las Condes 4:397–404

    Google Scholar 

  • Jennifer AW, Manisha HS (2009) New therapeutic advances in the management of progressive thyroid cancer. Endocr Relat Cancer 16:715–731

    Article  CAS  Google Scholar 

  • Johne A, Roots I, Brockmoller J (2003) A single nucleotide polymorphism in the human H-ras proto-oncogene determines the risk of urinary bladder cancer. Cancer Epidemiol Biomarkers Prev 12:68–70

    CAS  PubMed  Google Scholar 

  • Kawaguchi H, Ohno S, Araki K, Miyazaki M, Saeki H, Watanabe M et al (2000) p53 polymorphism in human papillomavirus-associated esophageal cancer. Cancer Res 60:2753–2755

    CAS  PubMed  Google Scholar 

  • Keith WC (2019) XRCC1 protein; form and function. DNA Repair (Amst) 81:102664

    Article  CAS  Google Scholar 

  • Kero J, Ahmed K, Wettschureck N, Tunaru S, Wintermantel T, Greiner E et al (2007) Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development. J Clin Invest 117:2399–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP (2001) Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev 22:631–656

    Article  CAS  PubMed  Google Scholar 

  • Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 63:1454–1457

    CAS  PubMed  Google Scholar 

  • Knudson AG (2001) Two genetic hits to cancer. Nat Rev Cancer 1:157–162

    Article  CAS  PubMed  Google Scholar 

  • Kohn LD, Saji M, Akamizu T, Ikuyama S, Isozaki O, Kohn AD et al (1989) Receptors of the thyroid: the thyrotropin receptor is only the first violinist of a sym-phony orchestra. Adv Exp Med Biol 261:151–209

    Article  CAS  PubMed  Google Scholar 

  • Konstantinos T, Faidon C (2004) Endocrine effects of tobacco smoking. Clin Endocrinol (Oxf) 61:664–674

    Article  Google Scholar 

  • Kotsinas A, Gorgoulis VG, Zacharatos P, Mariatos G, Kokotas S, Liloglou T et al (2001) Additional characterization of a hexanucleotide polymorphic site in the first intron of human HRAS gene: comparative study of its alterations in non-small cell lung carcinomas and sporadic invasive breast carcinomas. Cancer Genet Cytogenet 126:147–154

    Article  CAS  PubMed  Google Scholar 

  • Kreiger N, Parkes R (2000) Cigarette smoking and the risk of thyroid cancer. Eur J Cancer 36:1969–1973

    Article  CAS  PubMed  Google Scholar 

  • Kreimer-Erlacher H, Seidl H, Bäck B, Kerl H, Wolf P (2001) High mutation frequency at ha-ras exons 1–4 in squamous cell carcinomas from PUVA-treated psoriasis patients. Photochem Photobiol 74:323–330

    Article  CAS  PubMed  Google Scholar 

  • Krohn K, Führer D, Bayer Y, Eszlinger M, Brauer V, Neumann S et al (2005) Molecular pathogenesis of euthyroid and toxic multinodular goiter. Endocr Rev 26:504–524

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Angelini S, Czene K, Sauroja I, Hahka-Kemppinen M, Pyrhönen S et al (2003) BRAF mutations in metastatic melanoma: a possible association with clinical outcome. Clin Cancer Res 9:3362–3368

    CAS  PubMed  Google Scholar 

  • Kuroda Y, Tsukino H, Nakao H, Imai H, Katoh T (2003) p53 codon 72 polymorphism and urothelial cancer risk. Cancer Lett 189:77–83

    Article  CAS  PubMed  Google Scholar 

  • Kurumizaka H, Ikawa S, Nakada M, Eda K, Kagawa W, Takata M et al (2001) Homologous-pairing activity of the human DNA-repair proteins XRCC3*Rad51C. Proc Natl Acad Sci 98:5538–5543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuschel B, Auranen A, McBride S, Novik KL, Antoniou A, Lipscombe JM et al (2002) Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 11:1399–1407

    Article  CAS  PubMed  Google Scholar 

  • Landis SH, Murray T, Bolden S, Wingo PA (1998) Cancer statistics. CA Cancer J Clin 48:329–337

    Google Scholar 

  • Lassoued S, Mseddi M, Mnif F, Abid M, Guermazi F, Masmoudi H et al (2010) A comparative study of the oxidative profile in graves’ disease, Hashimoto’s thyroiditis, and papillary thyroid cancer. Biol Trace Elem Res 138:107–115

    Article  CAS  PubMed  Google Scholar 

  • Latif R, Realubit RB, Karan C, Mezei M, Davies TF (2016) TSH receptor signalling abrogation by a novel small molecule. Front Endocrinol 7:130–135

    Article  Google Scholar 

  • Leenhardt L, Aurengo A (2000) Post-Chernobyl thyroid carcinoma in children. Best Pract Res Clin Endocrinol Metab 14:667–677

    Article  CAS  Google Scholar 

  • Lemoine NR, Mayall ES, Wyllie FS, Williams ED, Goyns M, Stringer B et al (1989) High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4:159–164

    CAS  PubMed  Google Scholar 

  • Lesueur F, Corbex M, McKay JD, Lima J, Soares P, Griseri P et al (2002) Specific haplotypes of the RET proto-oncogene are over-represented in patients with sporadic papillary thyroid carcinoma. J Med Genet 39:260–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leviev I, Negro F, James RW (1997) Two alleles of the human paraoxonase gene produce different amounts of mRNA: an explanation for differences in serum concentrations of paraoxonase associated with the (Leu-Met54) polymorphism. Arterio Scler Thromb Vasc Biol 17:2935–2939

    Article  CAS  Google Scholar 

  • Li M, Lu LY, Yang CY, Wang S, Yu X (2013) The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Genes Dev 27:1752–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libert F, Lefort A, Gerard C, Parmentier M, Perret J, Ludgate S et al (1989) Cloning, sequencing and expression of the human thyrotropin (TSH) receptor: evidence for binding of autoantibodies. Biochem Biophys Res Commun 165:1250–1255

    Article  CAS  PubMed  Google Scholar 

  • LiVolsi VA (1990) Surgical pathology of the thyroid. In: Bennington JL (ed) Major problems in pathology, vol 22. WB Saunders, Philadelphia

    Google Scholar 

  • Loizou JI, El-Khamisy SF, Zlatanou A, Moore DJ, Chan DW, Qin J et al (2004) The protein kinase CK2 facilitates repair of chromosomal DNA single-strand breaks. Cell 117:17–28

    Article  CAS  PubMed  Google Scholar 

  • Lucieli C, Débora RS, Carla VF, Mírian R, Silvana CM, Leonardo L et al (2012) Additive effect of RET polymorphisms on sporadic medullary thyroid carcinoma susceptibility and tumor aggressiveness. Eur J Endocrinol 11:1–29

    Google Scholar 

  • Luo H, Chan DW, Yang T, Rodriguez M, Chen BPC, Leng M et al (2004) A new XRCC1-containing complex and its role in cellular survival of methyl methanesulfonate treatment. Mol Cell Biol 24:8356–8365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mack WJ, Preston-Martin, Dal Maso L, Galanti R, Xiang M, Franceschi S et al (2003) A pooled analysis of case–control studies of thyroid cancer: cigarette smoking and consumption of alcohol, coffee, and tea. Cancer Causes Control 14:773–785

    Article  PubMed  Google Scholar 

  • Malkasian GD, Mayberry WE (1970) Serum total and free thyroxine and thyrotropin in normal and pregnant women, neonates, and women receiving progestogens. Am J Obstet Gynecol 108:1234–1238

    Article  CAS  PubMed  Google Scholar 

  • Mandal RK, Kapoor R, Mittal RD (2010) Polymorphic variants of DNA repair gene XRCC3 and XRCC7 and risk of prostate cancer: a study from north Indian population. DNA Cell Biol 29:669–674

    Article  CAS  PubMed  Google Scholar 

  • Mani RS, Karimi-Busheri F, Fanta M, Caldecott KW, Cass CE, Weinfeld M (2004) Biophysical characterization of human XRCC1 and its binding to damaged and undamaged DNA. Biochemistry 43:16505–16514

    Article  CAS  PubMed  Google Scholar 

  • Manuguerra M, Saletta F, Karagas MR, Berwick M, Veglia F, Vineis P et al (2006) XRCC3 and XPD/ERCC2 single nucleotide polymorphisms and the risk of cancer: a HuGE review. Am J Epidemiol 164:297–302

    Article  PubMed  Google Scholar 

  • Maria S, Malgorzata C, Elzbieta S, Joanna Z, Dorota C, Jan S (2010) The frequency of selected polymorphic variants of the RET gene in patients with medullary thyroid carcinoma and in the general population of Central Poland. Endocr Pathol 21:178–185

    Article  Google Scholar 

  • Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G (1998) XRCC1 is specifically associated with poly (ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18:3563–3571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matlashewski GJ, Tuck S, Pim D, Lamb P, Schneider J, Crawford LV (1987) Primary structure polymorphism at amino acid residue 72 of human p53. Mol Cell Biol 7:961–963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo K, Friedman E, Gejman PV, Fagin JA (1993) The thyrotropin receptor (TSH-R) is not an oncogene for thyroid tumors: structural studies of the TSH-R and the alpha-subunit of Gs inhuman thyroid neoplasms. J Clin Endocrinol Metab 76:1446–1451

    CAS  PubMed  Google Scholar 

  • Matullo G, Guarrera S, Carturan S, Peluso M, Malaveille C, Davico L et al (2001) DNA repair gene polymorphisms, bulky DNA adducts in white blood cells and bladder cancer in a case–control study. Int J Cancer 92:562–567

    Article  CAS  PubMed  Google Scholar 

  • Matullo G, Guarrera S, Sacerdote C, Polidoro S, Davico L, Gamberini S et al (2005) Polymorphisms/haplotypes in DNA repair genes and smoking: a bladder cancer case-control study. Cancer Epidemiol Biomarkers 14:2569–2578

    Article  CAS  Google Scholar 

  • Maxon HR, Smith HS (1990) Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am 19:685–718

    Article  PubMed  Google Scholar 

  • Mazzaferri EL, Massoll N (2002) Management of papillary and follicular (differentiated) thyroid cancer: new paradigms using recombinant human thyrotropin. Endocr Relat Cancer 9:227–247

    Article  CAS  PubMed  Google Scholar 

  • McCormick F, Wittinghofer A (1996) Interactions between Ras proteins and their effectors. Curr Opin Biotechnol 7:449–456

    Article  CAS  PubMed  Google Scholar 

  • McWhinney SR, Boru G, Binkley PK, Peczkowska M, Januszewicz AA, Neumann HPH et al (2003) Intronic single nucleotide polymorphisms in the RET protoonco gene are associated with a subset of apparently sporadic pheochromocytoma and may modulate age of onset. J Clin Endocrinol Metab 88:4911–4916

    Article  CAS  PubMed  Google Scholar 

  • Michor F, Iwasa Y, Nowak MA (2004) Dynamics of cancer progression. Nat Rev Cancer 4:197–205

    Article  CAS  PubMed  Google Scholar 

  • Migliaccio A, Di Domenico M, Castoria G, de Falco A, Bontempo P, Nola E et al (1996) Tyrosine kinase/p21ras/MAP-kinase pathway activation by estradiol-receptor complex in MCF-7 cells. EMBO J 15:1292–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG et al (1998) Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20:245–253

    Article  CAS  PubMed  Google Scholar 

  • Mok MCY, Campalans A, Pillon MC, Guarné A, Radicella JP, Junop MS (2019) Identification of an XRCC1 DNA binding activity essential for retention at sites of DNA damage. Sci Rep 9:39543–39541

    Article  CAS  Google Scholar 

  • Mosin SK, Arshad AP, Mahboob UH, Mohammad I, Nighat PK, Khurshid AW et al (2013) Lack of mutational events of RAS genes in sporadic thyroid cancer but high risk associated with HRAS T81C single nucleotide polymorphism (case–control study). Tumor Biol 34:521–529

    Article  CAS  Google Scholar 

  • Mosin SK, Arshad AP, Shariq RM, Shoukat HK, Tanveer AR, Khursid IA et al (2015) Significant association of TP53 Arg72Pro polymorphism in susceptibility to differentiated thyroid cancer. Cancer Biomark 15:459–465

    Article  CAS  Google Scholar 

  • Moulana FI, Priyani AAH, de Silva MVC, Das sanayake RS (2018) BRAF-oncogene-induced senescence and the role of thyroid-stimulating hormone signaling in the progression of papillary thyroid carcinoma. Horm Cancer 9:1–11

    Article  CAS  PubMed  Google Scholar 

  • Muhlberg T, Herrmann K, Joba W, Kirchberger M, Heberling HJ, Heufelder AE (2000) Lack of association of nonautoimmune hyperfunctioning thyroid disorders and a germ line polymorphism of codon 727 of the human thyrotropin receptor in a European Caucasian population. J Clin Endocrinol Metab 85:2640–2643

    CAS  PubMed  Google Scholar 

  • Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E et al (1993) Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363:458–460

    Article  CAS  PubMed  Google Scholar 

  • Mussett MV, Perry WL (1955) The international standard for thyrotrophin. Bull World Health Organ 13:917–929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Myers SM, Eng C, Ponder BA, Mulligan LM (1995) Characterization of RET proto-oncogene splicing variants and polyadenylation sites: a novel C-terminus for RET. Oncogene 11:2039–2045

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Gojobori T, Ikemura T (2007) Codon usage tabulated from the international DNA sequence databases. Nucleic Acids Res 26:334–340

    Article  Google Scholar 

  • Neumann S, Eliseeva E, McCoy JG, Napolitano G, Giuliani C, Monaco F et al (2011) A new small-molecule antagonist inhibits graves’ disease antibody activation of the TSH receptor. J Clin Endocrinol Metab 96:548–554

    Article  CAS  PubMed  Google Scholar 

  • Nikiforov YE (2004) Genetic alterations involved in the transition from well differentiated to poorly differentiated and anaplastic thyroid carcinomas. Endocr Pathol 15:319–327

    Article  CAS  PubMed  Google Scholar 

  • Nikiforov YE, Nikiforov MN (2011) Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol 7:569–580

    Article  CAS  PubMed  Google Scholar 

  • Nissar S, Sameer AS, Rasool R, Rashid F (2014) DNA repair gene--XRCC1 in relation to genome instability and role in colorectal carcinogenesis. Oncol Res Treat 37(7–8):418–422. https://doi.org/10.1159/000364898.

    Article  CAS  PubMed  Google Scholar 

  • Nogueira CR, Kopp P, Arseven OK, Santos CLS, Jameson JL, Medeiros-Neto G (1999) Thyrotropin receptor mutations in hyperfunctioning thyroid adenomas from Brazil. Thyroid 9:1063–1068

    Article  CAS  PubMed  Google Scholar 

  • Ohayon T, Gershoni BR, Papa MZ, Distelman MT, Eisenberg BS, Friedman E (2005) The R72P P53 mutation is associated with familial breast cancer in Jewish women. Br J Cancer 92:1144–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oksenych V, Coin F (2010) The long unwinding road: XPB and XPD helicases in damaged DNA opening. Cell Cycle 9:90–96

    Article  CAS  PubMed  Google Scholar 

  • Pandith AA, Shah ZA, Khan NP, Baba KM, Wani MS, Siddiqi MA (2013) HRAS T81C polymorphism modulates risk of urinary bladder cancer and predicts advanced tumors in ethnic Kashmiri population. Urol Oncol 31:487–492

    Article  CAS  PubMed  Google Scholar 

  • Parkin DM, Whelan SL, Ferlay J, Powell J, Teppo L (2003) Cancer incidence in five continents. Vol 8, IARC scientific publication no 155

    Google Scholar 

  • Pegoraro RJ, Rom L, Lanning PA, Moodley M, Naiker S, Moodley J (2002) P53 codon 72 polymorphism and human papillomavirus type in relation to cervical cancer in south African women. Int J Gynecol Cancer 12:383–388

    Article  CAS  PubMed  Google Scholar 

  • Pierre M, Evelyne M (1999) Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 18:7621–7636

    Article  CAS  Google Scholar 

  • Pietsch EC, Humbey O, Murphy ME (2006) Polymorphisms in the p53 pathway. Oncogene 25:1602–1611

    Article  CAS  PubMed  Google Scholar 

  • Postiglione MP, Parlato R, Rodriguez-Mallon A, Rosica A, Mithbaokar P, Maresca M et al (2002) Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci U S A 99:15462–15467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pui CH, Cheng C, Leung W, Rai SN, Rivera GK, Sandlund JT et al (2003) Extended follow up of long-term survivors of childhood acute lymphoblastic leukemia. N Engl J Med 349:640–649

    Article  PubMed  Google Scholar 

  • Raymon H, Grogan EJ, Mitmaker OHC (2010) The evolution of biomarkers in thyroid cancer-from mass screening to a personalized biosignature. Cancer 2:885–912

    Article  CAS  Google Scholar 

  • Rebecca LB, Jonas AD, Ezra EWC (2011) Thyroid cancer: burden of illness and management of disease. J Cancer 2:193–199

    Article  Google Scholar 

  • Robledo M, Gil L, Pollán M, Cebrián A, Ruíz S, Azañedo M et al (2003) Polymorphisms G691S/S904S of RET as genetic modifiers of MEN 2A. Cancer Res 63:1814–1817

    CAS  PubMed  Google Scholar 

  • Romana S, Ishrat M, Kashif B, Soma S, Mahmood AK (2017) Haplotype based analysis of XRCC3 gene polymorphisms in thyroid cancer. Cell Physiol Biochem 42:22–33

    Article  CAS  Google Scholar 

  • Ron E (1996) Thyroid cancer. In: Schottenfeld D, Fraumeni JFJ (eds) Cancer epidemiology. Prevention, 2nd edn. Oxford University Press, New York, pp 1000–1021

    Google Scholar 

  • Ron E, Lubin JH, Shore RE, Mabuchi K, Modan B, Pottern LM et al (1995) Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 141:259–277

    Article  CAS  PubMed  Google Scholar 

  • Ronen A, Glickman BW (2001) Human DNA repair genes. Environ Mol Mutagen 37:241–283

    Article  CAS  PubMed  Google Scholar 

  • Rosai J, Carcangiu ML, DeLellis RA (1992) Tumors of the thyroid gland. In: Atlas of tumor pathology. Armed Forces Institute of Pathology, Washington

    Google Scholar 

  • Rudolf J, Rouillon C, Schwarz-Linek U, White MF (2010) The helicase XPD unwinds bubble structures and is not stalled by DNA lesions removed by the nucleotide excision repair pathway. Nucleic Acids Res 38:931–941

    Article  CAS  PubMed  Google Scholar 

  • Ryu RA, Tae K, Min HJ, Jeong JH, Cho SH, Lee SH et al (2011) XRCC1 polymorphisms and risk of papillary thyroid carcinoma in a Korean sample. J Korean Med Sci 26:991–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamuro D, Sabbatini P, White E, Prendergast GC (1997) The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 15:887–898

    Article  CAS  PubMed  Google Scholar 

  • Sameer AS, Nissar S (2018) XPD-the lynchpin of NER: molecule, gene, polymorphisms, and role in colorectal carcinogenesis. Front Mol Biosci 5:23. https://doi.org/10.3389/fmolb.2018.00023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro M, Carlomagno F, Hay ID, Herrmann MA, Grieco M, Melillo R et al (1992) Ret oncogene activation in human thyroid neoplasms is restricted to the papillary cancer subtype. J Clin Invest 89:1517–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro M, Dathan NA, Berlingieri MT, Bongarzone I, Paulin C, Grieco M et al (1994) Molecular characterization of RET/PTC3: a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene 9:509–516

    CAS  PubMed  Google Scholar 

  • Santos LS, Branco SC, Silva SN, Azevedo AP, Gil OM, Manita I et al (2012) Polymorphism in base excision repair genes and thyroid cancer risk. Oncol Rep 28:1859–1868

    Article  CAS  PubMed  Google Scholar 

  • Sanyal S, Festa F, Sakano S, Zhang Z, Steineck G, Norming U et al (2004) Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 25:729–734

    Article  CAS  PubMed  Google Scholar 

  • Sarlis NJ, Benvenga S (2004) Molecular signaling in thyroid cancer. Cancer Treat Res 122:237–264

    Article  PubMed  Google Scholar 

  • Sathyan KM, Nalinakumari KR, Abraham T, Kannan S (2006) Influence of single nucleotide polymorphisms in H-Ras and cyclin D1 genes on oral cancer susceptibility. Oral Oncol 42:607–613

    Article  CAS  PubMed  Google Scholar 

  • Schelfhout LJ, Cornelisse CJ, Goslings BM, Hamming JF, Kuipers-Dijkshoorn NJ, van de Velde CJ et al (1990) Frequency and degree of aneuploidy in benign and malignant neoplasms. Int J Cancer 45:16–20

    Article  CAS  PubMed  Google Scholar 

  • Schreiber V, Amé JC, Dollé P, Schultz I, Rinaldi B, Fraulob V et al (2002) Poly (ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 277:23028–23036

    Article  CAS  PubMed  Google Scholar 

  • Scott IA (2002) Development of epitope-specific immunotherapies for human malignancies and premalignant lesions expressing mutated ras genes. In: Gene therapy of cancer, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Shen MR, Jones IM, Mohrenweiser H (1998) Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58:604–608

    CAS  PubMed  Google Scholar 

  • Shen H, Solari A, Wang X, Zhang Z, Xu Y, Wang L et al (2004) P53 codon 72 polymorphism and risk of gastric cancer in a Chinese population. Oncol Rep 11:1115–1120

    CAS  PubMed  Google Scholar 

  • Shkarupa VM, Mishcheniuk OY, Henyk-Berezovska SO, Palamarchuk VO, Klymenko SV (2016) Polymorphism of dna repair gene xpd lys751gln and chromosome aberrations in lymphocytes of thyroid cancer patients exposed to ionizing radiation due to the chornobyl accident. Exp Oncol 38:257–260

    Article  CAS  PubMed  Google Scholar 

  • Simoni M, Gromoll J, Nieschlag E (1997) The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev 18:739–773

    CAS  PubMed  Google Scholar 

  • Siraj AK, Al-Rasheed M, Ibrahim M, Siddiqui K, Al-Dayel F, Al-Sanea O et al (2008) RAD52 polymorphisms contribute to the development of papillary thyroid cancer susceptibility in middle eastern population. J Endocrinol Invest 31:893–899

    Article  CAS  PubMed  Google Scholar 

  • Skeeles LE, Fleming JL, Mahler KL, Toland AE (2013) The impact of 3′ UTR variants on differential expression of candidate cancer susceptibility genes. PLoS One 8:e58609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soh EY, Clark OH (1996) Surgical considerations and approach to thyroid cancer. Endocrinol Metab Clin North Am 25:115–139

    Article  CAS  PubMed  Google Scholar 

  • Sol-Church K, Stabley DL, Nicholson L, Gonzalez IL, Gripp KW (2006) Paternal bias in parental origin of HRAS mutations in Costello syndrome. Hum Mutat 27:736–741

    Article  CAS  PubMed  Google Scholar 

  • Soulitzis N, Sourvinos G, Dokianakis DN, Spandidos DA (2002) p53 codon 72 polymorphism and its association with bladder cancer. Cancer Lett 179:175–183

    Article  CAS  PubMed  Google Scholar 

  • Sourvinos G, Rizos E, Spandidos DA (2001) p53 codon 72 polymorphism is linked to the development and not the progression of benign and malignant laryngeal tumours. Oral Oncol 37:572–578

    Article  CAS  PubMed  Google Scholar 

  • Spitz MR, Wu X, Wang Y, Wang LE, Shete S, Amos CI et al (2001) Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res 61:1354–1357

    CAS  PubMed  Google Scholar 

  • Storey A, Thomas M, Kalita A, Harwood C, Gardiol D, Mantovani F et al (1998) Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature 393:229–234

    Article  CAS  PubMed  Google Scholar 

  • Sturgis EM, Zheng R, Li L, Castillo EJ, Eicher SA, Chen M et al (2000) XPD/ERCC2 polymorphisms and risk of head and neck cancer: a case–control analysis. Carcinogenesis 21:2219–2223

    Article  CAS  PubMed  Google Scholar 

  • Sturgis EM, Zhao C, Zheng R, Wei Q (2005) Radiation response genotype and risk of differentiated thyroid cancer: a case-control analysis. Laryngoscope 115:938–945

    Article  PubMed  Google Scholar 

  • Susana NS, MG O’v, Vanessa CO, Marisa NC (2005) Association of Polymorphisms in ERCC2 gene with non-familial thyroid cancer risk. Cancer Epidemiol Biomarkers Prev 14:2407–2412

    Article  CAS  Google Scholar 

  • Suzuki K, Matsui H, Ohtake N, Nakata S, Takei T, Nakazato H et al (2003) A p53 codon 72 polymorphism associated with prostate cancer development and progression in Japanese. J Biomed Sci 10:430–435

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Matsuo K, Hasegawa Y, Hiraki A, Kawase T, Tanaka H et al (2008) Anthropometric factors at age 20 years and risk of thyroid cancer. Cancer Causes Control 19:1233–1242

    Article  PubMed  Google Scholar 

  • Tae K, Lee HS, Park BJ, Park CW, Kim KR, Cho HY et al (2004) Association of DNA repair gene XRCC1 polymorphisms with head and neck cancer in Korean population. Int J Cancer 111:805–808

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Ritz J, Cooper GM (1985) Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 42:581–588

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Buma Y, Iwamoto T, Inaguma Y, Ikeda H, Hiai H (1988) Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 3:571–578

    CAS  PubMed  Google Scholar 

  • Tallini G, Asa SL (2001) RET oncogene activation in papillary thyroid carcinoma. Adv Anat Pathol 8:345–354

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Guojun L, Chong Z, Qingyi W, Erich M (2005) Sturgis RET polymorphisms and haplotypes and risk of differentiated thyroid cancer. Laryngoscope 115:1035–1041

    Article  Google Scholar 

  • Tetsuo K, Shereen E, Sylvia LA (2006) Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6:292–306

    Article  CAS  Google Scholar 

  • The International Hap Map Consortium (2003) The international hap map project. Nature 426:789–796

    Article  CAS  Google Scholar 

  • Thompson LH, West MG (2000) XRCC1 keeps DNA from getting stranded. Mutat Res 459:1–18

    Article  CAS  PubMed  Google Scholar 

  • Thompson LH, Brookman KW, Jones NJ, Allen SA, Carrano AV (1990) Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol Cell Biol 10:6160–6171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson LD, Wenig BM, Adair CF, Shmookler BM, Heffess CS (1997) Primary smooth muscle tumors of the thyroid gland. Cancer 79:579–587

    Article  CAS  PubMed  Google Scholar 

  • Ting AH, Mc Garvey KM, Baylin S (2006) The cancer epigenome components and functional correlates. Genes Dev 20:3215–3231

    Article  CAS  PubMed  Google Scholar 

  • Tiwawech D, Srivatanakul P, Karaluk A, Ishida T (2003) The p53 codon 72 polymorphism in Thai nasopharyngeal carcinoma. Cancer Lett 198:69–75

    Article  CAS  PubMed  Google Scholar 

  • Traczyk M, Borkowska E, Rozniecki M, Purpurowicz R, Jedrzejczyk A, Marks P et al (2012) Polymorphic variants of H-RAS protooncogene and their possible role in bladder cancer etiology. Cent European J Urol 65:84–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treanor JJ, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD et al (1996) Characterization of a multicomponent receptor for GDNF. Nature 382:80–83

    Article  CAS  PubMed  Google Scholar 

  • Troppmann B, Kleinau G, Krause G, Gromoll J (2013) Structural and functional plasticity of the luteinizing hormone/choriogonadotrophin receptor. Hum Reprod Update 19:583–602

    Article  CAS  PubMed  Google Scholar 

  • Tsui-Pierchala BA, Milbrandt J, Johnson EM (2002) NGF utilizes c-ret via a novel GFL-independent, inter-RTK signaling mechanism to maintain the trophic status of mature sympathetic neurons. Neuron 33:261–273

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki T, Takahashi M, Asai N, Iwashita T, Matsuyama M, Asai J (1995) Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult rat tissues. Oncogene 10:191–198

    CAS  PubMed  Google Scholar 

  • Vassart G, Pardo L, Costagliola SA (2004) Molecular dissection of the glycoprotein hormone receptors. Trends Biochem Sci 29:119–126

    Article  CAS  PubMed  Google Scholar 

  • Vogel U, Hedayati M, Dybdahl GL, Nexo A (2001) Polymorphisms of the DNA repair gene XPD: correlations with risk of basal cell carcinoma revisited. Carcinogenesis 22:899–904

    Article  CAS  PubMed  Google Scholar 

  • Volante M, Landolfi S, Chiusa L, Palestini N, Motta M, Codegone A et al (2004) Poorly differentiated carcinomas of the thyroid with trabecular, insular and solid patterns: a clinicopathologic study of 183 patients. Cancer 100:950–957

    Article  PubMed  Google Scholar 

  • Vral A, Willems P, Claes K, Poppe B, Perletti G, Thierens H (2011) Combined effect of polymorphisms in Rad51 and XRCC3 on breast cancer risk and chromosomal radiosensitivity. Mol Med Rep 4:901–912

    CAS  PubMed  Google Scholar 

  • Werbrouck J, De Ruyck K, Duprez F, Veldeman L, Claes K, Van Eijkeren M et al (2009) Acute normal tissue reactions in head-and-neck cancer patients treated with IMRT: influence of dose and association with genetic polymorphisms in DNA DSB repair genes. Int J Radiat Oncol Biol Phys 73:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Winsey SL, Haldar NA, Marsh HP, Bunce M, Marshall SE, Harris AL (2000) A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer. Cancer Res 60:5612–5616

    CAS  PubMed  Google Scholar 

  • Wolski SC, Kuper J, Kisker C (2010) The XPD helicase: XPanDing archaeal XPD structures to get a grip on human DNA repair. Biol Chem 391:761–765

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhao H, Amos CI, Shete S, Makan N, Hong WK et al (2002) p53 genotypes and haplotypes associated with lung cancer susceptibility and ethnicity. J Natl Cancer Inst 94:681–690

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Gu J, Grossman HB, Gu J, Grossman HB, Amos CI, Etzel C, Huang M et al (2006) Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle control genes. Am J Hum Genet 78:464–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing M (2005) BRAF mutation in thyroid cancer. Endocr Relat Cancer 12:245–262

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Li D, Zhang Q, Fu Z, Yuan W, Pang D et al (2012) Association of CD27 and CD70 gene polymorphisms with risk of sporadic breast cancer in Chinese women in Heilongjiang Province. Breast Cancer Res Treat 133:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Xuan S, Li-Wen L, Jie-Ling W, Shu-Wei C, Xin-Hua Y, Da-Lei Z (2019) TSHR rs2288496 associated with thyroid hormone and predict the occurrence of lymph node metastasis of papillary thyroid cancer. Cancer Biomark 01:1–10

    Google Scholar 

  • Yane K, Kitahori Y, Konishi N, Okaichi K, Ohnishi T, Miyahara H et al (1994) Expression of the estrogen receptor in human thyroid neoplasms. Cancer Lett 84:59–66

    Article  CAS  PubMed  Google Scholar 

  • Yao-Yuan H, Chich-Sheng L (2006) P53 codon 11, 72 and 248 gene polymorphisms in endometriosis. Int J Biol Sci 2:188–193

    Google Scholar 

  • Yarbro C, Frogge M, Goodman M (2005) Cancer nursing: principles and practice, 6th edn. Jones and Bartlett Publishers, Boston

    Google Scholar 

  • Yashimoto K, Iwahana H, Fukuda A, Sano T, Saito G, Itakura M (1992) Role of p53 mutations in endocrine tumorigenesis: mutations detection by polymerase chain reaction-single strand conformation polymorphism. Cancer Res 52:5061–5064

    Google Scholar 

  • Yi B, Lei J, Jue-Yu Z, Jun-Jie Z, Jiao-Yang Z, Xiang-Fang C (2013) XRCC1 gene polymorphisms and the risk of differentiated thyroid carcinoma (DTC): a meta-analysis of case-control studies. PLoS One 8:e64851

    Article  CAS  Google Scholar 

  • Yuan C, Liu X, Yan S, Wang C, Kong B (2014) Analyzing association of the XRCC3 gene polymorphism with ovarian cancer risk. Bio Med Res Int 2014:1–9

    Google Scholar 

  • Zhang JH, Li Y, Wang R, Wen DG, Wu ML, He M (2003) p53 gene polymorphism with susceptibility to esophageal cancer and lung cancer in Chinese population. Zhonghua Zhong Liu Za Zhi 25:365–367. (Chinese)

    CAS  PubMed  Google Scholar 

  • Zhang Y, Jin M, Liu B, Ma X, Yao K, Li Q et al (2008) Association between H-RAS T81C genetic polymorphism and gastrointestinal cancer risk: a population based case–control study in China. BMC Cancer 8:256–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou W, Liu G, Miller DP, Thurston SW, Xu LL, Wain C et al (2002) Gene–environment interaction for the ERCC2 polymorphisms and cumulative cigarette smoking exposure in lung cancer. Cancer Res 62:1377–1381

    CAS  PubMed  Google Scholar 

  • Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE (2003) Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol 120:71–77

    Article  CAS  PubMed  Google Scholar 

  • Zhu QX, Bian JC, Shen Q, Jiang F, Tang HW, Zhang H et al (2004) Genetic polymorphisms in X-ray repair cross-complementing gene 1 and susceptibility to papillary thyroid carcinoma. Zhonghua Liu Xing Bing Xue Za Zhi 25:702–705. (Chinese)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.S., Mudassar, S. (2021). Thyroid Cancer and SNPs. In: Sameer, A.S., Banday, M.Z., Nissar, S. (eds) Genetic Polymorphism and cancer susceptibility. Springer, Singapore. https://doi.org/10.1007/978-981-33-6699-2_8

Download citation

Publish with us

Policies and ethics