Skip to main content

Utilization of Invasive Weed Biomass for Biochar Production and Its Application in Agriculture and Environmental Clean-up

  • Chapter
  • First Online:
Bioremediation using weeds

Abstract

In modern agriculture practices, weeds by advantage of their vibrant and resilient nature pose a constant problem in the agricultural sector and deemed a threat to biodiversity. The common issues linked with invasive species including risk to the native species, excess use of herbicides affects the biological pollinators, competition for the light, water and nutrients that can make a community more vulnerable to re-invasion of weed species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad M, Moon DH, Vithanage M, Koutsospyros A, Lee SS, Yang JE, Lee SE, Jeon C, Ok YS (2014) Production and use of biochar from buffalo-weed (Ambrosia trifida L.) for trichloroethylene removal from water. J Chem Technol Biotechnol 89(1):150–157

    Google Scholar 

  • Ahmed MB, Zhou JL, Ngo HH, Guo W (2015) Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci Total Environ 532:112–126

    Article  Google Scholar 

  • Bhatia SK, Gurav R, Choi T-R, Kim HJ, Yang S-Y, Song H-S, Park JY, Park Y-L, Han Y-H, Choi Y-K, Kim S-H, Yoon J-J, Yang Y-H (2020) Conversion of waste cooking oil into biodiesel using heterogenous catalyst derived from cork biochar. Biores Technol 302:122872

    Article  Google Scholar 

  • Bhattacharjee N, Biswas AB (2018) Pyrolysis of Alternanthera philoxeroides (alligator weed): effect of pyrolysis parameter on product yield and characterization of liquid product and bio char. J Energy Inst 91(4):605–618

    Article  Google Scholar 

  • Bordoloi S, Garg A, Sreedeep S, Lin P, Mei G (2018) Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth. Biores Technol 263:665–677

    Article  Google Scholar 

  • Chen L, Li F, Wei Y, Li G, Shen K, He H-J (2019) High cadmium adsorption on nanoscale zero-valent iron coated Eichhornia crassipes biochar. Environ Chem Lett 17(1):589–594

    Article  Google Scholar 

  • Choi YK, ChoiTR, Gurav R, Bhatia SK, Park YL, Kim HJ, Kan E, Yang YH (2020) Adsorption behavior of tetracycline onto Spirulina sp. (microalgae)-derived biochars produced at different temperatures. Sci Total Environ 710:136282

    Google Scholar 

  • Choi Y-K, Kan E (2019) Effects of pyrolysis temperature on the physicochemical properties of alfalfa-derived biochar for the adsorption of bisphenol A and sulfamethoxazole in water. Chemosphere 218:741–748

    Article  Google Scholar 

  • Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou Y, Zheng B, Cai X (2016) Competitive removal of Cd(II) and Pb(II) by biochars produced from water hyacinths: performance and mechanism. RSC Adv 6(7):5223–5232

    Article  Google Scholar 

  • Du Y, Feng Y, Shu L, Ren Z, Kong Q, Xu F, Wang Q (2018) A mesoporous biochar from bio-invasion alligator weed for adsorption of rhodamine B from aqueous solution. Desalin Water Treat 135:341–350

    Article  Google Scholar 

  • Eun Kim J, Kant Bhatia S, Jin Song H, Yoo E, Jin Jeon H, Yoon JY, Yang Y, Gurav R, Yang YH, Joo Kim H, Choi YK (2020) Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar. Bioresour Technol 123092

    Google Scholar 

  • Fan L, Zhou X, Liu Q, Wan Y, Cai J, Chen W, Chen F, Ji L, Cheng L, Luo H (2019) Properties of Eupatorium adenophora spreng (crofton weed) biochar produced at different pyrolysis temperatures. Environ Eng Sci 36(8):937–946

    Article  Google Scholar 

  • Fang W, Cao A, Yan D, Han D, Huang B, Li J, Liu X, Guo M, Wang Q (2017) The effect of two types of biochars on the efficacy, emission, degradation, and adsorption of the fumigant Methyl Isothiocyanate. Energies 10(1)

    Google Scholar 

  • Gopal P, Bordoloi S, Ratnam R, Lin P, Cai W, Buragohain P, Garg A, Sreedeep S (2019) Investigation of infiltration rate for soil-biochar composites of water hyacinth. Acta Geophys 67(1):231–246

    Article  Google Scholar 

  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agr Ecosyst Environ 206:46–59

    Article  Google Scholar 

  • Gurav R, Bhatia SK, Choi TR, Park YL, Park JY, Han YH, Vyavahare G, Jadhav J, Song HS, Yang P, Yoon JJ, Bhatnagar A, Choi YK, Yang, YH (2019) Treatment of furazolidone contaminated water using banana pseudostem biochar engineered with facile synthesized magnetic nanocomposites. Bioresour Technol 122472

    Google Scholar 

  • Han D, Yan D, Cao A, Fang W, Liu P, Li Y, Ouyang C, Wang Q (2017) Degradation of dimethyl disulphide in soil with or without biochar amendment. Pest Manag Sci 73(9):1830–1836

    Article  Google Scholar 

  • Huang X, Liu Y, Liu S, Li Z, Tan X, Ding Y, Zeng G, Xu Y, Zeng W, Zheng B (2016) Removal of metformin hydrochloride by Alternanthera philoxeroides biomass derived porous carbon materials treated with hydrogen peroxide. RSC Advances 6(83):79275–79284

    Article  Google Scholar 

  • Igalavithana AD, Mandal S, Niazi NK, Vithanage M, Parikh SJ, Mukome FND, Rizwan M, Oleszczuk P, Al-Wabel M, Bolan N, Tsang DCW, Kim K-H, Ok YS (2017) Advances and future directions of biochar characterization methods and applications. Crit Rev Environ Sci Technol 47(23):2275–2330

    Article  Google Scholar 

  • Jing Y, Cao Y, Yang Q, Wang X (2019) Removal of Cd(II) from aqueous solution by clay-biochar composite prepared from Alternanthera philoxeroides and Bentonitei. Bioresources 15(1):18

    Google Scholar 

  • Kumar S, Masto RE, Ram LC, Sarkar P, George J, Selvi VA (2013) Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecol Eng 55:67–72

    Article  Google Scholar 

  • Lata H, Garg VK, Gupta RK (2007) Removal of a basic dye from aqueous solution by adsorption using Parthenium hysterophorus: an agricultural waste. Dyes Pigm 74(3):653–658

    Article  Google Scholar 

  • Li F, Shen K, Long X, Wen J, Xie X, Zeng X, Liang Y, Wei Y, Lin Z, Huang W, Zhong R (2016) Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PLoS ONE 11(2):e0148132

    Article  Google Scholar 

  • Li P, Chang Q, Wang C, Cao J, Zheng W (2014) Composting of aerial parts of crofton weed (Eupatorium adenophorum Spreng), the top invasive plant in southwest China. Compost Sci Utilization 22(3):132–137

    Article  Google Scholar 

  • Li Q, Tang L, Hu J, Jiang M, Shi X, Zhang T, Li Y, Pan X (2018a) Removal of toxic metals from aqueous solution by biochars derived from long-root Eichhornia crassipes. Roy Soc Open Sci 5(10):180966

    Article  Google Scholar 

  • Li Y, Liu X, Wu X, Dong F, Xu J, Pan X, Zheng Y (2018b) Effects of biochars on the fate of acetochlor in soil and on its uptake in maize seedling. Environ Pollut 241:710–719

    Article  Google Scholar 

  • Lindenmayer DB, Wood J, MacGregor C, Buckley YM, Dexter N, Fortescue M, Hobbs RJ, Catford JA (2015) A long-term experimental case study of the ecological effectiveness and cost effectiveness of invasive plant management in achieving conservation goals: bitou bush control in booderee national park in Eastern Australia. PLoS ONE 10(6):e0128482

    Article  Google Scholar 

  • Liu W-J, Zeng F-X, Jiang H, Yu H-Q (2011) Total recovery of nitrogen and phosphorus from three wetland plants by fast pyrolysis technology. Biores Technol 102(3):3471–3479

    Article  Google Scholar 

  • Lyu H, Gong Y, Gurav R, Tang J (2016) Potential application of biochar for bioremediation of contaminated systems. In: Ralebitso-Senior TK (ed) Biochar application. Elsevier, C. H. Orr, pp 221–246

    Chapter  Google Scholar 

  • Masto RE, Kumar S, Rout TK, Sarkar P, George J, Ram LC (2013) Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. CATENA 111:64–71

    Article  Google Scholar 

  • Meng A, Zhang Y, Zhuo J, Li Q, Qin L (2015) Investigation on pyrolysis and carbonization of Eupatorium adenophorum Spreng and tobacco stem. J Energy Inst 88(4):480–489

    Article  Google Scholar 

  • Mondal S, Aikat K, Siddharth K, Sarkar K, DasChaudhury R, Mandal G, Halder G (2017) Optimizing ranitidine hydrochloride uptake of Parthenium hysterophorus derived N-biochar through response surface methodology and artificial neural network. Process Saf Environ Prot 107:388–401

    Article  Google Scholar 

  • Mondal S, Bobde K, Aikat K, Halder G (2016) Biosorptive uptake of ibuprofen by steam activated biochar derived from mung bean husk: equilibrium, kinetics, thermodynamics, modeling and eco-toxicological studies. J Environ Manage 182:581–594

    Article  Google Scholar 

  • Nyamunda BC, Chivhanga T, Guyo U, Chigondo F (2019) Removal of Zn (II) and Cu (II) ions from industrial wastewaters using magnetic biochar derived from water hyacinth. J Engg

    Google Scholar 

  • Oleszczuk P, JoÅ›ko I, KuÅ›mierz M, Futa B, Wielgosz E, LigÄ™za S, Pranagal J (2014) Microbiological, biochemical and ecotoxicological evaluation of soils in the area of biochar production in relation to polycyclic aromatic hydrocarbon content. Geoderma 213:502–511

    Article  Google Scholar 

  • Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK (2017) Environmental application of biochar: current status and perspectives. Biores Technol 246:110–122

    Article  Google Scholar 

  • Rajapaksha AU, Ahmad M, Vithanage M, Kim K-R, Chang JY, Lee SS, Ok YS (2015) The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil. Environ Geochem Health 37(6):931–942

    Article  Google Scholar 

  • Roh H, Yu M-R, Yakkala K, Koduru JR, Yang J-K, Chang Y-Y (2015) Removal studies of Cd(II) and explosive compounds using buffalo weed biochar-alginate beads. J Ind Eng Chem 26:226–233

    Article  Google Scholar 

  • Safaei Khorram M, Fatemi A, Khan MA, Kiefer R, Jafarnia S (2018) Potential risk of weed outbreak by increasing biochar’s application rates in slow-growth legume, lentil (Lens culinaris Medik.). J Sci Food Agric 98(6):2080–2088

    Google Scholar 

  • Saini A, Aggarwal N, Sharma A, Kaur M, Yadav A (2014) Utility potential of Parthenium hysterophorus for its strategic management. Adv Agric

    Google Scholar 

  • Singh A, Singh AP, Purakayastha TJ (2019) Characterization of biochar and their influence on microbial activities and potassium availability in an acid soil. Arch Agron Soil Sci 65(9):1302–1315

    Article  Google Scholar 

  • Venugopal V, Mohanty K (2011) Biosorptive uptake of Cr (VI) from aqueous solutions by Parthenium hysterophorus weed: equilibrium, kinetics and thermodynamic studies. Chem Eng J 174(1):151–158

    Article  Google Scholar 

  • Vyavahare G, Jadhav P, Jadhav J, Patil R, Aware C, Patil D, Gophane A, Yang Y-H, Gurav R (2019) Strategies for crystal violet dye sorption on biochar derived from mango leaves and evaluation of residual dye toxicity. J Clean Prod 207:296–305

    Article  Google Scholar 

  • Vyavahare GD, Gurav RG, Jadhav PP, Patil RR, Aware CB, Jadhav JP (2018) Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity. Chemosphere 194:306–315

    Article  Google Scholar 

  • Wang P, Liu X, Wu X, Xu J, Dong F, Zheng Y (2018) Evaluation of biochars in reducing the bioavailability of flubendiamide in water/sediment using passive sampling with polyoxymethylene. J Hazard Mater 344:1000–1006

    Article  Google Scholar 

  • Yakkala K, Yu M-R, Roh H, Yang J-K, Chang Y-Y (2013) Buffalo weed (Ambrosia trifida L. var. trifida) biochar for cadmium (II) and lead (II) adsorption in single and mixed system. Desalin Water Treat 51(40–42):7732–7745

    Google Scholar 

  • Yang Y, Wei Z, Zhang X, Chen X, Yue D, Yin Q, Xiao L, Yang L (2014) Biochar from Alternanthera philoxeroides could remove Pb(II) efficiently. Biores Technol 171:227–232

    Article  Google Scholar 

  • Zhang F, Wang X, Xionghui J, Ma L (2016a) Efficient arsenate removal by magnetite-modified water hyacinth biochar. Environ Pollut 216:575–583

    Article  Google Scholar 

  • Zhang H, Tang J, Wang L, Liu J, Gurav RG, Sun K (2016b) A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar. J Environ Sci 47:7–13

    Article  Google Scholar 

  • Zhou R, Zhang M, Zhou J, Wang J (2019) Optimization of biochar preparation from the stem of Eichhornia crassipes using response surface methodology on adsorption of Cd(2). Sci Rep 9(1):17538

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit G. Gurav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gurav, R.G. et al. (2021). Utilization of Invasive Weed Biomass for Biochar Production and Its Application in Agriculture and Environmental Clean-up. In: Pant, D., Bhatia, S.K., Patel, A.K., Giri, A. (eds) Bioremediation using weeds. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-33-6552-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6552-0_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6551-3

  • Online ISBN: 978-981-33-6552-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics