Skip to main content

Super Sweet and Taste Modifier Proteins

  • Chapter
  • First Online:
Alternative Sweet and Supersweet Principles
  • 395 Accesses

Abstract

It has been found that super sweet (SS) proteins are thousands times sweeter than sucrose, required in a very small amount to sweeten the food materials and provide little or zero calories to body. These proteins can therefore, be used as natural, low calorie sweeteners by people suffering from diseases linked to the consumption of sugar e.g. obesity, diabetes, hyperlipemia etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green, C. (2001). “Thaumatin: a natural flavour ingredient”. World Review of Nutrition and Dietetics, 85: 129-32.

    Google Scholar 

  2. Daniell, W. F. (1855) Pharmaceutical, Journal 14, 158-160.

    Google Scholar 

  3. Inglett, G. E., and May, J. F. (1968) Tropical plants with unusual taste properties Economic Botany 22, 326-331.

    Google Scholar 

  4. Van Der Wel, H. and Loeve, K. (1972). “Isolation and characterization of thaumatin I and II, the sweet tasting proteins from T. daniellii Benth”. European Journal of Biochemistry, 31:221-225.

    Google Scholar 

  5. Van Der Wel, H., Wiesma, A. and Brouwer, J. N. (1978). J. Labelled Comp. Radiopharm. 14, 735-740.

    Google Scholar 

  6. Iyengar, R.B., Smits, P., Van Der Ouderaa, F., Van Der Wel, H., Van Brouwer shaven, J., Ravestein, P., Rilhters, Cr. And Van Wassen P- (1979). Complete amino acid sequence of sweets thaumatin I. Eur. J. Biochem. 96, 193-204.

    Google Scholar 

  7. Edens, L., Hestinga L., Klock, R; Lediboer, AM, Maot, J., Toonen, M.Y., Visser, Ch., Verrips, C.T. (1982). Cloning of CDNA encoding, the sweet tasting plant protein thaumatin and its expression in E. Coli. Gene 18(1), 1-12.

    Google Scholar 

  8. Edens, L., Bom, L., Ledeboer, AM, Maat, J., Tooner, M.Y., Visser, C. et al (1984). Synthesis and processing of plant protein thaumatin in yeast. Cell 37, 620-30.

    Google Scholar 

  9. Witty, M. (1990). Prepothaumatin II is processed to biological activity in Salonum tuberosum. Biotechnology Lett. 12, 131-136.

    Google Scholar 

  10. Witty, M. (1990) Thaumatin II a palatable protein. Trends in Biotechnology 8: 133-116.

    Google Scholar 

  11. S. zwacka, M., Burza, W., Zawirska-Wajtasiak, et al (2012). Genetically modified crop expression 35S – Thaumatin II, Trasngene. Sensory Properties and food safety aspects. Comp. Rev. Food Sci. and Food Safety 11(2), 174-176.

    Google Scholar 

  12. Cregg, J. M., Cerghino, J.L., Shi, J. and Higgins, D. R. (2000) Recombinant protein expression in Pichia pastoris. Mol. Biotehcnol. 16, 23-52.

    Google Scholar 

  13. Macauley – Patrick, S., Fazenda, M. L., Meneil, B. and Harvey L. M. (2005) Heterologous protein production using Pichia pastoris expression system. Yeast 22, 249-270.

    Google Scholar 

  14. Ide, N., Kaneko, R., Wada R. Mehta A, Tanaki; S. and Tsuruta T. (2007) Cloning of thaumatin I cDNA and characterization of recombinant thaumatin I secreted by Pichia pastoris. Biotechnol Prog. 23, 1023 – 1030.

    Google Scholar 

  15. Ide, N., Masuda, T and Kitabtake N., (2007). Effect of pre and post sequence of thaumatin on secretion of P. pastris. Biochem. Biophys Res. commun 363, 708-714.

    Google Scholar 

  16. Cankorur –cetinkaya A., Dikicioglu, D., and oliver S. G. (2017) Metabloic modelling identify engineering targets for komagataella phaffii: the effect biomass composition on gene target identification. Biotechnol. Bioeng. 114, 2605 – 2615.

    Google Scholar 

  17. Healey, R. D., Lebhar, H., Hornung, S., Thordason, P., and Marguis, C. P. (2017). An improved process for production of highly purified recombinant thaumatin tagged variants. Food chem.. 237, 825-832.

    Google Scholar 

  18. Masuda T and N Kitabatake. (2006). Developments in biotechnological production of sweet proteins. J Biosci Bioeng 102(5): 375-389.

    Google Scholar 

  19. Grenby, T.H. (1989), Progress in sweeteners, Elsevier, New York.

    Google Scholar 

  20. Charron, C., Giege, R, Lorber, B. (2004) Structure of thaumatin in a hexagonal space group: comparison of packing contacts in four crystal lattices. Acta crystalloger 60: 83-89

    Google Scholar 

  21. Kaneko, R. and N. Kitabatake (1999). “Heat induced formation of intermolecular disulfide linkages between thamuatin molecules that do not contain cysteine residues”. Journal of Agricultural Food Chemistry 47:4950-5.

    Google Scholar 

  22. Van der wel, H. (1980) Physiological action and structure characteristics of sweet tasting protein thaumatin and monolin: Trends Biochem Sci; 5:122.

    Google Scholar 

  23. Higginbotham, J. D. and Hough, C.A.M. (1977) Sensory properties of food (Eds: Birch, G.G. and Parker, K. J) Applied Sci. Publisher, London P. 192.

    Google Scholar 

  24. Higginbotham, J. D. (1979) Talin a novel sweet protein from T. daniellii in health and sugar substitute. Guggenhiem, B. Ed. Kager, Basel, P172.

    Google Scholar 

  25. Van der wel H and Bel, W. J. (1980) Enzymatic properties of sweet tasting proteins thaumatin and monellin after partial reduction. Eur. J. Biochem. 104, 413

    Google Scholar 

  26. Higginbatham, J. D. (1979) Protein Sweeteners, in “Development in sweeter” (eds.) Hougha C. A. M., Parker, K. J. and Viltos, A. J., Applied Sci. London, Vol. 1, P.87.

    Google Scholar 

  27. Palomares, O., M. Alcantara, J. Quiralte, M. Villalba, F. Garzon and R. Rodriguez (2008). “Airway disease and thaumatin-like protein in an olive-oil mill worker”. N. Engl. Journal of medicine. 358 (12): 1306-8.

    Google Scholar 

  28. Kinghorn, A.D., Chin, Y.W. and pan, L. (2010) Natural products as sweeteners and sweetness modifiers, in eds Mander, L. and Liu, H.W. compresensive natural products II: Chemistyr and Biology. Elsevier, London publishers, P 269-311.

    Google Scholar 

  29. Zemanek, EC, Wasserman, BP. (1995). Issues and advances in the use of transgenic organisms for the production of thaumatin, the intensely sweet protein from Thaumatococcus daniellii. Crit Rev Food Sci Nutr 35(5): 455-66.

    Google Scholar 

  30. Ramshoye, PV, KOzlov, IA. (1991). Isoprotein composition and cross-linking of thaumating using mushroom tyrosinase and dimethyl suberimidate. Int J Food Sci Technol 26(3): 271-82.

    Google Scholar 

  31. Witty, M. (1992). Thaumatin II: a sweet marker gene for use in plants. Methods Enzymol 216: 441-7.

    Google Scholar 

  32. Sloostra, JW, De Gens, P, Haas, H, Verrips, CT, Meloen, RH. (1995). Possible active site of the sweet tasting protein thaumatin. Chem Senses 20(5): 535-43.

    Google Scholar 

  33. Higginbotham, JD, Snodin, DJ, Eaton, KK, Daniel, JW. (1983). Safety evaluation of thaumatin (Talin protein). Food Chem Toxicol/21(6): 815-23.

    Google Scholar 

  34. Twardowska, A. (2003). The application of transgenic cucumber containing thaumatin gene for direct consumption and food technology. [PhD thesis; in Polish]. Poland, Poznan Univ. of Life Sciences. 146 p. Available from: Poznan University of Life Science, Faculty of Food Technology, Wojska Polskiego 31, 60-62 Poznan.

    Google Scholar 

  35. Kosieradzka, I, Sawosz, E, Malepszy, S, Pastuszewska, B, Klucinski, W (2003). Effect of supplemental cucumber fruits, modified in terms of the level of sweet protein thaumatin, on the health parameters in rats. Ann Anim Sci Suppl 2: 277-81.

    Google Scholar 

  36. Kosieradzka, I, Sawosz, E, Pastuszewska, B, Szwacka, M, Malepszy, S, Bielecki, W, Czminska, K (2001). The effect of feeding diets with genetically modified cucumbers on the growth and health status of rats. J Anim Feed Sci 10(Suppl 2): 7-12.

    Google Scholar 

  37. Haley –S. (2011). Sugar and sweetners outlook. USDA, Economic Reaearch serv-SSS-M-270.

    Google Scholar 

  38. McConnell M. (2016). Sugar and Sweeteners Outlook. USDA. Economic Research Service. SSS-M-329.

    Google Scholar 

  39. Rebmann, G., F. Mauch, R. Dudler, C. Hertig and J. Bull (2004). “A wheat glutathione-S-transferase gene with transposon-like sequences in the promoter region”. Plant Molecular. Biology. 16 (6): 1089-1091.

    Google Scholar 

  40. Singh, N.K., Nelson, D.E. Kuhn, D. Hasegawa, P.M. and Bressan, R.A. (1999). “Molecular Cloning of Osmotin and Regulation of Its Expression by ABA and Adaptation to Low Water Potential”. Plant Physiology 90 (3): 1096-1101.

    Google Scholar 

  41. Fawibe, O.O., Ogunyale, O.G. Ajiboye, A.A. and Agboola, D.A. 2014 Botanical and protein sweetener. J. Advanced Lab, Res. in Biology V(iv), 169-187.

    Google Scholar 

  42. Higginbothem, J. D., R. C. Gelardi and L. O. Nabors (1986). Alternative sweeteners. New York: M. Dekker, Inc. ISBN.

    Google Scholar 

  43. European Patent Application 0054, 330 to Unilever PLC (1982).

    Google Scholar 

  44. European Patent Appl. 0054, 331 to Unilever PLC (1982).

    Google Scholar 

  45. Higginbotham, J.D. 1986. Talin Protein (thaumatin). In “Alternative sweeteners” (eds. Higginbotham, J. D. Gelardi, R. C. and Nabard, L. O.) New York, M. Dekker, Inc., ISBN, P 101-132.

    Google Scholar 

  46. Thaumatin: 605 WHO Food Additive Series 20 (www.inchem.org/documents/jicfa/jecmono/v2oje15.htm.)

  47. Summer field, R. J., Most, B. H. and Boxall, M. (1978). Tropical plants with sweetening properties: Physiological and Agronomic problem of protected cropping. 2- Thaumatocuccus daniellii: Economic Bot. 32: 321.

    Google Scholar 

  48. Dalzeil, J. M. (1935) in. Dictionary of Economic Products of the Molay Peninsula. Crown agents for colonies, p 2146.

    Google Scholar 

  49. Waliszewski, W.S., John, B., Hall Sinclair, F. L. (2005). Implication of local knowledge of Ecology of a wild super sweetener for its domestication and commercialization in west and central Africa. Economic Botany, 59, 231-243.

    Google Scholar 

  50. Onwueme, I.C., Onochie, B.E. and Sofowora, E.A., 1979. Cultivation of T. danielli, the sweeteners. World crop 31, 321-35.

    Google Scholar 

  51. Tomlinson, P.B. (1961). Morphological and anatomical characteristics of the Marantaceae, J. Linn. Soc. Bot. 58, p55.

    Google Scholar 

  52. Yeboah, S. O., Hilger, T. H. and Kroschel, J. 2002 Thaumatococcus daniellii (Benn) Benth. a natural sweetener from the rain forest zone in west Africa with potential for income generation in small scale farming. Master of Science inst. Plant Prod. Agro ecology of Tropic and subtropics; Hohenheim University, Stuttgart, Germany.

    Google Scholar 

  53. Parren, M.P.E., and N. Reitz deGraff. 1995. The quest for natural forest managemtn in Ghana. Cote d’Ivoire and Liberia. Pages 162-166 in Tropenbos Series 13. Veenman Drukkers, Wageningen. The Netherlands.

    Google Scholar 

  54. Enti, A. A. 1975. Distribution and ecology of Thaumatococcus daniellii (Benn.) Benth. Forestry Department, Accra, Ghana.

    Google Scholar 

  55. Most, B. M., R. J. Summerfield, and M. Boxall. 1978. Tropical plants with sweetening properties: Physiological and agronomic problems of protected cropping T. daniellii. Economic Botany 32, 321 – 325.

    Google Scholar 

  56. Gnagne, Y. M., D. Traore, A. M. Mangara, M. Sweetman, and A. A. Assiri, (2005). Biologic de la reproduction chez Thaumatococcus daniellii. CNRA, Bimbresso, Cote d’ Ivoire, Africa.

    Google Scholar 

  57. Rowe, Aaron (2006-12-07). “Super Lettuce Turns Scur Sweet”. Wired Magazine. Retrieved 2008-07-22.

    Google Scholar 

  58. Inglett, G. E.; Dowling, B.; Albrecht, J. J.; Hoglan, F. A. (1965). “Taste Modifiers, Taste-Modifying Properties of Miracle Fruit (Synsepalum dulcificum)”. Journal of Agricultural and Food Chemistry. 13 (3): 284-287.

    Google Scholar 

  59. Kurihara K and Beidler LM (1968). “Taste-modifying protein form miracle fruit”. Science. 161(3847): 1241-3

    Google Scholar 

  60. Brouwer, J. N., Van der wel, Franke A. and Henning, G. J., 1968 Miraculin, the sweetness inducing protein from miraculin fruit Nature (London), 220, 373.

    Google Scholar 

  61. Theeraslip S. and Kurihara Y (1988). “Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit” J. Biol. Chem. 263 (23): 11536-9. PMID 3403544

    Google Scholar 

  62. Theeraslip S, Hitotsuya H, Najajo S, Nakaya K, Nakamura Y, Kurihara Y (1989). “Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin” J. Biol. Chem. 264(12): 6655-9.

    Google Scholar 

  63. Sun HJ, Cui ML, Ma B, Ezura H (January 2006). “Functional expression of the taste-modifying protein, miraculin transgenic lettuce”. FEBS Lett. 580(2): 620-6. PMID 164063368

    Google Scholar 

  64. Matsuyama T, Satoh M, Nakata R, Aoyama T, Inoue H (April 2009). “Functional expression of miracullin modifying protein in Escherichia coli”. J. Biochem, 145 (4): 445-50.

    Google Scholar 

  65. Kazuhisa Koto; Riichiro Yoshida; Ayako Kikuzaki; Tadayoshi Hirai; Hirofumi Kuroda; Kyoko Hiwasa-Tanase; Ker Takane; Hiroshi Ezura; Tsuyoshi Mizoguchi (2010). “Molecular Breeding of Tomato Lines for Mass Production of Miraculin in a Plant Factory” J. Agric. Food Chem. (17): 9505-10. PMID 20695489

    Google Scholar 

  66. Hirai, T., Kurokawa, N., Dulita, N., Hiwasa, Tanase, K., Kota, K., Ezura, H (2011). The HSP terminator of Arabidopsiss thaliana induce extremely high level accumulation of miraculin potein in transgenic format. J. Agric Food chem. 59: 9942 – 9949.

    Google Scholar 

  67. Hiwasa-Tanase K, and Ezura H (2016) Molecular breeding to create optimized crops: from genetic manipulation to potential application in plant factory. Front Plant Sci. 7:539.

    Google Scholar 

  68. Giroux, EL, and Henkin, R. I. (1974) Purification and some properties of miraculin, a glycoprotein from synseplaum dulcificum which proper sweetness and blocks sourness. J Agric Food chem. 22, 594-601.

    Google Scholar 

  69. Kurihara, Y. and Terasaki, S. 1982. Isolation and chemical properties of multiple active principle from miracle fruit. Biochem. Biophys. Acta 719, 444 – 447.

    Google Scholar 

  70. KuriharaY (1992). “Characteristics of antisweet substances, sweet proteins, and sweetness-inducing proteins”. Crit Rev Food Sci. Nutr. 32(3): 231-52. PMID 1418601

    Google Scholar 

  71. UniProtKB/Swiss-Prot database entry P13087 (https://www.expasy.org/uniprot/P13087); Igeta, H; Tamura Y; Nakaya, K, Nakamura, Y. Kurihara Y. (1991) determination of disulfide array and subunit structure of taste modifying protein, miraculin. Biochin, Biohys Acta 1079: 303-307.

  72. Park, Madison (2009). “Miracle fruit turns over things sweet”. CNN. Retieved 2009-03-25.

    Google Scholar 

  73. Aaron Rowe (2006-12-07), “Super Lettuce Turns Sour Sweet” (https://www.wired.com/science/discoveries/news/2006/12/72251). Wired

  74. Inglett, G. E.; May, J. F. (1968). “Tropical plants with unusual taste properties”. Economic Botany 22(4): 326-331.

    Google Scholar 

  75. Oliver-Bever, Bep (1986). Medicinal plants in tropical West Africa. Combridge University Press. p. 266. ISBN 0 -521-26815 –X.

    Google Scholar 

  76. Munger, S. D. (2016) Mechanism of salty and sour taste. In chemosensory transduction – Science Direct. Elsevier, B. V.

    Google Scholar 

  77. Koizurni, A., A. Tsuchiya, K. – i. Nakajima, K. Ito, T. Terada, A. Shimizu-Ibuka, L. Briand, T. Asakura, T. Misaka, K. Abe (2011). “Human sweet taste receptor mediates acid-induced sweetness of miraculin”. Proceedings of the National Academy of Sciences 108 (40): 16819-16824.

    Google Scholar 

  78. Levin, Rachel B. (June 23, 2009). “Ancient Berry, Modern Miracle: The Sweet Benefits of Miracle Fruit” (http://www.thefoodpaper.com/features/health/miracle-fruit.html). The foodpaper.com. Archived(https://www.eb.archive.org/web/20090810172342/http://www.thefoodpaper.com/features/health/miracle-fruit.html) from the original on August 10, 2009, Retrieved 2009-08-20.

  79. Mangold, Tom (2008-04-28). “Sweet and sour tale of the miracle berry” (http://www.theweek.co.cs/27131/sweet-and-sour-tale-miracle-berry). The Week. Archived(https://web.archive.org/web/6204752/http://www.theweek.co.uk/politics/27131/sweet-and-sour-tale-miracle-berry) from the on 2011-11-16. Retrieved 2011-10-31.

  80. “The miracle berry” (http://news.bbc.co.uk/1/hi/magazine/7367548.stm). BBC. (2008-04-28).Arctps://web.archive.org/web/20080501143157/http://news.bbc.co.uk/1/hi/magazine/7367548.stm).

  81. Sun, Hyeon-Jin; Hiroshi Kataoka; Megumu Yano; Hiroshi Ezura (2007). “Genetially stable expression of functional miraculin, a new type of alternative sweetener, in transgenic tomato plants”. Plant Biotechnology Journal. 5(6): 768-777. ISSN 1467-7644.

    Google Scholar 

  82. Wiersema, John Harry and Leon, Blanca (1999). World Economic Plants: A Standard Reference. CRC Press. p. 661. ISBN 0-8493-2119-0.

    Google Scholar 

  83. Peter Hanelt, ed. (2001). Mansfeld’s encyclopedia of agricultural and horticultural crops 2. Springer. p. 1660. ISBN 3-540-41017-1.

    Google Scholar 

  84. Plant inventory. 58: Seeds and plants imported. United States Department of Agriculture. (1919). p. 42.

    Google Scholar 

  85. Balko, Radley (2007-02-08). “Free the Miracle Fruit”. Reason Magazine. Retrieved 2008-07-22.

    Google Scholar 

  86. Slater, Joanna (2007-03-30). “To Make Lemons Into Lemonade, Try ‘Miracle Fruit’” (https://www.m/aritcles/SB117522147769754148). Wall Street Journal. Retrieved 2008-05-28.

  87. Farrell, Patrick and Kassie Bracken (2008-05-28). “A Tiny Fruit That Tricks the Tongue”. The New York Time. Retrieved 2008-05-28.

    Google Scholar 

  88. James A. Duke, Judith L. DuCellier, ed. (1993). CRC handbook of alternative cash crops (https://books.google.com/books?id=-tg7R4hU8hkC). CRC Press. pp. 433-434. ISBN 0-8493-3620-1.

  89. Inglett, G. E., Dowling, B, Albrecht, J.J. and Hoglan F. A. (1965) Taste modifiers, taste modifying properties of miracle fruit (S. dulcificum). J. Agric and Food chem.13, 284-287.

    Google Scholar 

  90. Rowe, Aaron (2006-12-07). “Super Lettuce Turns, Sour Sweet” (https://www.wired.com/science/discoveries/news/2006/12/72251).

  91. Kew World Checklist of Selected Plant Families (http://apps.kew.org/wcsp/namedetail.do?name_id=30;69)

  92. Flora of China Vol. 24 Page 271 xian mao shu Curculigo Gaertner, Fruct. Sem. Pl. 1:1788. (http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=108705)

  93. Yamashita H, Theerasilp S, Aiuchi T, Nakaya K, Nakamura Y, Kurihara Y (September 1990). “Purification and complete amino acid sequence of a new type of sweet protein taste-modifying activity, curculin” (http://www.jbc.org/cgi/pmidlookup?view=long&pmid=2394746). J. Biol. Chem. 265(26):15770-5. PMID 2394746.

  94. Abe, K. Yamashita, S, Arai, S. and Kurihara, Y. (1992). Biochim Biophys. Acta, 1130:232-234.

    Google Scholar 

  95. Kurihara, Y and Nirasawa, S. (1997) Structure and activities of sweetness inducing substances (Miraculin, curculin, strogin) and heat stable sweet protein. Food and Food ingredients Journal of Japan 67 – 74.

    Google Scholar 

  96. Suzuki, M., Kurimoto, E., Nirasawa, S., Masuda, Y., Hori, K., Kurihara, Y., Shimba, N., Kawai, M., Suzuki, E., and Kato, K., (2004) Recombinant curculin heterodimer exhibits taste-modifying and sweet-tasting activities. FEBS Letters, 573 (1-3), 135-138.

    Google Scholar 

  97. Ishak, N. A., Ismail, M., Hamid, M., Ahmad, Z. and Ghafar, S.A.A (2013) Antidiabetic and Hypolipidemic Activites of Curculigo latifolia Furit: Root Extract in High Fat Fed Diet and Low Dose STZ Induced Diabetic Rats. Complementary and Alternative Medicine. Article ID 601838, 12 pages (https://doi.org/10.1155/2013/601838)

  98. Barre A, Van Damme EJ, Peumans WJ, Rouge P. (1997) Curculin, a sweet-tasting and taste-modifying protein, is a non-functional mannose-binding lectin. Plant Mob Biol. 1997; 33:691-8.

    Google Scholar 

  99. Harda S, Otani H, Maeda S, Kai Y, Kasai N, KMurihara Y. (1994) Crystallization and preliminary X-ray diffraction studies of curculin. A new type of sweet protein having taste-modifying action. J Mol Biol. 238:286-7.

    Google Scholar 

  100. Yamashita, H, Akabane, T. and Kurihara, Y. (1995). Activity and stability of a new sweet protein with taste modifying action, curculin. Chem. Senses 20(2) 239-43.

    Google Scholar 

  101. Firdaus, I. M., Psyquay, A. Nur. Ashikin, Ghizan, S. and Mazhan, I. (2010) “Anthesis and flower visitors in Curculigo latifolia Dryand,” Journal of Biology and Life Sciences, vol. 1, no., 1, pp. 13-15.

    Google Scholar 

  102. Chooi, O. H., (2006) Tumbuhan Liar, khasiat Ubatan Dan Kegunaan Lain, Utusan Publications and Distributors Sendirian Berhad, Kuala Lumpur, Malaysia.

    Google Scholar 

  103. Kant, R. (2005) “Sweet proteins – potential replacement for artificial low calories sweeteners,” Nutrition Journal, vol. 4, article 5.

    Google Scholar 

  104. Shimizu-Ibuka, A., Morita, Y., Terada, T., et al., (2006) “Crystal structure of neoculin: insights into its sweetness and taste-modifying activity,” Journal of Molecular Biology, vol. 359, [1], 148-158.

    Google Scholar 

  105. Chooi, Hean Ong (2004). Tumbuhan liar: khasiat ubatan & kegunaan lain. Utusan Publications. p. 24. ISBN 9676116300.

    Google Scholar 

  106. Buchman, R. A. (1999). Weavers garden growing plant for natural dyes and fibres. Dover Publication, New Yorks. P 11-43.

    Google Scholar 

  107. Assadi-Porter, F. M., Aceti, D.J. and Markley, J.L. (2000) Sweetness determinant sites of brazzein, a small, heat-stable, sweet-tasting protein. Arch Biochem Biophys., 376(2), 259-265.

    Google Scholar 

  108. Ming, D.; Hellekant, G. (1994). “Brazzein, a new high-potency thermostable sweet protein from Pentadiplandra brazzeana” (http://www.nutritionj.com/pubmed/7957951). FEBS Letters. 355 (1): 106-108.

  109. Quattrocchi, Umberto (1999). CRC World Dictionary of Plant Names: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology. 3. CRC Press. ISBN 0849326737.

    Google Scholar 

  110. Izawa, H., Ota, M., Kohmura, M., Ariyoshi Y. (1996) Synthesis and characterization of sweet protein brazzeein. Biopolymers 39, 95-101.

    Google Scholar 

  111. Jin, Z., Danilova V., Assadi-Porter, F. M., Aceti, D.J., Markley, J. L. and Hellekant, G. (2003) Critical regions for the sweetness of brazzein. FEBS Lett., 544, 33-37.

    Google Scholar 

  112. Assadi-Porter, F.M., Aceti, D.J., Cheng, H. and Markley, J. L. (2000) Efficient production of recombinant brazzein, a small, heat-stable, sweet-tasting protein of plant origin. Arch Biochem Biophys., 376 (2), 252-258.

    Google Scholar 

  113. Hellekant, G. and Danilova, V.(2005) Brazzein a small sweet protein: discovery and physiological overview. Chem. Senses., 1, 88-89.

    Google Scholar 

  114. Assadi-Porter, F. M., Patry, S. and Markley, J.L. (2008) Efficient and rapid protein expression and purification of small high disulfide containing sweet protein brazzein in E. coli. Protein Expr Purif., 58, 263-268.

    Google Scholar 

  115. Mansouri, F, Modarressi, MH. Abolhassani, M. and Parivar, K. (2011) Synthesis and production of sweet tasting protein in E. coli and purification by Amylose Resin. J. of Sci. Islamic Republic Iran : 22[2], 105-110.

    Google Scholar 

  116. Turner, J. (2016) “Scientist make a sweet discovery: lab synthesized brazzein” (http://www.foodive.com/news/scientist-make-a-sweetprotein-discovery-labysnthesized-brazzein/425710). Food Dive.

  117. Birch and G. Gerard (2000). “Ingredients Handbook – Sweeteners” (Ingredients Handbook Series). Leatherhead Food Research Association.

    Google Scholar 

  118. Izawa, H., M. Ota, M. Kohmura and Y. Ariyoshi (2000). “Synthesis and characterization of the sweet protein brazzein”. Biopolymers. 39:95-101.

    Google Scholar 

  119. Fawibe, O.O, ogunyale, O.G., Ajiboye, AA., and agboola, DA [2014]. Botanical and Protein sweeteners. J., Advance Lab. Res. Biol., V(iv), 169-187.

    Google Scholar 

  120. Halliday, J. (2008). “Natural sweetener race hots up with Nutrinova break-through”. www.foodnavigator.com.

  121. Assadi-Porter, F. M; Adildgaard, F; Blad, H; Cornilescu, C. C; Markley, J. L (2005). “Brazzein, a small, sweet protein: Effects of mutations on tis structure, dynamics and functional properties” (https://academic.oup.com/chemse/article/30/suppl_1/i90/270110/Brazzein-a-Small-Sweet-Protein-Effects-of). Chemical Senses, 30 Suppl 1:190-1. PMID 15738211

  122. Pfeiffer, J. F., R.B. Boulton, and A.C. Noble (2000). “Modeling the sweetness response using time-intensity data”. Food Quality and Preference 11(1): 129-138.

    Google Scholar 

  123. Hellekant, G. and V. Danilova (2005). “Brazzein a Small, Sweet Protein: Discovery and Physiological Overview”. Chemistry of Senses 30 88-90.

    Google Scholar 

  124. Faus, I. (2000). “Recent developments in the characterization and biotechnological production of sweet-tasting proteins”. Applied Microbiology Biotechnology. 53, 145-251.

    Google Scholar 

  125. Stein, J. (2002) UW. Modison professor makes a sweet discovery 10:57 PM 11/04/02 Jonson stein for state Journal (http://philosophy.wise.edu/steiffer/MH999FO6Folder/News/Stein%20-%20Brazzelin%20sweet%20success.doc).

  126. “Pentadiplandra brazzeana Baillon” (http://data.gbif.org/species/15330140). Global Biodiversity Information Facility.

  127. “Pentadiplandra brazzeana Bail.” (https://www.prota4u.org/database/protav8.asp?g=pe&p=pentadiplandra+brazzeana+Baill.). PROTA4U.

  128. Bayer; C.; Appel, O.; (2003). “Pentadiplandraceae”. In K. Kublitski; et al. Flowering Plants: Dicotyledons (https://link.springer.com/chapter/10.1007/978-3-662-07255-4_33). P.329.ISBN 978-3-642-07680-0.

  129. Byng, James W. (2014). The Flowering Plants Handbook:A practical guide to families and genera of the world. P. 317

    Google Scholar 

  130. SU, J.X., Wang, W, Wei, Z., Li, B., Chen, Z.D (2012) phylogenetic placement of two enigmatic genera. Borthwickia and Stixis based on molecular and pollern, data and diseription of new family of Brassicales, Borthwickiaceae. Taxon 61(3), 601-611.

    Google Scholar 

  131. Hladik, C.M.,; Hladik, A. (1988). “Sucres et “faux sucres” de la foret equatorial: evolution et perception des produits sucres par les populations forestieres d’ Afrique [Sugars and “false sugars” of the tropical forest: Evolution and perception of sweeter products by the forest people of Africa]” (http://www.forafri.org/_fiche.php?resource_id=1889). Journal d’ Agriculture Tropicale et de Botanique Appliquee (in French) 35: 51-66.

  132. Van der Wel, H., G. Larson, A. Hladik, C.M. Hladik, G. Hellekant and D. Glaser (1989). “Isolation and characterization of pentadin, the sweet principle of Pentadiplandra brazzeana Baillon”. Chemistry of Senses 14(1): 75-79.

    Google Scholar 

  133. Kant, R (2005) “Sweet proteins – Potential replacement for artificial low calorie sweeteners” m.nih.gov/pmc/articles/PMC549512. Nutrition Journal 4:5. https://www.ncbi.nim.nih.gov

  134. Nagarajan, R. (2017) Amaging super sweet natural proteins. A book three alternate natural sweeteners that could by safe for our health. O’Reilly Media. (https://www.oreilly.com/ideas/amazing-supersweet-natual-proteins.)

  135. Inglett, G.E., May, JF. (1969) Serendipity berries – Source of a new intense sweetener. J Food Sci. 34”408-411.

    Google Scholar 

  136. Morris JA, Martenson R, Deibler G, Cagan RH (1973). “Characterization of monellin, a protein that tastes sweet” (https://www.jbc.org/cgi/content/abstract/248/2/534). J. Biol. Chem. 248(2): 534-9.

  137. Ogata C, Hatada M, Tomlinson G, Shin WC, Kim SH (1987). “Crystal structure of the intensely sweet protein monellin”. Nature. 328 (6132): 739-42.

    Google Scholar 

  138. Kohmura, M., N. Nio and Y. Ariyoshi (1992). “Solid-phase synthesis of [AsnA22]-, [GlnA25]-, and [AsnA26] monellin, analogues of the sweet protein monellin”. Bioscience Biotechnology Biochemistry, 56(3):472.

    Google Scholar 

  139. Tancredi, T., A. Pastore, S. Salvadori, V. Esposito, and P.A. Temussi (2005). “Interaction of sweet proteins with their receptor. A conformational study of peptides corresponding to loops of brazzein, monellin and thaumatin”. European Journal of Biochemistry, 271(11): 2231-40.

    Google Scholar 

  140. Penarrubia, L. Kim, R, Giovannni, J., Kim, S.H., and Fischer, R.L. (1992) Bio-Technology 10(5), 561-564.

    Google Scholar 

  141. Reddy, C. S., Vijyyalakshmi, M, kaul, T Islam, T, Reddy, M. K (2105) Improving flavour and quality of tomato by expression of synthetic give encoding sweet protein monellin. Mol. Biotechnol. 57(5), 448 – 453.

    Google Scholar 

  142. Lee, S. Y., Lee, H.J. Change, J.M. Cho, J.W. Jung and W. Lee (1999). “Solution structure of a sweet protein single-chain monellin determined by nuclear magnetic resonance and dynamical simulated annealing calculation. Biochemistry, 38:2340-2346.

    Google Scholar 

  143. Kohmura, M., Mizukoshi, T., Nio, N., Suzuki, EI., and Ariyoshi, Y., (2002) Structure – taste relationships of the sweet protein monellin. Pure Appl. Chem., Vol. 74, 1235-1242. (http://www.org/publications/pac/2002/pdf/7407x1235.pdf)

  144. Zhang, XL., Ito, T., Kondo, K., Kobayashi, T., and Honda, H., (2002) Production of single chain recombinant monellin by high cell density culture of genetically engineered Candida utilis using limited feeding of sodium ions. Journal of Chemical Engineering of Japan 35: 654-659.

    Google Scholar 

  145. Liu, Q., Li, L., Liu, Y., Liu, T, Cai, C and Liu, B. (2016). Modification of the sweeteners and stability of sweet tasting protein Monellin by gene mutation and protein engineering. Biomed Res. International 2016, Article ID3647173. P-7.

    Google Scholar 

  146. Hobbs JR, Munger SD, and Conn GL (2007). “Monellin (MNEI) at 1.15 A resolution”. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63 (Pt 3): 162-7. PMC 2330190 (https://www.ncbi.nlm.nih.gov/gov/pmc/articles/PMC2330190). PMID 17329805.

  147. Gelardil, Robert C.; Nabors, Lyn O’Brien (1991). Alternative sweeteners. New York: M. Dekker. ISBN 0-8247-8475-8.

    Google Scholar 

  148. Kohmura, M, Nio, N., Ariyoshi, Y.; (1990) Compute amino acid sequence of sweet protein monellin Agric – Biochem. 54(9); 2219-2224.

    Google Scholar 

  149. Temussi, P. A., (2009) “Sweet, bitter and umami receptors: a complex relationship,” Terends in Biochemical Sciences, vol. 34, no. 6, pp. 296 – 302.

    Google Scholar 

  150. Temussi, P.A. (2002) “Why are sweet proteins sweet? Interaction of brazzein, monellin and thaumatin with the T1R2-T1R3 receptor” FEBS Letters; 526:1-3.

    Google Scholar 

  151. Uniprot KB/swiss – Prot database entry # Po2881.

    Google Scholar 

  152. Uniprot KB/swiss – Prot database entry # Po2882.

    Google Scholar 

  153. Kaul, T., Pandey, S and Reddy, S. 2017. Transgenic with monellin. https://www.researchgate.net/publication/319196670. transgenic monellin. Springer International publishing A.G.

  154. Lee, S. – B. Kim, Y., Lee, J., et al., (2012) “Stable expression of the sweet protein monellin variant MNEI in tobacco chloroplasts,” Plant Biotechnology Reports, vol. 6, no. 4, pp. 285-295.

    Google Scholar 

  155. Kohmura, M., Nio, N., and Ariyoshi, Y., (1991) “Solid-phase synthesis of crystalline monellin, a sweet protein,” Agricultural and Biological Chemistry, vol. 55, no. 2, pp. 539 – 545.

    Google Scholar 

  156. Kim, S-H., Kang, C –H., Kim, R., Cho, J. M., Lee, Y.-B., and Lee, T.-K., (1989) “Redesigning a sweet protein: increased stability and renaturability,” Protein Engineering, vol. 2, no. 8, pp. 571-575.

    Google Scholar 

  157. Sung, Y. – H. Shin, J. Chang, H.-J. Cho, J.M. and Lee, W. (2001) “Solution structure, backbone dynamics, and stability of a double mutant single-chain monellin. Structural origin of sweetness,” The Journal of Biological Chemistry, vol. 276, no. 22, pp. 19624-19630, 2001.

    Google Scholar 

  158. Privalov, P. L., (1979) “Stability of proteins: small globular proteins,” Advances in Protein Chemistry, vol. 33, pp. 167-241.

    Google Scholar 

  159. Bolen D.W. and Rose, G. D. (2008) “Structure and energetics of the hydrogen-bonded backbone in protein folding,” Annual Review of Biochemistry, vol. 77, pp. 339-362.

    Google Scholar 

  160. Templeton, C. M., Pour, S. O., Hobbs, J. R., Blanch, E.W., Munger, S.D., and Conn, G. L., (2011) “Reduced Sweetness of a monellin (MNEI) mutant results from increased protein flexibility and disruption of a distant poly-(L-proline) II helix,” Chemical Senses, vol. 36, no. 5, pp. 425-434.

    Google Scholar 

  161. Kohmura, M., Toshim, M, Nio, N, suzuki, and Ariyoshi, Y (2002) structure – taste relationship of the sweet protein Monellin. Pure Appl. Chem. 74(7), 1235-1242.

    Google Scholar 

  162. Walker, A. R. and sillans, R. (1961). Useful plants of Gabon. Encyclopidie Biologique 56. Edition Paul Lechevalier, Paris, France, 614 pp.

    Google Scholar 

  163. Irvine, F. R. (1961). Woody plants of Ghana with special reference to their uses. Oxford University Press, London. 578 pp.

    Google Scholar 

  164. Azlan, A., Nasir, N.N.M., Amom, Z and Ismail, A. (2009). Physical properties of skin, flesh, and kernel of Canarium odontophyllum fruit. Journal of Food, Agriculture & Environment 7 (3&4): 55-57

    Google Scholar 

  165. Abiodum, OA and Akinoso, R(2014) Physicochemical properties of serendipity berry (D. cummiii) fruit. J. Appl. Sci. Environ. Manage. 18(2), 218-221.

    Google Scholar 

  166. Hollow H.L.O. (1977) seed propagation of D. Cumminsii, source of an intense natural sweetener. Economic Botany, 31, 47-50.

    Google Scholar 

  167. Oselebe, O.H. and Ene-Obong, E.E. (2007). Organogenesis in Dioscoreophyllum cumminsii (Staps) Diels. Tropicultura, 25, 1, 37 – 43.

    Google Scholar 

  168. Oselebe, H. O. and Nwankiti, O.C. (2005). Cytology of root tips of Dioscoreophyllum cumminisii (Stapf) Diel. Journal of Agriculture, Food, Environment and Extension 4(1): 43 – 45.

    Google Scholar 

  169. Bever – Oliver, B. (1986) Medicinal Plants in Tropical West Africa. Combridge University Press, London, 296 pp.

    Google Scholar 

  170. African plants Database: Dioscorephyllum volkensii (http://www.ville-ge.ch/cjb/bd/africa/details.php?langue=an&id=177451)

  171. This, Herve (2006). Molecular Gastronomy: Exploring the Science of Flavor. Columbia University Press. ISBN 978-0-231-13312-8.

    Google Scholar 

  172. Hu, Z; He M. (1983). “Studies on mabinlin, a sweet protein from the seeds of Caparis masaikai levl. L extaction, purification and certain characteristics”. Acta Botan. Yunnan. (5): 207-212.

    Google Scholar 

  173. Liu X, Maeda S, Hu Z, Aiuchi T, Nakaya L, Kurihara Y (1993). “Purification, complete amino acid sequence and structural characterization of the heat-stable sweet protein, mabinlin, II”. Eur J biochem. 211 (1 – 2): 281 – 7. PMID 8425538.

    Google Scholar 

  174. Nirasawa S, Nishino T, Katahira M, Uesugi s, Hu Z, Kurihara Y (1994). “Structures of heat-stable and unstable homologues of the sweet protein mabilin. The difference in the heat stability is due to replacement of a single amino acid residue”. Eur J Biochem. 223 (3): 989-95. PMID 8055976

    Google Scholar 

  175. Nirawawa S, Liu X, Nishino T, Kurihara Y (1993). “Disulfide bridge structure of the heat-stable sweet protein mabinlin II”. Biochim Biophys Acta. 1202 (2): 277-80. PMID 8399391.

    Google Scholar 

  176. Kohmura M, Ariyoshi Y (1998). “Chemical synthesis and characterization of the sweet protein mabinlin II”. Biopolymers. 46(4): 215 – 23. PMID 9715665.

    Google Scholar 

  177. Xiong, L. W. and Sun, S. (1996) Molecular cloning and transgenic expression of the sweet protein mabinlin in potato tubers. Plant physiology, 111, 147.

    Google Scholar 

  178. Guan RJ, Zheng JM, HuZ, Wang DC (2000). “Crystallization and preliminary X-ray analysis of the thermostable sweet protein mabinlin II”. Acta Crystallogr D. 56 (Pt 7): 918-9. PMID 10930844

    Google Scholar 

  179. Li, DF, Jaing, P., Zhu, D.Y., Hu, Y, Max, M. and Wang D.C., (2008) Crystal structure of Mobinlin II: a novel structural type of sweet proteins and the main structural basis for its sweetness. J. Struct Bio. 162(1), 50 – 62.

    Google Scholar 

  180. GU, W. Xia, Yao, J., Fu, S., Guo, J. and Hu, W. (2015) Recombinant expression of sweet plant protein mobinlin II in Escherichia coli and food. Grade Lactococcus lactis worlds J. Microbist Biotechnol 31(4), 557 – 567.

    Google Scholar 

  181. Kurihara Y (1992) “Characteristics of anti sweet substances, sweet proteins, and sweetness-inducing proteins.” Crit Rev Food Sci. 32 (3): 231-52. PMID 1418601.

    Google Scholar 

  182. Kurihara Y, Nirasawa S (1997). “Structures and activities of Sweetness-inducing substances (miraculin, curculin, strogin) and heat-stable sweet protein, mabilin”. Foods and Food ingredients JOuranl of Japan (174): 67-74.

    Google Scholar 

  183. UniProtkB/Swiss-Port database entry for 2SS1_CAPMA (P80351). (http://www.expasy.org/uniprot/P80351)

  184. UniProtkB/Swiss-Port database entry for 2SS2_CAPMA (P30233). (http://www.expasy.org/uniprot/P30233)

  185. UniProtkB/Swiss-Port database entry for 2SS3_CAPMA (P80352). (http://www.expasy.org/uniprot/P80352)

  186. UniProtkB/Swiss-Port database entry for 2SS4_CAPMA (P80353). (http://www.expasy.org/uniprot/P80353)

  187. US 6051758 (https://worldwinde.espacenet.com/textdoc?DB=EPODOC&IDX=US6051758). S Sun, L Xiong, Z Hu and H Chen. Recombinant Sweet protein Mabinlin.

  188. Nirasawa, S., T. Nishino, M. Katahira, S. Uesugi, Z. Hu (2001). “Structures of heat-stable and unstable homologues of the sweet protein mabinlin”. European Jouranl of Biochemistry, 223(3): 989-95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dwivedi, R.S. (2022). Super Sweet and Taste Modifier Proteins. In: Alternative Sweet and Supersweet Principles . Springer, Singapore. https://doi.org/10.1007/978-981-33-6350-2_14

Download citation

Publish with us

Policies and ethics