Skip to main content

Concluding Remarks

  • Chapter
  • First Online:
Mechanism of Functional Expression of F1-ATPase

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

  • 108 Accesses

Abstract

AcrB, a homotrimer possessing a triangular-prism shape, is the principal part of the AcrA–AcrB–TolC complex which extrudes a variety of drugs from a cell. AcrB comprises three protomers which are in access (A), binding (B), and extrusion (E) states along a drug-transport cycle, respectively. According to a suggestion made in the literature, the three protomers exhibit a sequential conformational change expressed as (A, B, E)→(B, E, A)→(E, A, B)→(A, B, E). This change, which is referred to as the “functional rotation”, is achieved with the use of the so-called proton motive force yielding repeated proton binding to and dissociation from AcrB. In this chapter, we point out that F1-ATPase considered in Chap. 3 and AcrB share physically the same rotation mechanism. Whenever the structure of one of the three portions forming a protein complex is perturbed in the direction that a solvent-entropy loss is caused, the structures of the other two portions are reorganized to make up for the loss. We also comment on the rotation mechanism of V1-ATPase which we intend to explore in the next stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C (2000) Nature 405:914

    Article  CAS  Google Scholar 

  2. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A (2006) Nature 443:173

    Article  CAS  Google Scholar 

  3. Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM (2006) Science 313:1295

    Article  CAS  Google Scholar 

  4. Sennhauser G, Amstutz P, Briand C, Storchenegger O, Grütter M (2007) PLOS Biol. 5:e7(0106)

    Google Scholar 

  5. Yamane T, Murakami S, Ikeguchi M (2013) Biochemistry 52:7648

    Article  CAS  Google Scholar 

  6. Yasuda S, Kajiwara Y, Takamuku Y, Suzuki N, Murata T, Kinoshita M (2016) J Phys Chem B 120:3833

    Article  CAS  Google Scholar 

  7. Yasuda S, Kajiwara Y, Toyoda Y, Morimoto K, Suno R, Iwata S, Kobayashi T, Murata T, Kinoshita M (2017) J Phys Chem B 121:6341

    Article  CAS  Google Scholar 

  8. Yasuda S, Hayashi T, Kajiwara Y, Murata T, Kinoshita M (2019) J Chem Phys 150:055101

    Article  CAS  Google Scholar 

  9. Yasuda S, Kazama K, Akiyama T, Kinoshita M, Murata T (2020) J Mol Liq 301:112403

    Article  CAS  Google Scholar 

  10. Murata T, Yasuda S, Hayashi T, Kinoshita M (2020) Biophys Rev 12:323

    Article  CAS  Google Scholar 

  11. Mishima H, Oshima H, Yasuda S, Kinoshita M (2015) J Phys Chem B 119:3423

    Article  CAS  Google Scholar 

  12. Kinoshita M (2016) Mechanism of functional expression of the molecular machines. Springer Briefs in Molecular Science, Springer, ISBN: 978-981-10-1484-0

    Google Scholar 

  13. Amono K, Kinoshita M (2010) Chem Phys Lett 488:1

    Article  CAS  Google Scholar 

  14. Mishima H, Oshima H, Yasuda S, Amano K, Kinoshita M (2013) Chem Phys Lett 561–562:159

    Article  CAS  Google Scholar 

  15. Mishima H, Oshima H, Yasuda S, Amano K, Kinoshita M (2013) J Chem Phys 139:205102

    Article  CAS  Google Scholar 

  16. Voet D, Voet JG (2004) Biochemistry, 3rd edn. Wiley, New York

    Google Scholar 

  17. Murata T, Yamato I, Kakinuma Y, Leslie AGW, Walker JE (2005) Science 308:654

    Article  CAS  Google Scholar 

  18. Murata T, Yamato I, Kakinuma Y, Shirouzu M, Walker JE, Yokoyama S, Iwata S (2008) Proc Natl Acad Sci USA 105:8607

    Article  Google Scholar 

  19. Mizutani K, Yamamoto M, Suzuki K, Yamato I, Kakinuma Y, Shirouzu M, Walker JE, Yokoyama S, Iwata S, Murata T (2011) Proc Natl Acad Sci USA 108:13474

    Article  Google Scholar 

  20. Saijo S, Arai S, Hossain KMM, Suzuki K, Yamato I, Kakinuma Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Murata T (2011) Proc Natl Acad Sci USA 108:19955

    Article  Google Scholar 

  21. Arai S, Saijo S, Suzuki K, Mizutani K, Kakinuma Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Iwata S, Yamato I, Murata T (2013) Nature 493:703

    Article  CAS  Google Scholar 

  22. Iida T, Minagawa Y, Ueno H, Kawai F, Murata T, Iino R (2019) J Biol Chem 294:17017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kinoshita, M. (2021). Concluding Remarks. In: Mechanism of Functional Expression of F1-ATPase. SpringerBriefs in Molecular Science. Springer, Singapore. https://doi.org/10.1007/978-981-33-6232-1_4

Download citation

Publish with us

Policies and ethics