Skip to main content

Starch-Based Nanostructured Materials in Edible Food Packaging

  • Chapter
  • First Online:
Nanotechnology in Edible Food Packaging

Abstract

The chapter addresses the prospective of starch nanostructured materials in developing biocomposite-based edible food packaging in the form of edible films and coatings for improved quality of food products. The starch nanomaterials have a strong reinforcing effect, which makes it a promising nanomaterial in edible and non-edible green packaging. Starch bionanomaterials have several attractive features to be used in edible packaging such as biobased source, biocompatible, non-toxic, thickeners, rheology enhancer, film-forming property, water binding capacity, emulsion stabilizing property, foam forming capacity, and others, which make it a promising candidate for food systems. Additionally, the native starch granules consisting of semi-crystalline and amorphous nature are used to develop starch nanocrystals via acid hydrolysis (such as sulfuric acid) by removing the amorphous part. The starch nanocrystal has higher surface area than native starch granules, providing improved packaging property when used as a reinforcing agents. However, the fabrication of starch bionanomaterials via an industrially viable approach is challenging due to the acid waste generation and longer processing time. The limitation of starch includes hydrophilicity, highly prone to retrograde, thermally sensitive, low shear resistance, and others. The strategical modification of starches is obtained via several routes such as cross-linking, chemical modification, physical modification, enzymatic modification, fabrication of biocomposites, etc., for improved functionality. The chapter also details the various aspects of starch and derivatives for developing biocomposites and blends for edible food packaging applications including barrier property, mechanical property, thermal property, color property, and others for prolonging the quality of food products during storage life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Gutiérrez TJ, Morales NJ, Pérez E, Tapia MS, Famá L (2015) Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Packag Shelf Life 3:1–8. https://doi.org/10.1016/j.fpsl.2014.09.002

    Article  Google Scholar 

  2. Das M, Mandal B, Katiyar V (2020) Environment‐friendly synthesis of sustainable chitosan‐based nonisocyanate polyurethane: a biobased polymeric film. J Appl Polym Sci. 137(36). https://doi.org/10.1002/app.49050

  3. Maran JP, Sivakumar V, Sridhar R, Immanuel VP (2013) Development of model for mechanical properties of tapioca starch based edible films. Ind Crops Prod 42:159–168. https://doi.org/10.1016/j.indcrop.2012.05.011

    Article  CAS  Google Scholar 

  4. Cazón P, Velazquez G, Ramírez JA, Vázquez M (2017) Polysaccharide-based films and coatings for food packaging: a review. Food Hydrocoll 68:136–148. https://doi.org/10.1016/j.foodhyd.2016.09.009

    Article  CAS  Google Scholar 

  5. Das M, Mandal B, Katiyar V (2020) Sustainable routes for synthesis of poly (ε-Caprolactone): prospects in chemical industries. Adv Sustain Polym, 21–33. https://doi.org/10.1007/978-981-15-1251-3_2

  6. Maran JP, Sivakumar V, Sridhar R, Thirugnanasambandham K (2013) Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydr Polym 92(2):1335–1347. https://doi.org/10.1016/j.carbpol.2012.09.069

    Article  CAS  Google Scholar 

  7. Rompothi O, Pradipasena P, Tananuwong K, Somwangthanaroj A, Janjarasskul T (2017) Development of non-water soluble, ductile mung bean starch based edible film with oxygen barrier and heat sealability. Carbohydr Polym 157:748–756. https://doi.org/10.1016/j.carbpol.2016.09.007

    Article  CAS  Google Scholar 

  8. Ali A, Xie F, Yu L, Liu H, Meng L, Khalid S, Chen L (2018) Preparation and characterization of starch-based composite films reinfoced by polysaccharide-based crystals. Compos Part B-Eng 133:122–128. https://doi.org/10.1016/j.compositesb.2017.09.017

    Article  CAS  Google Scholar 

  9. Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22(11):604–610. https://doi.org/10.1016/j.tifs.2011.01.002

    Article  CAS  Google Scholar 

  10. Pathakoti K, Manubolu M, Hwang HM (2017) Nanostructures: current uses and future applications in food science. J Food Drug Anal 25(2):245–253. https://doi.org/10.1016/j.jfda.2017.02.004

    Article  CAS  Google Scholar 

  11. Karakelle B, Kian-Pour N, Toker OS, Palabiyik I (2020) Effect of process conditions and amylose/amylopectin ratio on the pasting behavior of maize starch: a modelling approach. J Cereal Sci 94:102998. https://doi.org/10.1016/j.jcs.2020.102998

    Article  CAS  Google Scholar 

  12. Le Corre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromol 11(5):1139–1153. https://doi.org/10.1021/bm901428y

    Article  CAS  Google Scholar 

  13. Lemos PV, Barbosa LS, Ramos IG, Coelho RE, Druzian JI (2019) Characterization of amylose and amylopectin fractions separated from potato, banana, corn, and cassava starches. Int J Biol Macromol 132:32–42. https://doi.org/10.1016/j.ijbiomac.2019.03.086

    Article  CAS  Google Scholar 

  14. Wang S, Wang J, Yu J, Wang S (2014) A comparative study of annealing of waxy, normal and high-amylose maize starches: the role of amylose molecules. Food Chem 164:332–338. https://doi.org/10.1016/j.foodchem.2014.05.055

    Article  CAS  Google Scholar 

  15. Vamadevan V, Bertoft E (2020) Observations on the impact of amylopectin and amylose structure on the swelling of starch granules. Food Hydrocoll 103:105663. https://doi.org/10.1016/j.foodhyd.2020.105663

    Article  CAS  Google Scholar 

  16. He W, Wei C (2017) Progress in C-type starches from different plant sources. Food Hydrocoll 73:162–175. https://doi.org/10.1016/j.foodhyd.2017.07.003

    Article  CAS  Google Scholar 

  17. Cornejo-Ramírez YI, Martínez-Cruz O, Del Toro-Sánchez CL, Wong-Corral FJ, Borboa-Flores J, Cinco-Moroyoqui FJ (2018) The structural characteristics of starches and their functional properties. CyTA-J Food 16(1):1003–1017. https://doi.org/10.1080/19476337.2018.1518343

    Article  CAS  Google Scholar 

  18. Zhu J, Zhang S, Zhang B, Qiao D, Pu H, Liu S, Li L (2017) Structural features and thermal property of propionylated starches with different amylose/amylopectin ratio. Int J Biol Macromol 97:123–130. https://doi.org/10.1016/j.ijbiomac.2017.01.033

    Article  CAS  Google Scholar 

  19. Amit SK, Uddin MM, Rahman R, Islam SR, Khan MS (2017) A review on mechanisms and commercial aspects of food preservation and processing. Agric Food Secur 6(1):51. https://doi.org/10.1186/s40066-017-0130-8

    Article  Google Scholar 

  20. Costa MJ, Maciel LC, Teixeira JA, Vicente AA, Cerqueira MA (2018) Use of edible films and coatings in cheese preservation: opportunities and challenges. Food Res Int 107:84–92. https://doi.org/10.1016/j.foodres.2018.02.013

    Article  CAS  Google Scholar 

  21. Industrial Starch Market by type (native, starch derivatives & sweeteners), source (corn, wheat, cassava, potato), application (food, feed, paper making & corrugation, pharmaceutical), form (dry, liquid), and region—global forecast to 2022. Accessed: June 2020 https://www.marketsandmarkets.com/Market-Reports/industrial-starch-market-104251261.html

  22. Industrial starch market: global industry analysis and forecast 2017–2025. Accessed June 2020 https://www.persistencemarketresearch.com/market-research/industrial-starch-market.asp

  23. González-Cruz L, Montañez-Soto JL, Conde-Barajas E, Negrete MDLLX, Flores-Morales A, Bernardino-Nicanor A (2018) Spectroscopic, calorimetric and structural analyses of the effects of hydrothermal treatment of rice beans and the extraction solvent on starch characteristics. Int J Biol Macromol 107:965–972. https://doi.org/10.1016/j.ijbiomac.2017.09.074

    Article  CAS  Google Scholar 

  24. Bento JAC, Ferreira KC, de Oliveira ALM, Lião LM, Caliari M, Júnior MSS (2019) Extraction, characterization and technological properties of white garland-lily starch. Int J Biol Macromol 135:422–428. https://doi.org/10.1016/j.ijbiomac.2019.05.141

    Article  CAS  Google Scholar 

  25. da Silva LR, de Carvalho CWP, Velasco JI, Fakhouri FM (2020) Extraction and characterization of starches from pigmented rices. Int J Biol Macromol 156:485–493. https://doi.org/10.1016/j.ijbiomac.2020.04.034

    Article  CAS  Google Scholar 

  26. Díaz A, Dini C, Viña SZ, García MA (2016) Starch extraction process coupled to protein recovery from leguminous tuberous roots (Pachyrhizus ahipa). Carbohydr Polym 152:231–240. https://doi.org/10.1016/j.carbpol.2016.07.004

    Article  CAS  Google Scholar 

  27. Li Y, Wu Z, Wan N, Wang X, Yang M (2019) Extraction of high-amylose starch from Radix Puerariae using high-intensity low-frequency ultrasound. Ultrason Sonochem 59:104710. https://doi.org/10.1016/j.ultsonch.2019.104710

    Article  CAS  Google Scholar 

  28. Hernández-Carmona F, Morales-Matos Y, Lambis-Miranda H, Pasqualino J (2017) Starch extraction potential from plantain peel wastes. J Environ Chem Eng 5(5):4980–4985. https://doi.org/10.1016/j.jece.2017.09.034

    Article  CAS  Google Scholar 

  29. Silva EMS, Peres AEC, Silva AC, Leal MCDM, Liao LM, de Almeida VO (2019) Sorghum starch as depressant in mineral flotation: part 1–extraction and characterization. J Mater Res Technol 8(1):396–402. https://doi.org/10.1016/j.jmrt.2018.04.001

    Article  CAS  Google Scholar 

  30. Hao Y, Chen Y, Li Q, Gao Q (2018) Preparation of starch nanocrystals through enzymatic pretreatment from waxy potato starch. Carbohydr Polym 184:171–177. https://doi.org/10.1016/j.carbpol.2017.12.042

    Article  CAS  Google Scholar 

  31. Dai L, Zhang J, Cheng F (2019) Succeeded starch nanocrystals preparation combining heat-moisture treatment with acid hydrolysis. Food Chem 278:350–356. https://doi.org/10.1016/j.foodchem.2018.11.018

    Article  CAS  Google Scholar 

  32. Zhou L, Fang D, Wang M, Li M, Li Y, Ji N, Dai L, Lu H, Xiong L, Sun Q (2020) Preparation and characterization of waxy maize starch nanocrystals with a high yield via dry-heated oxalic acid hydrolysis. Food Chem 318:126479. https://doi.org/10.1016/j.foodchem.2020.126479

    Article  CAS  Google Scholar 

  33. Velásquez-Castillo LE, Leite MA, Ditchfield C, do Amaral Sobral PJ, Moraes ICF (2020) Quinoa starch nanocrystals production by acid hydrolysis: kinetics and properties. Int J Biol Macromol 143:93–101. https://doi.org/10.1016/j.ijbiomac.2019.12.011

    Article  CAS  Google Scholar 

  34. LeCorre D, Vahanian E, Dufresne A, Bras J (2012) Enzymatic pretreatment for preparing starch nanocrystals. Biomacromol 13(1):132–137. https://doi.org/10.1021/bm201333k

    Article  CAS  Google Scholar 

  35. do Prado Cordoba L, Ribeiro LS, Rosa LS, Lacerda LG, Schnitzler E (2016) Effect of enzymatic treatments on thermal, rheological and structural properties of pinhão starch. Thermochim Acta 642:45–51. https://doi.org/10.1016/j.tca.2016.08.020

    Article  CAS  Google Scholar 

  36. Kim JY, Park DJ, Lim ST (2008) Fragmentation of waxy rice starch granules by enzymatic hydrolysis. Cereal Chem 85(2):182–187. https://doi.org/10.1094/CCHEM-85-2-0182

    Article  CAS  Google Scholar 

  37. Le Corre D, Angellier-Coussy H (2014) Preparation and application of starch nanoparticles for nanocomposites: a review. React Funct Polym 85:97–120. https://doi.org/10.1016/j.reactfunctpolym.2014.09.020

    Article  CAS  Google Scholar 

  38. Ma X, Jian R, Chang PR, Yu J (2008) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromol 9(11):3314–3320. https://doi.org/10.1021/bm800987c

    Article  CAS  Google Scholar 

  39. Hebeish A, El-Rafie MH, El-Sheikh MA, El-Naggar ME (2014) Ultra-fine characteristics of starch nanoparticles prepared using native starch with and without surfactant. J Inorg Organomet Polym Mater 24(3):515–524. https://doi.org/10.1007/s10904-013-0004-x

    Article  CAS  Google Scholar 

  40. Ren L, Jiang M, Wang L, Zhou J, Tong J (2012) A method for improving dispersion of starch nanocrystals in water through crosslinking modification with sodium hexametaphosphate. Carbohydr Polym 87(2):1874–1876. https://doi.org/10.1016/j.carbpol.2011.08.070

    Article  CAS  Google Scholar 

  41. Alkanawati MS, Wurm FR, Thérien-Aubin H, Landfester K (2018) Large-scale preparation of polymer nanocarriers by high-pressure microfluidization. Macromol Mater Eng 303(1):1700505. https://doi.org/10.1002/mame.201700505

    Article  CAS  Google Scholar 

  42. Liu D, Wu Q, Chen H, Chang PR (2009) Transitional properties of starch colloid with particle size reduction from micro-to nanometer. J Colloid Interface Sci 339(1):117–124. https://doi.org/10.1016/j.jcis.2009.07.035

    Article  CAS  Google Scholar 

  43. Marques AP, Pirraco RP, Reis RL (2008) Biocompatibility of starch-based polymers. In: Natural-based polymers for biomedical applications. Woodhead Publishing, pp 738–760. https://doi.org/10.1533/9781845694814.6.738

  44. Marques AP, Reis RL, Hunt JA (2002) The biocompatibility of novel starch-based polymers and composites: in vitro studies. Biomaterials 23:1471–1478. https://doi.org/10.1016/S0142-9612(01)00272-1

    Article  CAS  Google Scholar 

  45. Mendes SC, Reis RL, Bovell YP, Cunha AM, van Blitterswijk CA, de Bruijn JD (2001) Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Biomaterials 22:2057–2064. https://doi.org/10.1016/S0142-9612(00)00395-1

    Article  CAS  Google Scholar 

  46. Wu C, Wang Z, Zhi Z, Jiang T, Zhang J, Wang S (2011) Development of biodegradable porous starch foam for improving oral delivery of poorly water soluble drugs. Int J Pharm 403:162–169. https://doi.org/10.1016/j.ijpharm.2010.09.040

    Article  CAS  Google Scholar 

  47. Zhao R, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch-and protein-based bio-nanocomposites. J Mater Sci 43:3058–3071. https://doi.org/10.1007/s10853-007-2434-8

    Article  CAS  Google Scholar 

  48. Wootton M, Manatsathit A (1983) The influence of molar substitution on the water binding capacity of hydroxypropyl maize starches. Starch Stärke 35:92–94. https://doi.org/10.1002/star.19830350306

    Article  CAS  Google Scholar 

  49. Hoover R, Sosulski F (1986) Effect of cross-linking on functional properties of legume starches. Starch Stärke 38:149–155. https://doi.org/10.1002/star.19860380502

    Article  CAS  Google Scholar 

  50. Godbillot L, Dole P, Joly C, Rogé B, Mathlouthi M (2006) Analysis of water binding in starch plasticized films. Food Chem 96:380–386. https://doi.org/10.1016/j.foodchem.2005.02.054

    Article  CAS  Google Scholar 

  51. Shah U, Naqash F, Gani A, Masoodi FA (2016) Art and science behind modified starch edible films and coatings: a review. Compr Rev Food Sci Food Saf 15:568–580. https://doi.org/10.1111/1541-4337.12197

    Article  CAS  Google Scholar 

  52. Xie F, Pollet E, Halley PJ, Averous L (2013) Starch-based nano-biocomposites. Progress Polym Sci 38:1590–1628. https://doi.org/10.1016/j.progpolymsci.2013.05.002

    Article  CAS  Google Scholar 

  53. Duan B, Sun P, Wang X, Yang C (2011) Preparation and properties of starch nanocrystals/carboxymethyl chitosan nanocomposite films. Starch Stärke 63:528–535. https://doi.org/10.1002/star.201000136

    Article  CAS  Google Scholar 

  54. Alizadeh Z, Yousefi S, Ahari H (2019) Optimization of bioactive preservative coatings of starch nanocrystal and ultrasonic extract of sour lemon peel on chicken fillets. Int J Food Microbiol 300:31–42. https://doi.org/10.1016/j.ijfoodmicro.2019.04.002

    Article  CAS  Google Scholar 

  55. Kristo E, Biliaderis CG (2007) Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym 68:146–158. https://doi.org/10.1016/j.carbpol.2006.07.021

    Article  CAS  Google Scholar 

  56. Dai L, Zhang J, Cheng F (2020) Cross-linked starch-based edible coating reinforced by starch nanocrystals and its preservation effect on graded Huangguan pears. Food Chem 311:125891. https://doi.org/10.1016/j.foodchem.2019.125891

    Article  CAS  Google Scholar 

  57. Tao F, Shi C, Cui Y (2018) Preparation and physicochemistry properties of smart edible films based on gelatin–starch nanoparticles. J Sci Food Agric 98:5470–5478. https://doi.org/10.1002/jsfa.9091

    Article  CAS  Google Scholar 

  58. Aboul-Anean HED (2018) Using quinoa protein and starch nano particles to produce edible films. J Nut Health Food Eng 8:297–308

    Google Scholar 

  59. Nieto-Suaza L, Acevedo-Guevara L, Sánchez LT, Pinzón MI, Villa CC (2019) Characterization of Aloe vera-banana starch composite films reinforced with curcumin-loaded starch nanoparticles. Food Struct 22:100131. https://doi.org/10.1016/j.foostr.2019.100131

    Article  Google Scholar 

  60. Roy K, Thory R, Sinhmar A, Pathera AK, Nain V (2020) Development and characterization of nano starch-based composite films from mung bean (Vigna radiata). Int J Biol Macromol 144:242–251. https://doi.org/10.1016/j.ijbiomac.2019.12.113

    Article  CAS  Google Scholar 

  61. Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Thermoplastic starch—waxy maize starch nanocrystals nanocomposites. Biomacromol 7:531–539. https://doi.org/10.1021/bm050797s

    Article  CAS  Google Scholar 

  62. Shi AM, Wang LJ, Li D, Adhikari B (2013) Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties. Carbohydr Polym 96:593–601. https://doi.org/10.1016/j.carbpol.2012.12.042

    Article  CAS  Google Scholar 

  63. Shi AM, Wang LJ, Li D, Adhikari B (2013) Characterization of starch films containing starch nanoparticles. part 2: viscoelasticity and creep properties. Carbohydr Polym 96:602–610. https://doi.org/10.1016/j.carbpol.2012.10.064

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Katiyar .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, T., Das, M., Katiyar, V. (2021). Starch-Based Nanostructured Materials in Edible Food Packaging. In: Nanotechnology in Edible Food Packaging. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6169-0_5

Download citation

Publish with us

Policies and ethics