Skip to main content

Epigenetics: A Missing Link Between Early Life Stress and Depression

  • Chapter
  • First Online:
Major Depressive Disorder

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1305))

Abstract

Exposure to early life stress (ELS) represents a major risk factor for the development of psychiatric disorders, including depression. The susceptibility associated with ELS may result from persistent changes in gene transcription, which can occur through epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNA expression. Animal models and reports in humans described that negative stimuli can alter the neurodevelopment of an individual, affecting their behavior and cognitive development. It is currently hypothesized that levels of environmental adversity in this early developmental period are able to shape the experience-dependent maturation of stress-regulating pathways leading to long-lasting alterations in stress responsivity during adulthood. Here, we review key findings from animal and clinical studies examining the effects of prenatal and postnatal environment in shaping development of the neuroendocrine regulation of stress and the role of epigenetic mechanisms in the predisposition of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saavedra K, Molina-Marquez AM, Saavedra N, Zambrano T, Salazar LA (2016) Epigenetic modifications of major depressive disorder. Int J Mol Sci 17(8):1279

    Article  PubMed Central  CAS  Google Scholar 

  2. Chapman DP, Whitfield CL, Felitti VJ, Dube SR, Edwards VJ, Anda RF (2004) Adverse childhood experiences and the risk of depressive disorders in adulthood. J Affect Disord 82(2):217–225

    Article  PubMed  Google Scholar 

  3. Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM, Edwards V et al (2019) Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: the adverse childhood experiences (ACE) study. Am J Prev Med 56(6):774–786

    Article  PubMed  Google Scholar 

  4. Widom CS, DuMont K, Czaja SJ (2007) A prospective investigation of major depressive disorder and comorbidity in abused and neglected children grown up. Arch Gen Psychiatry 64(1):49–56

    Article  PubMed  Google Scholar 

  5. Liu RT, Jager-Hyman S, Wagner CA, Alloy LB, Gibb BE (2012) Number of childhood abuse perpetrators and the occurrence of depressive episodes in adulthood. Child Abuse Negl 36(4):323–332

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mandelli L, Petrelli C, Serretti A (2015) The role of specific early trauma in adult depression: A meta-analysis of published literature. Childhood trauma and adult depression. Eur Psychiatry 30(6):665–680

    Article  CAS  PubMed  Google Scholar 

  7. Repetti RL, Taylor SE, Seeman TE (2002) Risky families: family social environments and the mental and physical health of offspring. Psychol Bull 128(2):330–366

    Article  PubMed  Google Scholar 

  8. Waddington CH (1968) Towards a theoretical biology. Nature 218(5141):525–527

    Article  CAS  PubMed  Google Scholar 

  9. Riggs ADM, RA, Russo VEA (1996) Epigenetic mechanisms of gene regulation. Russo VEA, Martienssen, R.A., Riggs, A.D., editor. NY, USA

    Google Scholar 

  10. Lux V (2018) Epigenetic programming effects of early life stress: A dual-activation hypothesis. Curr Genomics 19(8):638–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068

    Article  CAS  PubMed  Google Scholar 

  12. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38

    Article  CAS  PubMed  Google Scholar 

  13. Zhang T, Cooper S, Brockdorff N (2015) The interplay of histone modifications – writers that read. EMBO Rep 16(11):1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Talbert PB, Henikoff S (2017) Histone variants on the move: substrates for chromatin dynamics. Nat Rev Mol Cell Biol 18(2):115–126

    Article  CAS  PubMed  Google Scholar 

  15. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  16. Mendell JT (2005) MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4(9):1179–1184

    Article  CAS  PubMed  Google Scholar 

  17. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874

    Article  CAS  PubMed  Google Scholar 

  18. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610

    Article  CAS  PubMed  Google Scholar 

  19. Smallwood SA, Kelsey G (2012) De novo DNA methylation: a germ cell perspective. Trends Genet 28(1):33–42

    Article  CAS  PubMed  Google Scholar 

  20. Dean W (2014) DNA methylation and demethylation: a pathway to gametogenesis and development. Mol Reprod Dev 81(2):113–125

    Article  CAS  PubMed  Google Scholar 

  21. Newman L, Judd F, Olsson CA, Castle D, Bousman C, Sheehan P et al (2016) Early origins of mental disorder – risk factors in the perinatal and infant period. BMC Psychiatry 16:270

    Article  PubMed  PubMed Central  Google Scholar 

  22. Glynn LM, Howland MA, Sandman CA, Davis EP, Phelan M, Baram TZ et al (2018) Prenatal maternal mood patterns predict child temperament and adolescent mental health. J Affect Disord 228:83–90

    Article  PubMed  Google Scholar 

  23. O’Donnell KJ, Glover V, Barker ED, O’Connor TG (2014) The persisting effect of maternal mood in pregnancy on childhood psychopathology. Dev Psychopathol 26(2):393–403

    Article  PubMed  Google Scholar 

  24. Winsper C, Wolke D, Lereya T (2015) Prospective associations between prenatal adversities and borderline personality disorder at 11–12 years. Psychol Med 45(5):1025–1037

    Article  CAS  PubMed  Google Scholar 

  25. Reynolds RM, Labad J, Buss C, Ghaemmaghami P, Raikkonen K (2013) Transmitting biological effects of stress in utero: implications for mother and offspring. Psychoneuroendocrinology 38(9):1843–1849

    Article  CAS  PubMed  Google Scholar 

  26. Palma-Gudiel H, Cordova-Palomera A, Eixarch E, Deuschle M, Fananas L (2015) Maternal psychosocial stress during pregnancy alters the epigenetic signature of the glucocorticoid receptor gene promoter in their offspring: a meta-analysis. Epigenetics 10(10):893–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alikhani-Koopaei R, Fouladkou F, Frey FJ, Frey BM (2004) Epigenetic regulation of 11 beta-hydroxysteroid dehydrogenase type 2 expression. J Clin Invest 114(8):1146–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM (2008) Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics 3(2):97–106

    Article  PubMed  Google Scholar 

  29. Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA (2015) Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics 10(5):408–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7(8):847–854

    Article  CAS  PubMed  Google Scholar 

  31. Hompes T, Izzi B, Gellens E, Morreels M, Fieuws S, Pexsters A et al (2013) Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. J Psychiatr Res 47(7):880–891

    Article  PubMed  Google Scholar 

  32. Welberg LA, Thrivikraman KV, Plotsky PM (2005) Chronic maternal stress inhibits the capacity to up-regulate placental 11beta-hydroxysteroid dehydrogenase type 2 activity. J Endocrinol 186(3):R7–R12

    Article  CAS  PubMed  Google Scholar 

  33. Jensen Pena C, Monk C, Champagne FA (2012) Epigenetic effects of prenatal stress on 11beta-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLoS One 7(6):e39791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yehuda R, Schmeidler J, Wainberg M, Binder-Brynes K, Duvdevani T (1998) Vulnerability to posttraumatic stress disorder in adult offspring of Holocaust survivors. Am J Psychiatry 155(9):1163–1171

    Article  CAS  PubMed  Google Scholar 

  35. Champagne FA, Francis DD, Mar A, Meaney MJ (2003) Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol Behav 79(3):359–371

    Article  CAS  PubMed  Google Scholar 

  36. Champagne FA (2008) Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol 29(3):386–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chapman DSK (2001) The impact of maternal intergenerational risk factors on adverse developmental outcomes. Dev Rev 21:305–325

    Article  Google Scholar 

  38. Dowdney L, Skuse D, Rutter M, Quinton D, Mrazek D (1985) The nature and qualities of parenting provided by women raised in institutions. J Child Psychol Psychiatry 26(4):599–625

    Article  CAS  PubMed  Google Scholar 

  39. Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A et al (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277(5332):1659–1662

    Article  CAS  PubMed  Google Scholar 

  40. Champagne FA, Weaver IC, Diorio J, Sharma S, Meaney MJ (2003) Natural variations in maternal care are associated with estrogen receptor alpha expression and estrogen sensitivity in the medial preoptic area. Endocrinology 144(11):4720–4724

    Article  CAS  PubMed  Google Scholar 

  41. Champagne FA, Weaver IC, Diorio J, Dymov S, Szyf M, Meaney MJ (2006) Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology 147(6):2909–2915

    Article  CAS  PubMed  Google Scholar 

  42. Young LJ, Wang Z, Donaldson R, Rissman EF (1998) Estrogen receptor alpha is essential for induction of oxytocin receptor by estrogen. Neuroreport 9(5):933–936

    Article  CAS  PubMed  Google Scholar 

  43. Parker G (1983) Parental ‘affectionless control’ as an antecedent to adult depression. A risk factor delineated. Arch Gen Psychiatry 40(9):956–960

    Article  CAS  PubMed  Google Scholar 

  44. Allen L, Dwivedi Y (2020) MicroRNA mediators of early life stress vulnerability to depression and suicidal behavior. Mol Psychiatry 25(2):308–320

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Y, Wang Y, Wang L, Bai M, Zhang X, Zhu X (2015) Dopamine receptor D2 and associated microRNAs are involved in stress susceptibility and resistance to Escitalopram treatment. Int J Neuropsychopharmacol 18(8):pyv025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Huang W, Li MD (2009) Differential allelic expression of dopamine D1 receptor gene (DRD1) is modulated by microRNA miR-504. Biol Psychiatry 65(8):702–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fox ME, Chandra R, Menken MS, Larkin EJ, Nam H, Engeln M et al (2018) Dendritic remodeling of D1 neurons by RhoA/Rho-kinase mediates depression-like behavior. Mol Psychiatry 25(5):1022–1034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Bai M, Zhu X, Zhang Y, Zhang S, Zhang L, Xue L et al (2012) Abnormal hippocampal BDNF and miR-16 expression is associated with depression-like behaviors induced by stress during early life. PLoS One 7(10):e46921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K et al (2010) Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci 30(45):15007–15018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang Y, Du L, Bai Y, Han B, He C, Gong L et al (2018) CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry 25:1175–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wanet A, Tacheny A, Arnould T, Renard P (2012) miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 40(11):4742–4753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sonntag KC, Woo TU, Krichevsky AM (2012) Converging miRNA functions in diverse brain disorders: a case for miR-124 and miR-126. Exp Neurol 235(2):427–435

    Article  CAS  PubMed  Google Scholar 

  53. Xu J, Wang R, Liu Y, Liu D, Jiang H, Pan F (2017) FKBP5 and specific microRNAs via glucocorticoid receptor in the basolateral amygdala involved in the susceptibility to depressive disorder in early adolescent stressed rats. J Psychiatr Res 95:102–113

    Article  PubMed  Google Scholar 

  54. Bahi A, Chandrasekar V, Dreyer JL (2014) Selective lentiviral-mediated suppression of microRNA124a in the hippocampus evokes antidepressants-like effects in rats. Psychoneuroendocrinology 46:78–87

    Article  CAS  PubMed  Google Scholar 

  55. Mazzelli M, Maj C, Mariani N, Mora C, Begni V, Pariante C et al (2020) The long-term effects of early life stress on the modulation of miR-19 levels. Front Psych 11:389

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the ANID Millennium Science Initiative—Millennium Institute for Research on Depression and Personality, Grant No. IS130005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Salazar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saavedra, K., Salazar, L.A. (2021). Epigenetics: A Missing Link Between Early Life Stress and Depression. In: Kim, YK. (eds) Major Depressive Disorder. Advances in Experimental Medicine and Biology, vol 1305. Springer, Singapore. https://doi.org/10.1007/978-981-33-6044-0_8

Download citation

Publish with us

Policies and ethics