Skip to main content

The Role of Neurotrophic Factors in Pathophysiology of Major Depressive Disorder

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1305))

Abstract

According to the neurotrophic hypothesis of major depressive disorder (MDD), impairment in growth factor signaling might be associated with the pathology of this illness. Current evidence demonstrates that impaired neuroplasticity induced by alterations of neurotrophic growth factors and related signaling pathways may be underlying to the pathophysiology of MDD. Brain-derived neurotrophic factor (BDNF) is the most studied neurotrophic factor involved in the neurobiology of MDD. Nevertheless, developing evidence has implicated other neurotrophic factors, including neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), glial cell-derived neurotrophic factor (GDNF), and fibroblast growth factor (FGF) in the MDD pathophysiology. Here, we summarize the current literature on the involvement of neurotrophic factors and related signaling pathways in the pathophysiology of MDD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Duman RS, Aghajanian GK, Sanacora G, Krystal JH (2016) Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med 22(3):238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Levy MJ, Boulle F, Steinbusch HW, van den Hove DL, Kenis G, Lanfumey L (2018) Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology 235(8):2195–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walker ER, McGee RE, Druss BG (2015) Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiat 72(4):334–341

    Article  Google Scholar 

  4. Wittchen H-U, Jacobi F, Rehm J, Gustavsson A, Svensson M, Jönsson B et al (2011) The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21(9):655–679

    Article  CAS  PubMed  Google Scholar 

  5. Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338(6103):68–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127

    Article  CAS  PubMed  Google Scholar 

  7. Lang UE, Borgwardt S (2013) Molecular mechanisms of depression: perspectives on new treatment strategies. Cell Physiol Biochem 31(6):761–777

    Article  CAS  PubMed  Google Scholar 

  8. Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24(1):677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang C, Salton S (2013) The role of neurotrophins in major depressive disorder. Transl Neurosci 4(1):46–58

    Article  PubMed  Google Scholar 

  10. L Neto F, Borges G, Torres-Sanchez S, A Mico J, Berrocoso E (2011) Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 9(4):530–552

    Article  Google Scholar 

  11. Castrén E, Võikar V, Rantamäki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7(1):18–21

    Article  PubMed  CAS  Google Scholar 

  12. Sharma AN, Soares JC, Carvalho AF, Quevedo J (2016) Role of trophic factors GDNF, IGF-1 and VEGF in major depressive disorder: a comprehensive review of human studies. J Affect Disord 197:9–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. D’Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4(3):183–194

    Article  PubMed  Google Scholar 

  14. Franklin TB, Perrot-Sinal TS (2006) Sex and ovarian steroids modulate brain-derived neurotrophic factor (BDNF) protein levels in rat hippocampus under stressful and non-stressful conditions. Psychoneuroendocrinology 31(1):38–48

    Article  CAS  PubMed  Google Scholar 

  15. Heine VM, Zareno J, Maslam S, Joëls M, Lucassen PJ (2005) Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci 21(5):1304–1314

    Article  PubMed  Google Scholar 

  16. Newton SS, Duman RS (2004) Regulation of neurogenesis and angiogenesis in depression. Curr Neurovasc Res 1(3):261–267

    Article  CAS  PubMed  Google Scholar 

  17. Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33(1):88

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt HD, Banasr M, Duman RS (2008) Future antidepressant targets: neurotrophic factors and related signaling cascades. Drug Discov Today 5(3):151–156

    Google Scholar 

  19. Barbacid M (1994) The Trk family of neurotrophin receptors. J Neurobiol 25(11):1386–1403

    Article  CAS  PubMed  Google Scholar 

  20. Barbacid M (1995) Neurotrophic factors and their receptors. Curr Opin Cell Biol 7(2):148–155

    Article  CAS  PubMed  Google Scholar 

  21. Chao MV (1994) The p75 neurotrophin receptor. J Neurobiol 25(11):1373–1385

    Article  CAS  PubMed  Google Scholar 

  22. Airaksinen MS, Titievsky A, Saarma M (1999) GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci 13(5):313–325

    Article  CAS  PubMed  Google Scholar 

  23. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc B 361(1473):1545–1564

    Article  CAS  Google Scholar 

  24. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600):1911–1912

    Article  CAS  PubMed  Google Scholar 

  26. Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9(2):180–186

    Article  CAS  PubMed  Google Scholar 

  27. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410(6824):37

    Article  CAS  PubMed  Google Scholar 

  28. Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11(2):211–218

    Article  CAS  PubMed  Google Scholar 

  29. Pearson G, Robinson F, Beers Gibson T, Xu B-E, Karandikar M, Berman K et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183

    CAS  PubMed  Google Scholar 

  30. Besset V, Scott RP, Ibáñez CF (2000) Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-ret receptor tyrosine kinase. J Biol Chem 275(50):39159–39166

    Article  CAS  PubMed  Google Scholar 

  31. Coulpier M, Ibáñez CF (2004) Retrograde propagation of GDNF-mediated signals in sympathetic neurons. Mol Cell Neurosci 27(2):132–139

    Article  CAS  PubMed  Google Scholar 

  32. Ichihara M, Murakumo Y, Takahashi MRET (2004) neuroendocrine tumors. Cancer Lett 204(2):197–211

    Article  CAS  PubMed  Google Scholar 

  33. Kodama Y, Asai N, Kawai K, Jijiwa M, Murakumo Y, Ichihara M et al (2005) The RET proto-oncogene: a molecular therapeutic target in thyroid cancer. Cancer Sci 96(3):143–148

    Article  CAS  PubMed  Google Scholar 

  34. Trupp M, Rydén M, Jörnvall H, Funakoshi H, Timmusk T, Arenas E et al (1995) Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130(1):137–148

    Article  CAS  PubMed  Google Scholar 

  35. Turner CA, Akil H, Watson SJ, Evans SJ (2006) The fibroblast growth factor system and mood disorders. Biol Psychiatry 59(12):1128–1135

    Article  CAS  PubMed  Google Scholar 

  36. Turner CA, Watson SJ, Akil H (2012) The fibroblast growth factor family: neuromodulation of affective behavior. Neuron 76(1):160–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ et al (2011) Harnessing neuroplasticity for clinical applications. Brain 134(6):1591–1609

    Article  PubMed  PubMed Central  Google Scholar 

  38. Castrén E, Hen R (2013) Neuronal plasticity and antidepressant actions. Trends Neurosci 36(5):259–267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Woo NH, Teng HK, Siao C-J, Chiaruttini C, Pang PT, Milner TA et al (2005) Activation of p75 NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8(8):1069

    Article  CAS  PubMed  Google Scholar 

  40. Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Mem 10(2):86–98

    Article  PubMed  PubMed Central  Google Scholar 

  41. M-m P (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2(1):24

    Article  CAS  Google Scholar 

  42. Dwivedi Y, Rizavi HS, Zhang H, Mondal AC, Roberts RC, Conley RR et al (2009) Neurotrophin receptor activation and expression in human postmortem brain: effect of suicide. Biol Psychiatry 65(4):319–328

    Article  CAS  PubMed  Google Scholar 

  43. Zagrebelsky M, Holz A, Dechant G, Barde Y-A, Bonhoeffer T, Korte M (2005) The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J Neurosci 25(43):9989–9999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rösch H, Schweigreiter R, Bonhoeffer T, Barde Y-A, Korte M (2005) The neurotrophin receptor p75NTR modulates long-term depression and regulates the expression of AMPA receptor subunits in the hippocampus. Proc Natl Acad Sci 102(20):7362–7367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Whitfield J, Neame SJ, Paquet L, Bernard O, Ham J (2001) Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron 29(3):629–643

    Article  CAS  PubMed  Google Scholar 

  46. Yoon SO, Casaccia-Bonnefil P, Carter B, Chao MV (1998) Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J Neurosci 18(9):3273–3281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1(7):602

    Article  CAS  PubMed  Google Scholar 

  48. Di Cristo G, Berardi N, Cancedda L, Pizzorusso T, Putignano E, Ratto GM et al (2001) Requirement of ERK activation for visual cortical plasticity. Science 292(5525):2337–2340

    Article  PubMed  Google Scholar 

  49. Giovannini MG (2006) The role of the extracellular signal-regulated kinase pathway in memory encoding. Rev Neurosci 17(6):619–634

    Article  CAS  PubMed  Google Scholar 

  50. Huang Y-Y, Martin KC, Kandel ER (2000) Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J Neurosci 20(17):6317–6325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Malenka RC, Bear MFLTP (2004) LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  CAS  PubMed  Google Scholar 

  52. Lu B, Nagappan G, Lu YBDNF, plasticity s (2014) Cognitive function, and dysfunction. Springer, Neurotrophic factors, pp 223–250

    Google Scholar 

  53. Conner JM, Franks KM, Titterness AK, Russell K, Merrill DA, Christie BR et al (2009) NGF is essential for hippocampal plasticity and learning. J Neurosci 29(35):10883–10889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Frielingsdorf H, Simpson DR, Thal LJ, Pizzo DP (2007) Nerve growth factor promotes survival of new neurons in the adult hippocampus. Neurobiol Dis 26(1):47–55

    Article  CAS  PubMed  Google Scholar 

  55. Zhu W, Cheng S, Xu G, Ma M, Zhou Z, Liu D et al (2011) Intranasal nerve growth factor enhances striatal neurogenesis in adult rats with focal cerebral ischemia. Drug Deliv 18(5):338–343

    Article  CAS  PubMed  Google Scholar 

  56. Lin P-Y, Tseng P-T (2015) Decreased glial cell line-derived neurotrophic factor levels in patients with depression: a meta-analytic study. J Psychiatr Res 63:20–27

    Article  PubMed  Google Scholar 

  57. Naumenko VS, Bazovkina DV, Semenova AA, Tsybko AS, Il’chibaeva TV, Kondaurova EM et al (2013) Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders. J Neurosci Res 91(12):1628–1638

    Article  CAS  PubMed  Google Scholar 

  58. Woodbury ME, Ikezu T (2014) Fibroblast growth factor-2 signaling in neurogenesis and neurodegeneration. J NeuroImmune Pharmacol 9(2):92–101

    Article  PubMed  Google Scholar 

  59. Di Liberto V, Mudo G, Fuxe K, Belluardo N (2014) Interactions between cholinergic and fibroblast growth factor receptors in brain trophism and plasticity. Curr Protein Pept Sci 15(7):691–702

    Article  PubMed  CAS  Google Scholar 

  60. Jin K, Sun Y, Xie L, Batteur S, Mao XO, Smelick C et al (2003) Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell 2(3):175–183

    Article  CAS  PubMed  Google Scholar 

  61. Mudo G, Bonomo A, Di Liberto V, Frinchi M, Fuxe K, Belluardo N (2009) The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain. J Neural Transm 116(8):995–1005

    Article  CAS  PubMed  Google Scholar 

  62. Rai KS, Hattiangady B, Shetty AK (2007) Enhanced production and dendritic growth of new dentate granule cells in the middle-aged hippocampus following intracerebroventricular FGF-2 infusions. Eur J Neurosci 26(7):1765–1779

    Article  PubMed  Google Scholar 

  63. Werner S, Unsicker K (2011) von Bohlen und Halbach O. fibroblast growth factor-2 deficiency causes defects in adult hippocampal neurogenesis, which are not rescued by exogenous fibroblast growth factor-2. J Neurosci Res 89(10):1605–1617

    Article  CAS  PubMed  Google Scholar 

  64. Iga J-i, Ueno S-i, Yamauchi K, Numata S, Tayoshi-Shibuya S, Kinouchi S et al (2007) Gene expression and association analysis of vascular endothelial growth factor in major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 31(3):658–663

    Article  CAS  Google Scholar 

  65. Carmeliet P (2013) de Almodovar CR. VEGF ligands and receptors: implications in neurodevelopment and neurodegeneration. Cell Mol Life Sci 70(10):1763–1778

    Article  CAS  PubMed  Google Scholar 

  66. Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci 99(18):11946–11950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun Y, Jin K, Childs JT, Xie L, Mao XO, Greenberg DA (2006) Vascular endothelial growth factor-B (VEGFB) stimulates neurogenesis: evidence from knockout mice and growth factor administration. Dev Biol 289(2):329–335

    Article  CAS  PubMed  Google Scholar 

  68. Russo V, Gluckman P, Feldman E, Werther G (2005) The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 26(7):916–943

    Article  CAS  PubMed  Google Scholar 

  69. Szczęsny E, Ślusarczyk J, Głombik K, Budziszewska B, Kubera M, Lasoń W et al (2013) Possible contribution of IGF-1 to depressive disorder. Pharmacol Rep 65(6):1622–1631

    Article  PubMed  Google Scholar 

  70. Cao L, Jiao X, Zuzga DS, Liu Y, Fong DM, Young D et al (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36(8):827

    Article  CAS  PubMed  Google Scholar 

  71. Nakagawa S, Kim J-E, Lee R, Malberg JE, Chen J, Steffen C et al (2002) Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 22(9):3673–3682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sairanen M, Lucas G, Ernfors P, Castrén M, Castrén E (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25(5):1089–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455(7215):894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kempton MJ, Salvador Z, Munafò MR, Geddes JR, Simmons A, Frangou S et al (2011) Structural neuroimaging studies in major depressive disorder: meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 68(7):675–690

    Article  PubMed  Google Scholar 

  75. Goldwater DS, Pavlides C, Hunter RG, Bloss EB, Hof PR, McEwen BS et al (2009) Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience 164(2):798–808

    Article  CAS  PubMed  Google Scholar 

  76. Kim JJ, Diamond DM (2002) The stressed hippocampus, synaptic plasticity and lost memories. Nat Rev Neurosci 3(6):453

    Article  CAS  PubMed  Google Scholar 

  77. Miller BR, Hen R (2015) The current state of the neurogenic theory of depression and anxiety. Curr Opin Neurobiol 30:51–58

    Article  CAS  PubMed  Google Scholar 

  78. Pittenger C (2013) Disorders of memory and plasticity in psychiatric disease. Dialogues Clin Neurosci 15(4):455

    Article  PubMed  PubMed Central  Google Scholar 

  79. Xu L, Anwyl R, Rowan MJ (1997) Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 387(6632):497

    Article  CAS  PubMed  Google Scholar 

  80. Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA et al (2010) A negative regulator of MAP kinase causes depressive behavior. Nat Med 16(11):1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Licht T, Goshen I, Avital A, Kreisel T, Zubedat S, Eavri R et al (2011) Reversible modulations of neuronal plasticity by VEGF. Proc Natl Acad Sci 108(12):5081–5086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yoshii A, Constantine-Paton M (2010) Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev Neurobiol 70(5):304–322

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hoshaw BA, Malberg JE, Lucki I (2005) Central administration of IGF-I and BDNF leads to long-lasting antidepressant-like effects. Brain Res 1037(1–2):204–208

    Article  CAS  PubMed  Google Scholar 

  84. Aronica E, Gorter JA, Ramkema M, Redeker S, Özbas-Gerçeker F, Van Vliet EA et al (2004) Expression and cellular distribution of multidrug resistance–related proteins in the hippocampus of patients with mesial temporal lobe epilepsy. Epilepsia 45(5):441–451

    Article  CAS  PubMed  Google Scholar 

  85. Counts SE, Nadeem M, Wuu J, Ginsberg SD, Saragovi HU, Mufson EJ (2004) Reduction of cortical TrkA but not p75NTR protein in early-stage Alzheimer’s disease. Annal Neurol 56(4):520–531

    Article  CAS  PubMed  Google Scholar 

  86. Hock C, Heese K, Müller-Spahn F, Hulette C, Rosenberg C, Otten U (1998) Decreased trkA neurotrophin receptor expression in the parietal cortex of patients with Alzheimer’s disease. Neurosci Lett 241(2–3):151–154

    Article  CAS  PubMed  Google Scholar 

  87. Lee K-F, Davies AM (1994) Jaenisch R. p75-deficient embryonic dorsal root sensory and neonatal sympathetic neurons display a decreased sensitivity to NGF. Development 120(4):1027–1033

    Article  CAS  PubMed  Google Scholar 

  88. Rydén M, Hempstead B, Ibáñez CF (1997) Differential modulation of neuron survival during development by nerve growth factor binding to the p75 neurotrophin receptor. J Biol Chem 272(26):16322–16328

    Article  PubMed  Google Scholar 

  89. Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383(6602):716

    Article  CAS  PubMed  Google Scholar 

  90. Friedman WJ (2000) Neurotrophins induce death of hippocampal neurons via the p75 receptor. J Neurosci 20(17):6340–6346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Blendy JA (2006) The role of CREB in depression and antidepressant treatment. Biol Psychiatry 59(12):1144–1150

    Article  CAS  PubMed  Google Scholar 

  92. Rantamäki T, Hendolin P, Kankaanpää A, Mijatovic J, Piepponen P, Domenici E et al (2007) Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cγ signaling pathways in mouse brain. Neuropsychopharmacology 32(10):2152

    Article  PubMed  CAS  Google Scholar 

  93. Tardito D, Perez J, Tiraboschi E, Musazzi L, Racagni G, Popoli M (2006) Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview. Pharmacol Rev 58(1):115–134

    Article  CAS  PubMed  Google Scholar 

  94. Brunoni AR, Lopes M, Fregni F (2008) A systematic review and meta-analysis of clinical studies on major depression and BDNF levels: implications for the role of neuroplasticity in depression. Int J Neuropsychopharmacol 11(8):1169–1180

    Article  CAS  PubMed  Google Scholar 

  95. Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64(6):527–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramaugé M, Courtin F et al (2004) MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 24(2):207–216

    Article  CAS  PubMed  Google Scholar 

  97. Hisaoka K, Nishida A, Koda T, Miyata M, Zensho H, Morinobu S et al (2001) Antidepressant drug treatments induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. J Neurochem 79(1):25–34

    Article  CAS  PubMed  Google Scholar 

  98. Nowacka MM, Obuchowicz E (2012) Vascular endothelial growth factor (VEGF) and its role in the central nervous system: a new element in the neurotrophic hypothesis of antidepressant drug action. Neuropeptides 46(1):1–10

    Article  CAS  PubMed  Google Scholar 

  99. Rantamäki T, Vesa L, Antila H, Di Lieto A, Tammela P, Schmitt A et al (2011) Antidepressant drugs transactivate TrkB neurotrophin receptors in the adult rodent brain independently of BDNF and monoamine transporter blockade. PLoS One 6(6):e20567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Tsai S-J (2007) TrkB partial agonists: potential treatment strategy for major depression. Med Hypotheses 68(3):674–676

    Article  CAS  PubMed  Google Scholar 

  101. Scarr E, Millan MJ, Bahn S, Bertolino A, Turck CW, Kapur S et al (2015) Biomarkers for psychiatry: the journey from fantasy to fact, a report of the 2013 CINP think tank. Int J Neuropsychopharmacol 18(10):pyv042

    Article  PubMed  PubMed Central  Google Scholar 

  102. Carvalho AF, Köhler CA, McIntyre RS, Knöchel C, Brunoni AR, Thase ME et al (2015) Peripheral vascular endothelial growth factor as a novel depression biomarker: a meta-analysis. Psychoneuroendocrinology 62:18–26

    Article  CAS  PubMed  Google Scholar 

  103. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60(8):804–815

    Article  CAS  PubMed  Google Scholar 

  104. Pandey GN, Ren X, Rizavi HS, Conley RR, Roberts RC, Dwivedi Y (2008) Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. Int J Neuropsychopharmacol 11(8):1047–1061

    Article  CAS  PubMed  Google Scholar 

  105. Youssef MM, Underwood MD, Huang Y-Y, Hsiung S-C, Liu Y, Simpson NR et al (2018) Association of BDNF Val66Met polymorphism and brain BDNF levels with major depression and suicide. Int J Neuropsychopharmacol 21(6):528–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Guilloux J-P, Douillard-Guilloux G, Kota R, Wang X, Gardier A, Martinowich K et al (2012) Molecular evidence for BDNF-and GABA-related dysfunctions in the amygdala of female subjects with major depression. Mol Psychiatry 17(11):1130

    Article  CAS  PubMed  Google Scholar 

  107. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry J-M (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109(2):143–148

    Article  CAS  PubMed  Google Scholar 

  108. Lee H-Y, Kim Y-K (2008) Plasma brain-derived neurotrophic factor as a peripheral marker for the action mechanism of antidepressants. Neuropsychobiology 57(4):194–199

    Article  CAS  PubMed  Google Scholar 

  109. Bocchio-Chiavetto L, Bagnardi V, Zanardini R, Molteni R, Gabriela Nielsen M, Placentino A et al (2010) Serum and plasma BDNF levels in major depression: a replication study and meta-analyses. World J Biol Psychiatry 11(6):763–773

    Article  PubMed  Google Scholar 

  110. Brunoni AR, Baeken C, Machado-Vieira R, Gattaz WF, Vanderhasselt M-A (2014) BDNF blood levels after electroconvulsive therapy in patients with mood disorders: a systematic review and meta-analysis. World J Biol Psychiatry 15(5):411–418

    Article  PubMed  Google Scholar 

  111. Ventimiglia R, Mather PE, Jones BE, Lindsay RM (1995) The NeurotroDhins BDNF, NT-3 and NT-4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. Eur J Neurosci 7(2):213–222

    Article  CAS  PubMed  Google Scholar 

  112. Otsuki K, Uchida S, Watanuki T, Wakabayashi Y, Fujimoto M, Matsubara T et al (2008) Altered expression of neurotrophic factors in patients with major depression. J Psychiatr Res 42(14):1145–1153

    Article  PubMed  Google Scholar 

  113. Hock C, Heese K, Müller-Spahn F, Huber P, Riesen W, Nitsch R et al (2000) Increased cerebrospinal fluid levels of neurotrophin 3 (NT-3) in elderly patients with major depression. Mol Psychiatry 5(5):510

    Article  CAS  PubMed  Google Scholar 

  114. Walz JC, Andreazza AC, Frey BN, Cacilhas AA, Ceresér KM, Cunha AB et al (2007) Serum neurotrophin-3 is increased during manic and depressive episodes in bipolar disorder. Neurosci Lett 415(1):87–89

    Article  CAS  PubMed  Google Scholar 

  115. Diniz BS, Teixeira AL, Miranda AS, Talib LL, Gattaz WF, Forlenza OV (2012) Circulating glial-derived neurotrophic factor is reduced in late-life depression. J Psychiatr Res 46(1):135–139

    Article  PubMed  Google Scholar 

  116. Takebayashi M, Hisaoka K, Nishida A, Tsuchioka M, Miyoshi I, Kozuru T et al (2006) Decreased levels of whole blood glial cell line-derived neurotrophic factor (GDNF) in remitted patients with mood disorders. Int J Neuropsychopharmacol 9(5):607–612

    Article  CAS  PubMed  Google Scholar 

  117. Michel TM, Frangou S, Camara S, Thiemeyer D, Jecel J, Tatschner T et al (2008) Altered glial cell line-derived neurotrophic factor (GDNF) concentrations in the brain of patients with depressive disorder: a comparative post-mortem study. Eur Psychiatry 23(6):413–420

    Article  PubMed  Google Scholar 

  118. Clark-Raymond A, Halaris A (2013) VEGF and depression: a comprehensive assessment of clinical data. J Psychiatr Res 47(8):1080–1087

    Article  PubMed  Google Scholar 

  119. Fournier NM, Duman RS (2012) Role of vascular endothelial growth factor in adult hippocampal neurogenesis: implications for the pathophysiology and treatment of depression. Behav Brain Res 227(2):440–449

    Article  CAS  PubMed  Google Scholar 

  120. Kranaster L, Blennow K, Zetterberg H, Sartorius A (2019) Reduced vascular endothelial growth factor levels in the cerebrospinal fluid in patients with treatment resistant major depression and the effects of electroconvulsive therapy—A pilot study. J Affect Disord 253:449–453

    Article  CAS  PubMed  Google Scholar 

  121. Viikki M, Anttila S, Kampman O, Illi A, Huuhka M, Setälä-Soikkeli E et al (2010) Vascular endothelial growth factor (VEGF) polymorphism is associated with treatment resistant depression. Neurosci Lett 477(3):105–108

    Article  CAS  PubMed  Google Scholar 

  122. Gałecki P, Gałecka E, Maes M, Orzechowska A, Berent D, Talarowska M et al (2013) Vascular endothelial growth factor gene (VEGFA) polymorphisms may serve as prognostic factors for recurrent depressive disorder development. Prog Neuro-Psychopharmacol Biol Psychiatry 45:117–124

    Article  CAS  Google Scholar 

  123. Elfving B, Buttenschøn HN, Foldager L, Poulsen PH, Grynderup MB, Hansen ÅM et al (2014) Depression and BMI influences the serum vascular endothelial growth factor level. Int J Neuropsychopharmacol 17(9):1409–1417

    Article  CAS  PubMed  Google Scholar 

  124. Takebayashi M, Hashimoto R, Hisaoka K, Tsuchioka M, Kunugi H (2010) Plasma levels of vascular endothelial growth factor and fibroblast growth factor 2 in patients with major depressive disorders. J Neural Transm 117(9):1119–1122

    Article  CAS  PubMed  Google Scholar 

  125. Ventriglia M, Zanardini R, Pedrini L, Placentino A, Nielsen MG, Gennarelli M et al (2009) VEGF serum levels in depressed patients during SSRI antidepressant treatment. Prog Neuro-Psychopharmacol Biol Psychiatry 33(1):146–149

    Article  CAS  Google Scholar 

  126. Evans S, Choudary PV, Neal C, Li J, Vawter M, Tomita H et al (2004) Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci 101(43):15506–15511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M (2006) Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull 70(3):221–227

    Article  CAS  PubMed  Google Scholar 

  128. Deuschle M, Blum WF, Strasburger CJ, Schweiger U, Weber B, Korner A et al (1997) Insulin-like growth factor-I (IGF-I) plasma concentrations are increased in depressed patients. Psychoneuroendocrinology 22(7):493–503

    Article  CAS  PubMed  Google Scholar 

  129. Franz B, Buysse DJ, Cherry CR, Gray NS, Grochocinski VJ, Frank E et al (1999) Insulin-like growth factor 1 and growth hormone binding protein in depression: a preliminary communication. J Psychiatr Res 33(2):121–127

    Article  CAS  PubMed  Google Scholar 

  130. Kopczak A, Stalla GK, Uhr M, Lucae S, Hennings J, Ising M et al (2015) IGF-I in major depression and antidepressant treatment response. Eur Neuropsychopharmacol 25(6):864–872

    Article  CAS  PubMed  Google Scholar 

  131. Lesch KP, Rupprecht R, Müller U, Pfüller H, Beckmann H (1988) Insulin-like growth factor I in depressed patients and controls. Acta Psychiatr Scand 78(6):684–688

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Translational Psychiatry Program (USA) is funded by the Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth). The Center of Excellence on Mood Disorders (USA) is funded by Pat Rutherford Jr. Chair in Psychiatry, the John S. Dunn Foundation, and the Anne and Don Fizer Foundation Endowment for Depression Research. Translational Psychiatry Laboratory (Brazil) is one of the centers of the National Institute for Molecular Medicine (INCT-MM) and one of the members of the Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC). Its research is supported by grants from CNPq (JQ and GZR), FAPESC (JQ and GZR), Instituto Cérebro e Mente (JQ and GZR), and UNESC (JQ, GZR, and TB). JQ is a 1A CNPq Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ku Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amidfar, M., Réus, G.Z., de Moura, A.B., Quevedo, J., Kim, YK. (2021). The Role of Neurotrophic Factors in Pathophysiology of Major Depressive Disorder. In: Kim, YK. (eds) Major Depressive Disorder. Advances in Experimental Medicine and Biology, vol 1305. Springer, Singapore. https://doi.org/10.1007/978-981-33-6044-0_14

Download citation

Publish with us

Policies and ethics