Skip to main content

Introduction to Yuragi Theory and Yuragi Control

  • Chapter
  • First Online:
Fluctuation-Induced Network Control and Learning

Abstract

Noise and fluctuations are phenomena that are frequently observed in biology and nature, but also intrinsically occur in various types of technological and engineered systems. In this chapter, we provide an introduction to the concepts and methods that underlie Yuragi-based control mechanisms. Yuragi is the Japanese term for fluctuations, and this concept can be utilized for simple yet effective control mechanisms to adaptively control information and communication systems depending on the environment with simple rules. In this chapter, we present several examples to illustrate how fluctuations occur in biological systems and how stochastic biological models can be utilized to design new robust and flexible control algorithms, such as attractor selection and attractor perturbation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines. Wiley, Chichester (1989)

    MATH  Google Scholar 

  2. Ab Wahab, M.N., Nefti-Meziani, S., Atyabi, A.: A comprehensive review of swarm optimization algorithms. PLoS ONE 10(5), 1–36 (2015)

    Article  Google Scholar 

  3. Aono, M., Hara, M., Aihara, K.: Amoeba-based neurocomputing with chaotic dynamics. Commun. ACM 50(9), 69–72 (2007)

    Article  Google Scholar 

  4. Babaoglu, O., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen, M.: The self-star vision. In: Self-star Properties in Complex Information Systems, pp. 1–20. Springer, Berlin (2005)

    Google Scholar 

  5. Balasubramaniam, S., Leibnitz, K., Lio, P., Botvich, D., Murata, M.: Biological principles for future internet architecture design. IEEE Commun. Mag. 49(7), 44–52 (2011)

    Article  Google Scholar 

  6. Birn, R.M.: The role of physiological noise in resting-state functional connectivity. NeuroImage 62(2), 864–870 (2012)

    Article  Google Scholar 

  7. Blake, R., Logothetis, N.K.: Visual competition. Nat. Rev. Neurosci. 3(1), 13–21 (2002)

    Article  Google Scholar 

  8. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Nature to Artificial Systems. Oxford University Press, Oxford (1999)

    Book  MATH  Google Scholar 

  9. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst. 30(1), 107–117 (1998)

    Article  Google Scholar 

  10. Burda, Z., Duda, J., Luck, J.M., Waclaw, B.: Localization of the maximal entropy random walk. Phys. Rev. Lett. 102, 160602 (2009)

    Article  Google Scholar 

  11. Deco, G., Romo, R.: The role of fluctuations in perception. Trends Neurosci. 31(11), 591–598 (2008)

    Article  Google Scholar 

  12. Di Caro, G., Dorigo, M.: The Ant Colony Optimization Meta-Heuristic, pp. 250–285. McGraw-Hill, London (1999)

    Google Scholar 

  13. Di Caro, G., Ducatelle, F., Gambardella, L.M.: Anthocnet: an adaptive nature-inspired algorithm for routing in mobile ad hoc networks. Eur. Trans. Telecommun. 16(5), 443–455 (2005)

    Article  Google Scholar 

  14. Dorigo, M., Stützle, T.: Ant Colony Optimization. A Bradford Book. The MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  15. Dressler, F.: Self-Organization in Sensor and Actor Networks. Wiley, New York (2007)

    Book  Google Scholar 

  16. Ermentrout, G.B., Galán, R.F., Urban, N.N.: Reliability, synchrony and noise. Trends Neurosci. 31(8), 428–434 (2008)

    Article  Google Scholar 

  17. Farooq, M., Di Caro, G.A.: Routing Protocols for Next-Generation Networks Inspired by Collective Behaviors of Insect Societies: An Overview, pp. 101–160. Springer, Berlin (2008)

    Google Scholar 

  18. Fukuyori, I., Nakamura, Y., Matsumoto, Y., Ishiguro, H.: Flexible control mechanism for multi-DOF robotic arm based on biological fluctuation. In: 10th International Conference on the Simulation of Adaptive Behavior (SAB’08), Osaka (2008)

    Google Scholar 

  19. Furusawa, C., Kaneko, K.: A generic mechanism for adaptive growth rate regulation. PLoS Comput. Biol. 4(1), e3 (2008)

    Article  MathSciNet  Google Scholar 

  20. Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.: Stochastic resonance. Rev. Mod. Phys. 70, 223–287 (1998)

    Article  Google Scholar 

  21. González, M.C., Hidalgo, C.A., Barabási, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  Google Scholar 

  22. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43(3), 525–546 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Holland, J.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)

    Book  Google Scholar 

  24. Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79(8), 2554–2558 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaneko, K.: Life: An Introduction to Complex Systems Biology. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  26. Kaneko, K.: Evolution of robustness to noise and mutation in gene expression dynamics. PLoS ONE 2(5), e434 (2007)

    Article  Google Scholar 

  27. Kashiwagi, A., Urabe, I., Kaneko, K., Yomo, T.: Adaptive response of a gene network to environmental changes by fitness-induced attractor selection. PLoS ONE 1(1), e49 (2006)

    Article  Google Scholar 

  28. Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. 102(39), 13773–13778 (2005)

    Article  Google Scholar 

  29. Kashtan, N., Noor, E., Alon, U.: Varying environments can speed up evolution. Proc. Natl. Acad. Sci. 104(34), 13711–13716 (2007)

    Article  Google Scholar 

  30. Kim, S.J., Aono, M., Hara, M.: Tug-of-war model for multi-armed bandit problem. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) Unconventional Computation, pp. 69–80. Springer, Berlin (2010)

    Chapter  Google Scholar 

  31. Kim, S.J., Naruse, M., Aono, M., Ohtsu, M., Hara, M.: Decision maker based on nanoscale photo-excitation transfer. Sci. Rep. 3(1), 2370 (2013)

    Article  Google Scholar 

  32. Kish, L., Granqvist, C.: Noise in nanotechnology. Microelectron. Reliab. 40(11), 1833–1837 (2000)

    Article  Google Scholar 

  33. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29(1), 255–284 (1966)

    Article  MATH  Google Scholar 

  34. Kuroda, K., Kato, H., Kim, S.J., Naruse, M., Hasegawa, M.: Improving throughput using multi-armed bandit algorithm for wireless LANs. Nonlinear Theory Appl. IEICE 9(1), 74–81 (2018)

    Article  Google Scholar 

  35. Leibnitz, K., Hoßfeld, T., Wakamiya, N., Murata, M.: Peer-to-peer vs. client/server: Reliability and efficiency of a content distribution service. In: 20th International Teletraffic Congress (ITC-20), Ottawa, pp. 1161–1172 (2007)

    Google Scholar 

  36. Leibnitz, K., Murata, M.: Attractor selection and perturbation for robust networks in fluctuating environments. IEEE Netw. 24(3), 14–18 (2010)

    Article  Google Scholar 

  37. Leibnitz, K., Wakamiya, N., Murata, M.: Biologically inspired self-adaptive multi-path routing in overlay networks. Commun. ACM 49(3), 62–67 (2006)

    Article  Google Scholar 

  38. Leibnitz, K., Wakamiya, N., Murata, M.: Resilient multi-path routing based on a biological attractor selection scheme. In: 2nd International Workshop on Biologically Inspired Approaches to Advanced Information Technology (BioAdit’06). Springer, Osaka (2006)

    Google Scholar 

  39. Leibnitz, K., Wakamiya, N., Murata, M.: Self-adaptive ad-hoc/sensor network routing with attractor-selection. In: IEEE GLOBECOM. IEEE, San Francisco (2006)

    Google Scholar 

  40. Leibnitz, K., Wakamiya, N., Murata, M.: A bio-inspired robust routing protocol for mobile ad hoc networks. In: 16th International Conference on Computer Communications and Networks (ICCCN’07), Honolulu, pp. 321–326 (2007)

    Google Scholar 

  41. Leibnitz, K., Yomo, T., Murata, M.: Attractor selection as self-adaptive control mechanism for communication networks. In: Xiao, Y. (ed.) Bio-Inspired Computing and Networking, chap. 14, pp. 369–389. CRC Press, Boca Raton (2011)

    Google Scholar 

  42. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ma, J., Hasegawa, S., Kim, S.J., Hasegawa, M.: A reinforcement-learning-based distributed resource selection algorithm for massive IoT. Appl. Sci. 9(18), 3730 (2019)

    Article  Google Scholar 

  44. Masuda, N., Porter, M.A., Lambiotte, R.: Random walks and diffusion on networks. Phys. Rep. 716–717, 1–58 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. McDonnell, M., Ward, L.: The benefits of noise in neural systems: bridging theory and experiment. Nat. Rev. Neurosci. 12, 415–425 (2011)

    Article  Google Scholar 

  46. McDonnell, M., Stocks, N., Pearce, C., Abbott, D.: Optimal information transmission in nonlinear arrays through suprathreshold stochastic resonance. Phys. Lett. A 352, 183–189 (2006)

    Article  MATH  Google Scholar 

  47. McDonnell, M., Stocks, N., Pearce, C., Abbott, D.: Stochastic Resonance. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  48. Mitaim, S., Kosko, B.: Adaptive stochastic resonance. Proc. IEEE 86(11), 2152–2183 (1998)

    Article  Google Scholar 

  49. Mizutani, S., Arai, K., Davis, P., Wakamiya, N., Murata, M.: Noise-assisted distributed detection in sensor networks. AIP Conf. Proc. 922(1), 611–614 (2007)

    Article  Google Scholar 

  50. Murata, T., Hamada, T., Shimokawa, T., Tanifuji, M., Yanagida, T.: Stochastic process underlying emergent recognition of visual objects hidden in degraded images. PLoS ONE 9(12), 1–32 (2014)

    Article  Google Scholar 

  51. Nakagaki, T., Yamada, H., Tóth, Á.: Maze-solving by an amoeboid organism. Nature 407(470) (2000)

    Google Scholar 

  52. Naruse, M., Berthel, M., Drezet, A., Huant, S., Aono, M., Hori, H., Kim, S.J.: Single-photon decision maker. Sci. Rep. 5(1), 13253 (2015)

    Article  Google Scholar 

  53. Nielsen, J., Villadsen, J.: Bioreaction Engineering Principles. Plenum Press, New York (1994)

    Book  Google Scholar 

  54. Otokura, M., Leibnitz, K., Shimokawa, T., Murata, M.: Evolutionary core-periphery structure and its application to network function virtualization. Nonlinear Theory Appl. IEICE 7(2), 202–216 (2016)

    Article  Google Scholar 

  55. Otokura, M., Leibnitz, K., Koizumi, Y., Kominami, D., Shimokawa, T., Murata, M.: Evolvable virtual network function placement method: mechanism and performance evaluation. IEEE Trans. Netw. Serv. Manag. 16(1), 27–40 (2019)

    Article  Google Scholar 

  56. Sato, K., Ito, Y., Yomo, T., Kaneko, K.: On the relation between fluctuation and response in biological systems. Proc. Natl. Acad. Sci. USA 100(24), 14086–14090 (2003)

    Article  Google Scholar 

  57. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  58. Sims, D.W., Southall, E.J., Humphries, N.E., Hays, G.C., Bradshaw, C.J.A., Pitchford, J.W., James, A., Ahmed, M.Z., Brierley, A.S., Hindell, M.A., Morritt, D., Musyl, M.K., Righton, D., Shepard, E.L.C., Wearmouth, V.J., Wilson, R.P., Witt, M.J., Metcalfe, J.D.: Scaling laws of marine predator search behaviour. Nature 451(7182), 1098–1102 (2008)

    Article  Google Scholar 

  59. Sinatra, R., Gómez-Gardeñes, J., Lambiotte, R., Nicosia, V., Latora, V.: Maximal-entropy random walks in complex networks with limited information. Phys. Rev. E 83, 030103 (2011)

    Article  Google Scholar 

  60. Stocks, N.G.: Suprathreshold stochastic resonance in multilevel threshold systems. Phys. Rev. Lett. 84, 2310–2313 (2000)

    Article  Google Scholar 

  61. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, Cambridge (1994)

    Google Scholar 

  62. Viterbi, A.J.: CDMA: Principles of Spread Spectrum Communication. Prentice Hall, Upper Saddle River (1995)

    Google Scholar 

  63. Wakamiya, N., Leibnitz, K., Murata, M.: Noise-assisted control in information networks. In: 2007 Frontiers in the Convergence of Bioscience and Information Technologies, pp. 833–838 (2007)

    Google Scholar 

  64. Wedde, H.F., Farooq, M., Zhang, Y.: Beehive: An efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) Ant Colony Optimization and Swarm Intelligence, pp. 83–94. Springer, Berlin (2004)

    Chapter  Google Scholar 

  65. Weinstein, S., Pavlic, T.P.: Noise and Function, pp. 174–198. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  66. White, J.A., Rubinstein, J.T., Kay, A.R.: Channel noise in neurons. Trends Neurosci. 23(3), 131–137 (2000)

    Article  Google Scholar 

  67. Wiesenfeld, K., Jaramillo, F.: Minireview of stochastic resonance. Chaos Interdiscip. J. Nonlinear Sci. 8(3), 539–548 (1998)

    Article  Google Scholar 

  68. Yanagida, T., Ueda, M., Murata, T., Esaki, S., Ishii, Y.: Brownian motion, fluctuation and life. Biosystems 88(3), 228–242 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Leibnitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leibnitz, K. (2021). Introduction to Yuragi Theory and Yuragi Control. In: Murata, M., Leibnitz, K. (eds) Fluctuation-Induced Network Control and Learning. Springer, Singapore. https://doi.org/10.1007/978-981-33-4976-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4976-6_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4975-9

  • Online ISBN: 978-981-33-4976-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics