Skip to main content

Aptamers for the Diagnosis of Malign Tumors

  • Chapter
  • First Online:
Aptamers for Medical Applications

Abstract

Malign tumor is one of the leading causes of human death worldwide, and its incidence increased rapidly year by year. Thus, it is of great importance to improve the strategy of early diagnosis for malign tumors. Aptamers are single-stranded oligonucleotide ligands with excellent chemical properties such as high affinity, easy synthesis, controllable chemical modifications, low immunogenicity, high stability, and fast tissue penetration. Therefore, aptamers are regarded as chemical antibodies and exhibit untapped potential for clinical applications. In this chapter, we highlight the advantages and properties of aptamer-based methods for cancer diagnosis, including cancer biomarker discovery, biosensing, and tumor imaging. We focus on describing several analyses approaches for protein biomarkers, circulating tumor cells, and cancer-related exosomes. The recent imaging techniques for tumor visual measurement are briefly expounded. Furthermore, the challenges and perspectives for the clinical application of aptamer-based methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J Clin 68(6):394–424

    Article  PubMed  Google Scholar 

  2. Hassan EM, Willmore WG, DeRosa MC (2016) Aptamers: promising tools for the detection of circulating tumor cells. Nucleic Acid Ther 26(6):335–347

    Article  CAS  PubMed  Google Scholar 

  3. Hanahan D, Weinberg Robert A (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  4. Zichi D, Eaton B, Singer B, Gold L (2008) Proteomics and diagnostics: llet’s Get Specific, again. Curr Opin Chem Biol 12(1):78–85

    Article  CAS  PubMed  Google Scholar 

  5. Shigdar S, Qiao L, Zhou S-F, Xiang D, Wang T, Li Y, Lim LY, Kong L, Li L, Duan W (2013) RNA aptamers targeting cancer stem cell marker CD133. Cancer Lett 330(1):84–95

    Article  CAS  PubMed  Google Scholar 

  6. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  PubMed  Google Scholar 

  7. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403

    Article  CAS  PubMed  Google Scholar 

  8. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9(7):537–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed 48(15):2672–2689

    Article  CAS  Google Scholar 

  10. Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC Trends Anal Chem 27(2):108–117

    Article  CAS  Google Scholar 

  11. Cox JC, Ellington AD (2001) Automated selection of anti-protein aptamers. Biorg Med Chem 9(10):2525–2531

    Article  CAS  Google Scholar 

  12. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dalton WS, Friend SH (2006) Cancer biomarkers-an invitation to the table. Science 312(5777):1165–1168

    Article  CAS  PubMed  Google Scholar 

  14. Aebersold R, Anderson L, Caprioli R, Druker B, Hartwell L, Smith R (2005) Perspective: a program to improve protein biomarker discovery for cancer. J Proteome Res 4(4):1104–1109

    Article  CAS  PubMed  Google Scholar 

  15. Mallick P, Kuster B (2010) Proteomics: a pragmatic perspective. Nat Biotechnol 28(7):695

    Article  CAS  PubMed  Google Scholar 

  16. Jain KK, Jain KK (2010) The handbook of biomarkers. Springer

    Google Scholar 

  17. Hood LE, Omenn GS, Moritz RL, Aebersold R, Yamamoto KR, Amos M, Hunter-Cevera J, Locascio L, Participants W (2012) New and improved proteomics technologies for understanding complex biological systems: addressing a grand challenge in the life sciences. Proteomics 12(18):2773–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ray P, Rialon-Guevara KL, Veras E, Sullenger BA, White RR (2012) Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin B as a candidate pancreatic cancer biomarker. J Clin Invest 122(5):1734–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pang X, Cui C, Wan S, Jiang Y, Zhang L, Xia L, Li L, Li X, Tan W (2018) Bioapplications of cell-SELEX-generated aptamers in cancer diagnostics, therapeutics, theranostics and biomarker discovery: a comprehensive review. Cancers 10(2):47

    Article  PubMed Central  CAS  Google Scholar 

  20. Ma H, Liu J, Ali MM, Mahmood MAI, Labanieh L, Lu M, Iqbal SM, Zhang Q, Zhao W, Wan Y (2015) Nucleic acid aptamers in cancer research, diagnosis and therapy. Chem Soc Rev 44(5):1240–1256

    Article  CAS  PubMed  Google Scholar 

  21. Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (2003) A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA 100(26):15416–15421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103(32):11838–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mallikaratchy P, Tang Z, Kwame S, Meng L, Shangguan D, Tan W (2007) Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol Cell Proteomics 6(12):2230–2238

    Article  CAS  PubMed  Google Scholar 

  24. Xiong H, Yan J, Cai S, He Q, Peng D, Liu Z, Liu Y (2019) Cancer protein biomarker discovery based on nucleic acid aptamers. Int J Biol Macromol 132:190–202

    Article  CAS  PubMed  Google Scholar 

  25. Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li S, Xu H, Ding H, Huang Y, Cao X, Yang G, Li J, Xie Z, Meng Y, Li X, Zhao Q, Shen B, Shao N (2009) Identification of an aptamer targeting hnRNP A1 by tissue slide-based SELEX. J Pathol 218(3):327–336

    Article  CAS  PubMed  Google Scholar 

  27. Mi J, Liu Y, Rabbani ZN, Yang Z, Urban JH, Sullenger BA, Clary BM (2010) In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol 6(1):22–24

    Article  CAS  PubMed  Google Scholar 

  28. Gold L, Ayers D, Bertino J, Bock C, Bock A, Brody EN, Carter J, Dalby AB, Eaton BE, Fitzwater T, Flather D, Forbes A, Foreman T, Fowler C, Gawande B, Goss M, Gunn M, Gupta S, Halladay D, Heil J, Heilig J, Hicke B, Husar G, Janjic N, Jarvis T, Jennings S, Katilius E, Keeney TR, Kim N, Koch TH, Kraemer S, Kroiss L, Le N, Levine D, Lindsey W, Lollo B, Mayfield W, Mehan M, Mehler R, Nelson SK, Nelson M, Nieuwlandt D, Nikrad M, Ochsner U, Ostroff RM, Otis M, Parker T, Pietrasiewicz S, Resnicow DI, Rohloff J, Sanders G, Sattin S, Schneider D, Singer B, Stanton M, Sterkel A, Stewart A, Stratford S, Vaught JD, Vrkljan M, Walker JJ, Watrobka M, Waugh S, Weiss A, Wilcox SK, Wolfson A, Wolk SK, Zhang C, Zichi D (2010) Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5(12):e15004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ostroff RM, Bigbee WL, Franklin W, Gold L, Mehan M, Miller YE, Pass HI, Rom WN, Siegfried JM, Stewart A, Walker JJ, Weissfeld JL, Williams S, Zichi D, Brody EN (2010) Unlocking biomarker discovery: large scale application of aptamer proteomic technology for early detection of lung cancer. PLoS ONE 5(12):e15003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vaught JD, Bock C, Carter J, Fitzwater T, Otis M, Schneider D, Rolando J, Waugh S, Wilcox SK, Eaton BE (2010) Expanding the chemistry of DNA for in vitro selection. J Am Chem Soc 132(12):4141–4151

    Article  CAS  PubMed  Google Scholar 

  31. Baird GS, Nelson SK, Keeney TR, Stewart A, Williams S, Kraemer S, Peskind ER, Montine TJ (2012) Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am J Pathol 180(2):446–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Webber J, Stone TC, Katilius E, Smith BC, Gordon B, Mason MD, Tabi Z, Brewis IA, Clayton A (2014) Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscanTM) platform. Mol Cell Proteomics 13(4):1050–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Niu G, Chen X (2010) Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets 11(8):1000–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Crulhas BP, Karpik AE, Delella FK, Castro GR, Pedrosa VA (2017) Electrochemical aptamer-based biosensor developed to monitor PSA and VEGF released by prostate cancer cells. Anal Bioanal Chem 409(29):6771–6780

    Article  CAS  PubMed  Google Scholar 

  35. Qureshi A, Gurbuz Y, Niazi JH (2015) Capacitive aptamer–antibody based sandwich assay for the detection of VEGF cancer biomarker in serum. Sensors Actuat B Chem 209:645–651

    Article  CAS  Google Scholar 

  36. Wang B, Akiba U, Anzai J-i (2017) Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: A review. Molecules 22(7):1048

    Article  PubMed Central  CAS  Google Scholar 

  37. Shamsipur M, Farzin L, Amouzadeh Tabrizi M, Molaabasi F (2015) Highly sensitive label free electrochemical detection of VGEF165 tumor marker based on “signal off” and “signal on” strategies using an anti-VEGF165 aptamer immobilized BSA-gold nanoclusters/ionic liquid/glassy carbon electrode. Biosens Bioelectron 74:369–375

    Article  CAS  PubMed  Google Scholar 

  38. Amouzadeh Tabrizi M, Shamsipur M, Farzin L (2015) A high sensitive electrochemical aptasensor for the determination of VEGF165 in serum of lung cancer patient. Biosens Bioelectron 74:764–769

    Article  CAS  PubMed  Google Scholar 

  39. Ravalli A, Rivas L, De La Escosura-Muñiz A, Pons J, Merkoçi A, Marrazza G (2015) A DNA aptasensor for electrochemical detection of vascular endothelial growth factor. J Nanosci Nanotechno 15(5):3411–3416

    Article  CAS  Google Scholar 

  40. Fu X-M, Liu Z-J, Cai S-X, Zhao Y-P, Wu D-Z, Li C-Y, Chen J-H (2016) Electrochemical aptasensor for the detection of vascular endothelial growth factor (VEGF) based on DNA-templated Ag/Pt bimetallic nanoclusters. Chin Chem Lett 27(6):920–926

    Article  CAS  Google Scholar 

  41. Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S (2017) Simultaneous determination of CYC and VEGF165 tumor markers based on immobilization of flavin adenine dinucleotide and thionine as probes on reduced graphene oxide-poly(amidoamine)/gold nanocomposite modified dual working screen-printed electrode. Sensors Actuat B Chem 240:1174–1181

    Article  CAS  Google Scholar 

  42. Da H, Liu H, Zheng Y, Yuan R, Chai Y (2018) A highly sensitive VEGF165 photoelectrochemical biosensor fabricated by assembly of aptamer bridged DNA networks. Biosens Bioelectron 101:213–218

    Article  CAS  PubMed  Google Scholar 

  43. Wang Q-L, Cui H-F, Song X, Fan S-F, Chen L-L, Li M-M, Li Z-Y (2018) A label-free and lectin-based sandwich aptasensor for detection of carcinoembryonic antigen. Sensors Actuat B Chem 260:48–54

    Article  CAS  Google Scholar 

  44. Gao Y, Song P, Li H, Jia H, Zhang B (2017) Elevated serum CEA levels are associated with the explosive progression of lung adenocarcinoma harboring EGFR mutations. BMC Cancer 17(1):484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 15(5):10481–10510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guo C, Su F, Song Y, Hu B, Wang M, He L, Peng D, Zhang Z (2017) Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for bifunctional electrochemical and SPR aptasensors toward carcinoembryonic antigen. ACS Appl Mater Inter 9(47):41188–41199

    Article  CAS  Google Scholar 

  47. Martin V, Sullivan B, Walker K, Hawk H, Sullivan B, Noe L (2006) Surface plasmon resonance investigations of human epidermal growth factor receptor 2. Appl Spectrosc 60(9):994–1003

    Article  CAS  PubMed  Google Scholar 

  48. Eletxigerra U, Martinez-Perdiguero J, Barderas R, Pingarrón JM, Campuzano S, Merino S (2016) Surface plasmon resonance immunosensor for ErbB2 breast cancer biomarker determination in human serum and raw cancer cell lysates. Anal Chim Acta 905:156–162

    Article  CAS  PubMed  Google Scholar 

  49. Uludag Y, Tothill IE (2012) Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification. Anal Chem 84(14):5898–5904

    Article  CAS  PubMed  Google Scholar 

  50. Qian H, Huang Y, Duan X, Wei X, Fan Y, Gan D, Yue S, Cheng W, Chen T (2019) Fiber optic surface plasmon resonance biosensor for detection of PDGF-BB in serum based on self-assembled aptamer and antifouling peptide monolayer. Biosens Bioelectron 140:111350

    Article  CAS  PubMed  Google Scholar 

  51. Yuan J, Oliver R, Li J, Lee J, Aguilar M, Wu Y (2007) Sensitivity enhancement of SPR assay of progesterone based on mixed self-assembled monolayers using nanogold particles. Biosens Bioelectron 23(1):144–148

    Article  CAS  PubMed  Google Scholar 

  52. Chang C-C, Chiu N-F, Lin DS, Chu-Su Y, Liang Y-H, Lin C-W (2010) High-sensitivity detection of carbohydrate antigen 15-3 using a gold/zinc oxide thin film surface plasmon resonance-based biosensor. Anal Chem 82(4):1207–1212

    Article  CAS  PubMed  Google Scholar 

  53. Yi B, Williams PJ, Niewolna M, Wang Y, Yoneda T (2002) Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Res 62(3):917–923

    CAS  PubMed  Google Scholar 

  54. Yang H, Gijs MAM (2018) Micro-optics for microfluidic analytical applications. Chem Soc Rev 47(4):1391–1458

    Article  CAS  PubMed  Google Scholar 

  55. Vance SA, Sandros MG (2014) Zeptomole detection of C-reactive protein in serum by a nanoparticle amplified surface plasmon resonance imaging aptasensor. Sci Rep 4:5129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ye S, Mao Y, Guo Y, Zhang S (2014) Enzyme-based signal amplification of surface-enhanced Raman scattering in cancer-biomarker detection. TrAC Trends Anal Chem 55:43–54

    Article  CAS  Google Scholar 

  57. Bhamidipati M, Cho H-Y, Lee K-B, Fabris L (2018) SERS-based quantification of biomarker expression at the single cell level enabled by gold nanostars and truncated aptamers. Bioconjugate Chem 29(9):2970–2981

    Article  CAS  Google Scholar 

  58. Danckwardt S, Hentze MW, Kulozik AE (2013) Pathologies at the nexus of blood coagulation and inflammation: thrombin in hemostasis, cancer, and beyond. J Mol Med (Berl) 91(11):1257–1271

    Article  CAS  Google Scholar 

  59. Li JJ, Fang X, Tan W (2002) Molecular aptamer beacons for real-time protein recognition. Biochem Biophys Res Commun 292(1):31–40

    Article  CAS  PubMed  Google Scholar 

  60. Nutiu R, Li Y (2003) Structure-switching signaling aptamers. J Am Chem Soc 125(16):4771–4778

    Article  CAS  PubMed  Google Scholar 

  61. Fredriksson L, Li H, Eriksson U (2004) The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev 15(4):197–204

    Article  CAS  PubMed  Google Scholar 

  62. Yu J, Ustach C, Kim H-RC (2003) Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol 36(1):49–59

    CAS  PubMed  Google Scholar 

  63. Wang X, Jiang A, Hou T, Li H, Li F (2015) Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification. Biosens Bioelectron 70:324–329

    Article  PubMed  CAS  Google Scholar 

  64. Li X, Ding X, Fan J (2015) Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform. Analyst 140(23):7918–7925

    Article  CAS  PubMed  Google Scholar 

  65. Zheng C, Zheng A-X, Liu B, Zhang X-L, He Y, Li J, Yang H-H, Chen G (2014) One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem Commun 50(86):13103–13106

    Article  CAS  Google Scholar 

  66. Xu H, Wu D, Li C-Q, Lu Z, Liao X-Y, Huang J, Wu Z-S (2017) Label-free colorimetric detection of cancer related gene based on two-step amplification of molecular machine. Biosens Bioelectron 90:314–320

    Article  CAS  PubMed  Google Scholar 

  67. Alix-Panabières C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14(9):623–631

    Article  PubMed  CAS  Google Scholar 

  68. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564

    Article  CAS  PubMed  Google Scholar 

  69. Shen Z, Wu A, Chen X (2017) Current detection technologies for circulating tumor cells. Chem Soc Rev 46(8):2038–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Green BJ, Saberi Safaei T, Mepham A, Labib M, Mohamadi RM, Kelley SO (2016) Beyond the capture of circulating tumor cells: next-generation devices and materials. Angew Chem Int Ed Engl 55(4):1252–1265

    Article  CAS  PubMed  Google Scholar 

  71. Sieuwerts AM, Kraan J, Bolt J, van der Spoel P, Elstrodt F, Schutte M, Martens JWM, Gratama J-W, Sleijfer S, Foekens JA (2009) Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer I 101(1):61–66

    Article  CAS  Google Scholar 

  72. Zhao W, Cui CH, Bose S, Guo D, Shen C, Wong WP, Halvorsen K, Farokhzad OC, Teo GSL, Phillips JA (2012) Bioinspired multivalent DNA network for capture and release of cells. Proc Natl Acad Sci USA 109(48):19626–19631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shen Q, Xu L, Zhao L, Wu D, Fan Y, Zhou Y, OuYang WH, Xu X, Zhang Z, Song M (2013) Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates. Adv Mater 25(16):2368–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wan Y, Liu Y, Allen PB, Asghar W, Mahmood MAI, Tan J, Duhon H, Kim Y-t, Ellington AD, Iqbal SM (2012) Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array. Lab Chip 12(22):4693–4701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hasanzadeh M, Shadjou N, de la Guardia M (2015) Recent advances in nanostructures and nanocrystals as signal-amplification elements in electrochemical cytosensing. TrAC Trends Anal Chem 72:123–140

    Article  CAS  Google Scholar 

  76. Li S, Liu Y, Ma Q (2019) Nanoparticle-based electrochemiluminescence cytosensors for single cell level detection. TrAC Trends Anal Chem 110:277–292

    Article  CAS  Google Scholar 

  77. Lorenzo-Gómez R, Miranda-Castro R, de-los-Santos-Álvarez N, Lobo-Castañón MJ (2019) Electrochemical aptamer-based assays coupled to isothermal nucleic acid amplification techniques: New tools for cancer diagnosis. Curr Opin Electrochem 14:32-43

    Google Scholar 

  78. Du Y, Dong S (2017) Nucleic acid biosensors: recent advances and perspectives. Anal Chem 89(1):189–215

    Article  CAS  PubMed  Google Scholar 

  79. Zhao Y, Xu D, Tan W (2017) Aptamer-functionalized nano/micro-materials for clinical diagnosis: isolation, release and bioanalysis of circulating tumor cells. Integr Biol-UK 9(3):188–205

    Article  Google Scholar 

  80. Pan C, Guo M, Nie Z, Xiao X, Yao S (2009) Aptamer-based electrochemical sensor for label-free recognition and detection of cancer cells. Electroanalysis 21(11):1321–1326

    Article  CAS  Google Scholar 

  81. Feng L, Chen Y, Ren J, Qu X (2011) A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 32(11):2930–2937

    Article  CAS  PubMed  Google Scholar 

  82. Zhang H, Li B, Sun Z, Zhou H, Zhang S (2017) Integration of intracellular telomerase monitoring by electrochemiluminescence technology and targeted cancer therapy by reactive oxygen species. Chem Sci 8(12):8025–8029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu S, Zhao S, Tu W, Wang X, Wang X, Bao J, Wang Y, Han M, Dai Z (2018) A “signal on” photoelectrochemical biosensor based on bismuth@ N, O-codoped-carbon core-shell nanohybrids for ultrasensitive detection of telomerase in HeLa cells. Chem Eur J 24(15):3677–3682

    Article  CAS  PubMed  Google Scholar 

  84. Khoshfetrat SM, Mehrgardi MA (2017) Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode. Bioelectrochemistry 114:24–32

    Article  CAS  PubMed  Google Scholar 

  85. Cao J, Zhao X-P, Younis MR, Li Z-Q, Xia X-H, Wang C (2017) Ultrasensitive capture, detection, and release of circulating tumor cells using a nanochannel–ion channel hybrid coupled with electrochemical detection technique. Anal Chem 89(20):10957–10964

    Article  CAS  PubMed  Google Scholar 

  86. Sun D, Lu J, Zhang L, Chen Z (2019) Aptamer-based electrochemical cytosensors for tumor cell detection in cancer diagnosis: A review. Anal Chim Acta 1082:1–17

    Article  CAS  PubMed  Google Scholar 

  87. Li J, Lin X, Zhang Z, Tu W, Dai Z (2019) Red light-driven photoelectrochemical biosensing for ultrasensitive and scatheless assay of tumor cells based on hypotoxic AgInS2 nanoparticles. Biosens Bioelectron 126:332–338

    Article  CAS  PubMed  Google Scholar 

  88. Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S (2017) Flow injection amperometric sandwich-type aptasensor for the determination of human leukemic lymphoblast cancer cells using MWCNTs-Pdnano/PTCA/aptamer as labeled aptamer for the signal amplification. Anal Chim Acta 985:61–68

    Article  CAS  PubMed  Google Scholar 

  89. Yi Z, Li X-Y, Gao Q, Tang L-J, Chu X (2013) Aptamer-aided target capturing with biocatalytic metal deposition: an electrochemical platform for sensitive detection of cancer cells. Analyst 138(7):2032–2037

    Article  CAS  PubMed  Google Scholar 

  90. Wang X, Ju J, Li J, Li J, Qian Q, Mao C, Shen J (2014) Preparation of electrochemical cytosensor for sensitive detection of HeLa cells based on self-assembled monolayer. Electrochim Acta 123:511–517

    Article  CAS  Google Scholar 

  91. Zhu X, Yang J, Liu M, Wu Y, Shen Z, Li G (2013) Sensitive detection of human breast cancer cells based on aptamer–cell–aptamer sandwich architecture. Anal Chim Acta 764:59–63

    Article  CAS  PubMed  Google Scholar 

  92. Wang Q, Wei H, Zhang Z, Wang E, Dong S (2018) Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal Chem 105:218–224

    Article  CAS  Google Scholar 

  93. Amouzadeh Tabrizi M, Shamsipur M, Saber R, Sarkar S, Sherkatkhameneh N (2017) Flow injection amperometric sandwich-type electrochemical aptasensor for the determination of adenocarcinoma gastric cancer cell using aptamer-Au@Ag nanoparticles as labeled aptamer. Electrochim Acta 246:1147–1154

    Article  CAS  Google Scholar 

  94. Zheng T, Tan T, Zhang Q, Fu J-J, Wu J-J, Zhang K, Zhu J-J, Wang H (2013) Multiplex acute leukemia cytosensing using multifunctional hybrid electrochemical nanoprobes at a hierarchically nanoarchitectured electrode interface. Nanoscale 5(21):10360–10368

    Article  CAS  PubMed  Google Scholar 

  95. Chen X, He Y, Zhang Y, Liu M, Liu Y, Li J (2014) Ultrasensitive detection of cancer cells and glycan expression profiling based on a multivalent recognition and alkaline phosphatase-responsive electrogenerated chemiluminescence biosensor. Nanoscale 6(19):11196–11203

    Article  CAS  PubMed  Google Scholar 

  96. Sun D, Lu J, Wang X, Zhang Y, Chen Z (2017) Voltammetric aptamer based detection of HepG2 tumor cells by using an indium tin oxide electrode array and multifunctional nanoprobes. Microchim Acta 184(9):3487–3496

    Article  CAS  Google Scholar 

  97. Fathi F, Rashidi M-R, Omidi Y (2019) Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors. Talanta 192:118–127

    Article  CAS  PubMed  Google Scholar 

  98. Li Y, Zhang Y, Zhao M, Zhou Q, Wang L, Wang H, Wang X, Zhan L (2016) A simple aptamer-functionalized gold nanorods based biosensor for the sensitive detection of MCF-7 breast cancer cells. Chem Commun 52(20):3959–3961

    Article  CAS  Google Scholar 

  99. Liu R, Wang Q, Li Q, Yang X, Wang K, Nie W (2017) Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Biosens Bioelectron 87:433–438

    Article  CAS  PubMed  Google Scholar 

  100. Liang D, Jin Q, Yan N, Feng J, Wang J, Tang X (2018) SERS nanoprobes in biologically Raman silent region for tumor cell imaging and in vivo tumor spectral detection in mice. Adv Biosyst 2(12):1800100

    Article  CAS  Google Scholar 

  101. Wang J, Liang D, Feng J, Tang X (2019) Multicolor cocktail for breast cancer multiplex phenotype targeting and diagnosis using bioorthogonal surface-enhanced raman scattering nanoprobes. Anal Chem 91(17):11045–11054

    Article  CAS  PubMed  Google Scholar 

  102. Zou Y, Huang S, Liao Y, Zhu X, Chen Y, Chen L, Liu F, Hu X, Tu H, Zhang L (2018) Isotopic graphene–isolated-Au-nanocrystals with cellular Raman-silent signals for cancer cell pattern recognition. Chem Sci 9(10):2842–2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Phillips JA, Xu Y, Xia Z, Fan ZH, Tan W (2009) Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. Anal Chem 81(3):1033–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sheng W, Chen T, Kamath R, Xiong X, Tan W, Fan ZH (2012) Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal Chem 84(9):4199–4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo S, Huang H, Deng X, Chen Y, Jiang Z, Xie M, Liu S, Huang W, Zhou X (2018) Programmable DNA-responsive microchip for the capture and release of circulating tumor cells by nucleic acid hybridization. Nano Res 11(5):2592–2604

    Article  CAS  Google Scholar 

  106. Sun N, Liu M, Wang J, Wang Z, Li X, Jiang B, Pei R (2016) Chitosan nanofibers for specific capture and nondestructive release of CTCs assisted by pCBMA brushes. Small 12(36):5090–5097

    Article  CAS  PubMed  Google Scholar 

  107. Kitov PI, Bundle DR (2003) On the nature of the multivalency effect: a thermodynamic model. J Am Chem Soc 125(52):16271–16284

    Article  CAS  PubMed  Google Scholar 

  108. Zhao L, Tang C, Xu L, Zhang Z, Li X, Hu H, Cheng S, Zhou W, Huang M, Fong A, Liu B, Tseng H-R, Gao H, Liu Y, Fang X (2016) Enhanced and differential capture of circulating tumor cells from lung cancer patients by microfluidic assays using aptamer cocktail. Small 12(8):1072–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sharma S, Zhuang R, Long M, Pavlovic M, Kang Y, Ilyas A, Asghar W (2018) Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol Adv 36(4):1063–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zheng Q, Iqbal SM, Wan Y (2013) Cell detachment: Post-isolation challenges. Biotechnol Adv 31(8):1664–1675

    Article  PubMed  Google Scholar 

  111. Yu X, Wang B, Zhang N, Yin C, Chen H, Zhang L, Cai B, He Z, Rao L, Liu W, Wang F-B, Guo S-S, Zhao X-Z (2015) Capture and release of cancer cells by combining on-chip purification and off-chip enzymatic treatment. ACS Appl Mater Inter 7(43):24001–24007

    Article  CAS  Google Scholar 

  112. Wu L, Xu X, Sharma B, Wang W, Qu X, Zhu L, Zhang H, Song Y, Yang C (2019) Beyond capture: circulating tumor cell release and single-cell analysis. Small Meth 3(5):1800544

    Article  CAS  Google Scholar 

  113. Chiu W-J, Ling T-K, Chiang H-P, Lin H-J, Huang C-C (2015) Monitoring cluster ions derived from aptamer-modified gold nanofilms under laser desorption/ionization for the detection of circulating tumor cells. ACS Appl Mater Inter 7(16):8622–8630

    Article  CAS  Google Scholar 

  114. Labib M, Green B, Mohamadi RM, Mepham A, Ahmed SU, Mahmoudian L, Chang IH, Sargent EH, Kelley SO (2016) Aptamer and antisense-mediated two-dimensional isolation of specific cancer cell subpopulations. J Am Chem Soc 138(8):2476–2479

    Article  CAS  PubMed  Google Scholar 

  115. Reinholt SJ, Craighead HG (2018) Microfluidic device for aptamer-based cancer cell capture and genetic mutation detection. Anal Chem 90(4):2601–2608

    Article  CAS  PubMed  Google Scholar 

  116. Green BJ, Kermanshah L, Labib M, Ahmed SU, Silva PN, Mahmoudian L, Chang IH, Mohamadi RM, Rocheleau JV, Kelley SO (2017) Isolation of phenotypically distinct cancer cells using nanoparticle-mediated sorting. ACS Appl Mater Inter 9(24):20435–20443

    Article  CAS  Google Scholar 

  117. Poudineh M, Labib M, Ahmed S, Nguyen LM, Kermanshah L, Mohamadi RM, Sargent EH, Kelley SO (2017) Profiling functional and biochemical phenotypes of circulating tumor cells using a two-dimensional sorting device. Angew Chem Int Ed 56(1):163–168

    Article  CAS  Google Scholar 

  118. Chakravarty R, Goel S, Cai W (2014) Nanobody: the “magic bullet” for molecular imaging? Theranostics 4(4):386–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Que-Gewirth NS, Sullenger BA (2007) Gene therapy progress and prospects: RNA aptamers. Gene Ther 14(4):283–291

    Article  CAS  PubMed  Google Scholar 

  120. Gomes de Castro MA, Hobartner C, Opazo F (2017) Aptamers provide superior stainings of cellular receptors studied under super-resolution microscopy. PLoS ONE 12(2):e0173050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Melancon MP, Zhou M, Zhang R, Xiong C, Allen P, Wen X, Huang Q, Wallace M, Myers JN, Stafford RJ, Liang D, Ellington AD, Li C (2014) Selective uptake and imaging of aptamer- and antibody-conjugated hollow nanospheres targeted to epidermal growth factor receptors overexpressed in head and neck cancer. ACS Nano 8(5):4530–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yoon S, Rossi JJ (2017) Emerging cancer-specific therapeutic aptamers. Curr Opin Oncol 29(5):366–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Imam A (1985) Application of immunohistochemical methods in the diagnosis of malignant disease. Cancer Invest 3(4):339–359

    Article  CAS  PubMed  Google Scholar 

  124. Bukari BA, Citartan M, Ch’ng ES, Bilibana MP, Rozhdestvensky T, Tang T-H (2017) Aptahistochemistry in diagnostic pathology: technical scrutiny and feasibility. Histochem Cell Biol 147 (5):545-553

    Google Scholar 

  125. Yoon S, Huang KW, Reebye V, Mintz P, Tien YW, Lai HS, Saetrom P, Reccia I, Swiderski P, Armstrong B, Jozwiak A, Spalding D, Jiao L, Habib N, Rossi JJ (2016) Targeted delivery of C/EBPalpha -saRNA by pancreatic ductal adenocarcinoma-specific RNA aptamers inhibits tumor growth in vivo. Mol Ther 24(6):1106–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Duan M, Long Y, Yang C, Wu X, Sun Y, Li J, Hu X, Lin W, Han D, Zhao Y, Liu J, Ye M, Tan W (2016) Selection and characterization of DNA aptamer for metastatic prostate cancer recognition and tissue imaging. Oncotarget 7(24):36436–36446

    Article  PubMed  PubMed Central  Google Scholar 

  127. Pu Y, Liu Z, Lu Y, Yuan P, Liu J, Yu B, Wang G, Yang CJ, Liu H, Tan W (2015) Using DNA aptamer probe for immunostaining of cancer frozen tissues. Anal Chem 87(3):1919–1924

    Article  CAS  PubMed  Google Scholar 

  128. Li W-M, Bing T, Wei J-Y, Chen Z-Z, Shangguan D-H, Fang J (2014) Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells. Biomaterials 35(25):6998–7007

    Article  CAS  PubMed  Google Scholar 

  129. McDonnell LA, Angel PM, Lou S, Drake RR (2017) Mass spectrometry imaging in cancer research: Future perspectives. Adv Cancer Res 134:283–290

    Article  CAS  PubMed  Google Scholar 

  130. Chen S, Xiong C, Liu H, Wan Q, Hou J, He Q, Badu-Tawiah A, Nie Z (2015) Mass spectrometry imaging reveals the sub-organ distribution of carbon nanomaterials. Nat Nanotechnol 10(2):176–182

    Article  CAS  PubMed  Google Scholar 

  131. Tseng YT, Harroun SG, Wu CW, Mao JY, Chang HT, Huang CC (2017) Satellite-like Gold Nanocomposites for Targeted Mass Spectrometry Imaging of Tumor Tissues. Nanotheranostics 1(2):141–153

    Article  PubMed  PubMed Central  Google Scholar 

  132. Yoon S, Rossi JJ (2018) Targeted Molecular Imaging Using Aptamers in Cancer. Pharmaceuticals 11(3):71

    Article  CAS  PubMed Central  Google Scholar 

  133. Weissleder R (1999) Molecular Imaging: Exploring the Next Frontier. Radiology 212(3):609–614

    Article  CAS  PubMed  Google Scholar 

  134. Shi H, Tang Z, Kim Y, Nie H, Huang YF, He X, Deng K, Wang K, Tan W (2010) In vivo fluorescence imaging of tumors using molecular aptamers generated by cell-SELEX. Chem Asian J 5(10):2209–2213

    Article  CAS  PubMed  Google Scholar 

  135. Shi H, Cui W, He X, Guo Q, Wang K, Ye X, Tang J (2013) Whole cell-SELEX aptamers for highly specific fluorescence molecular imaging of carcinomas in vivo. PLoS ONE 8(8):e70476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dassie JP, Hernandez LI, Thomas GS, Long ME, Rockey WM, Howell CA, Chen Y, Hernandez FJ, Liu XY, Wilson ME, Allen LA, Vaena DA, Meyerholz DK, Giangrande PH (2014) Targeted inhibition of prostate cancer metastases with an RNA aptamer to prostate-specific membrane antigen. Mol Ther 22(11):1910–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chen H, Zhao J, Zhang M, Yang H, Ma Y, Gu Y (2015) MUC1 aptamer-based near-infrared fluorescence probes for tumor imaging. Mol Imaging Biol 17(1):38–48

    Article  CAS  PubMed  Google Scholar 

  138. Zhang C, Ji X, Zhang Y, Zhou G, Ke X, Wang H, Tinnefeld P, He Z (2013) One-pot synthesized aptamer-functionalized CdTe:Zn2+ quantum dots for tumor-targeted fluorescence imaging in vitro and in vivo. Anal Chem 85(12):5843–5849

    Article  CAS  PubMed  Google Scholar 

  139. Greenall SA, Donoghue JF, Van Sinderen M, Dubljevic V, Budiman S, Devlin M, Street I, Adams TE, Johns TG (2015) EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma: mechanism and therapeutic implications. Oncogene 34(41):5277–5287

    Article  CAS  PubMed  Google Scholar 

  140. Tang J, Huang N, Zhang X, Zhou T, Tan Y, Pi J, Pi L, Cheng S, Zheng H, Cheng Y (2017) Aptamer-conjugated PEGylated quantum dots targeting epidermal growth factor receptor variant III for fluorescence imaging of glioma. Int J Nanomedicine 12:3899–3911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lim EK, Kim B, Choi Y, Ro Y, Cho EJ, Lee JH, Ryu SH, Suh JS, Haam S, Huh YM (2014) Aptamer-conjugated magnetic nanoparticles enable efficient targeted detection of integrin alphavbeta3 via magnetic resonance imaging. J Biomed Mater Res A 102(1):49–59

    Article  PubMed  CAS  Google Scholar 

  142. Zhu H, Zhang L, Liu Y, Zhou Y, Wang K, Xie X, Song L, Wang D, Han C, Chen Q (2016) Aptamer-PEG-modified Fe3O4@Mn as a novel T1- and T2- dual-model MRI contrast agent targeting hypoxia-induced cancer stem cells. Sci Rep 6:39245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kryza D, Debordeaux F, Azema L, Hassan A, Paurelle O, Schulz J, Savona-Baron C, Charignon E, Bonazza P, Taleb J, Fernandez P, Janier M, Toulme JJ (2016) Ex vivo and in vivo imaging and biodistribution of aptamers targeting the human matrix metalloprotease-9 in melanomas. PLoS ONE 11(2):e0149387

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Wu X, Liang H, Tan Y, Yuan C, Li S, Li X, Li G, Shi Y, Zhang X (2014) Cell-SELEX aptamer for highly specific radionuclide molecular imaging of glioblastoma in vivo. PLoS ONE 9(6):e90752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Jacobson O, Weiss ID, Wang L, Wang Z, Yang X, Dewhurst A, Ma Y, Zhu G, Niu G, Kiesewetter DO, Vasdev N, Liang SH, Chen X (2015) 18F-labeled single-stranded DNA aptamer for PET imaging of protein tyrosine kinase-7 expression. J Nucl Med 56(11):1780–1785

    Article  CAS  PubMed  Google Scholar 

  146. Liu K, Song G, Zhang X, Li Q, Zhao Y, Zhou Y, Xiong R, Hu X, Tang Z, Feng G (2017) PTK7 is a novel oncogenic target for esophageal squamous cell carcinoma. World Journal of Surgical Oncology 15(1):105

    Article  PubMed  PubMed Central  Google Scholar 

  147. Wang L, Jacobson O, Avdic D, Rotstein BH, Weiss ID, Collier L, Chen X, Vasdev N, Liang SH (2015) Ortho-stabilized 18F-azido click agents and their application in PET imaging with single-stranded DNA aptamers. Angew Chem Int Ed 54(43):12777–12781

    Article  CAS  Google Scholar 

  148. Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696

    Article  CAS  PubMed  Google Scholar 

  149. Li CH, Kuo TR, Su HJ, Lai WY, Yang PC, Chen JS, Wang DY, Wu YC, Chen CC (2015) Fluorescence-guided probes of aptamer-targeted gold nanoparticles with computed tomography imaging accesses for in vivo tumor resection. Sci Rep 5:15675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wu M, Wang Y, Wang Y, Zhang M, Luo Y, Tang J, Wang Z, Wang D, Hao L, Wang Z (2017) Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-co-glycolic acid) nanobubbles for ultrasound imaging and therapy of prostate cancer. Int J Nanomedicine 12:5313–5330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang J, Smaga LP, Satyavolu NSR, Chan J, Lu Y (2017) DNA Aptamer-Based Activatable Probes for Photoacoustic Imaging in Living Mice. J Am Chem Soc 139(48):17225–17228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kang WJ, Lee J, Lee YS, Cho S, Ali BA, Al-Khedhairy AA, Heo H, Kim S (2015) Multimodal imaging probe for targeting cancer cells using uMUC-1 aptamer. Colloids Surf B Biointerfaces 136:134–140

    Article  CAS  PubMed  Google Scholar 

  153. Petersen KE, Manangon E, Hood JL, Wickline SA, Fernandez DP, Johnson WP, Gale BK (2014) A review of exosome separation techniques and characterization of B16-F10 mouse melanoma exosomes with AF4-UV-MALS-DLS-TEM. Anal Bioanal Chem 406(30):7855–7866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W (2015) Exosomes in cancer: small particle, big player. J Hematol Oncol 8(1):83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Jalalian SH, Ramezani M, Jalalian SA, Abnous K, Taghdisi SM (2019) Exosomes, new biomarkers in early cancer detection. Anal Biochem 571:1–13

    Article  CAS  PubMed  Google Scholar 

  156. Cheng N, Du D, Wang X, Liu D, Xu W, Luo Y, Lin Y (2019) Recent advances in biosensors for detecting cancer-derived exosomes. Trends Biotechnol 37(11):1236–1254

    Article  CAS  PubMed  Google Scholar 

  157. Yu X, He L, Pentok M, Yang H, Yang Y, Li Z, He N, Deng Y, Li S, Liu T (2019) An aptamer-based new method for competitive fluorescence detection of exosomes. Nanoscale 11(33):15589–15595

    Article  CAS  PubMed  Google Scholar 

  158. Zhang Z, Tang C, Zhao L, Xu L, Zhou W, Dong Z, Yang Y, Xie Q, Fang X (2019) Aptamer-based fluorescence polarization assay for separation-free exosome quantification. Nanoscale 11(20):10106–10113

    Article  CAS  PubMed  Google Scholar 

  159. Jin D, Yang F, Zhang Y, Liu L, Zhou Y, Wang F, Zhang G-J (2018) ExoAPP: exosome-oriented, aptamer nanoprobe-enabled surface proteins profiling and detection. Anal Chem 90(24):14402–14411

    Article  CAS  PubMed  Google Scholar 

  160. Zhang Q, Wang F, Zhang H, Zhang Y, Liu M, Liu Y (2018) Universal Ti3C2 MXenes based self-standard ratiometric fluorescence resonance energy transfer platform for highly sensitive detection of exosomes. Anal Chem 90(21):12737–12744

    Article  CAS  PubMed  Google Scholar 

  161. Wang H, Chen H, Huang Z, Li T, Deng A, Kong J (2018) DNase I enzyme-aided fluorescence signal amplification based on graphene oxide-DNA aptamer interactions for colorectal cancer exosome detection. Talanta 184:219–226

    Article  CAS  PubMed  Google Scholar 

  162. Jiang Y, Shi M, Liu Y, Wan S, Cui C, Zhang L, Tan W (2017) Aptamer/AuNP Biosensor for Colorimetric Profiling of Exosomal Proteins. Angew Chem Int Ed 56(39):11916–11920

    Article  CAS  Google Scholar 

  163. Xia Y, Liu M, Wang L, Yan A, He W, Chen M, Lan J, Xu J, Guan L, Chen J (2017) A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosens Bioelectron 92:8–15

    Article  CAS  PubMed  Google Scholar 

  164. Zhou Q, Rahimian A, Son K, Shin D-S, Patel T, Revzin A (2016) Development of an aptasensor for electrochemical detection of exosomes. Methods 97:88–93

    Article  CAS  PubMed  Google Scholar 

  165. Wang S, Zhang L, Wan S, Cansiz S, Cui C, Liu Y, Cai R, Hong C, Teng IT, Shi M, Wu Y, Dong Y, Tan W (2017) Aptasensor with Expanded Nucleotide Using DNA Nanotetrahedra for Electrochemical Detection of Cancerous Exosomes. ACS Nano 11(4):3943–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Yang F, Zuo X, Fan C, Zhang X-E (2018) Biomacromolecular nanostructures-based interfacial engineering: from precise assembly to precision biosensing. Natl Sci Rev 5(5):740–755

    Article  CAS  Google Scholar 

  167. Wang Z, Zong S, Wang Y, Li N, Li L, Lu J, Wang Z, Chen B, Cui Y (2018) Screening and multiple detection of cancer exosomes using an SERS-based method. Nanoscale 10(19):9053–9062

    Article  CAS  PubMed  Google Scholar 

  168. Cox JC, Hayhurst A, Hesselberth J, Bayer TS, Georgiou G, Ellington AD (2002) Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res 30(20):e108

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kim N, Gan HH, Schlick T (2007) A computational proposal for designing structured RNA pools for in vitro selection of RNAs. RNA 13(4):478–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang Q-L, Cui H-F, Du J-F, Lv Q-Y, Song X (2019) In silico post-SELEX screening and experimental characterizations for acquisition of high affinity DNA aptamers against carcinoembryonic antigen. RSC Adv 9(11):6328–6334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huifang Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lv, Q., Cui, H., Song, X. (2021). Aptamers for the Diagnosis of Malign Tumors. In: Dong, Y. (eds) Aptamers for Medical Applications. Springer, Singapore. https://doi.org/10.1007/978-981-33-4838-7_9

Download citation

Publish with us

Policies and ethics